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Abstract: We present schemes for simulating Brownian bridges on complete and connected Lie
groups and homogeneous spaces. We use this to construct an estimation scheme for recovering an
unknown left- or right-invariant Riemannian metric on the Lie group from samples. We subsequently
show how pushing forward the distributions generated by Brownian motions on the group results in
distributions on homogeneous spaces that exhibit a non-trivial covariance structure. The pushforward
measure gives rise to new non-parametric families of distributions on commonly occurring spaces
such as spheres and symmetric positive tensors. We extend the estimation scheme to fit these
distributions to homogeneous space-valued data. We demonstrate both the simulation schemes and
estimation procedures on Lie groups and homogenous spaces, including SPD(3) = GL+(3)/SO(3)
and S2 = SO(3)/SO(2).

Keywords: bridge simulation; Brownian motion; Lie groups; homogeneous spaces; metric estimation;
directional statistics

1. Introduction

Bridge simulation is a data augmentation technique for generating missing trajectories
of continuous diffusion processes. We consider bridge simulation on Lie groups and homo-
geneous spaces. As an important example, we investigate the case of an i.i.d. Lie group or
homogeneous space-valued samples that are considered discrete-time observations of a
continuous diffusion process. Assuming the stochastic dynamics to be Brownian motion,
we wish to estimate the underlying Riemannian metric of the Lie group or homogeneous
space from the samples. To evaluate and maximize the likelihood of the data, we need to ac-
count for the diffusion process being unobserved at most time points. This requires bridge
sampling, and the sampling techniques are thus the key enabler for metric estimation in
this setting.

The simulation of conditioned diffusion processes is a highly non-trivial problem,
even in Euclidean spaces. Transition densities of diffusion processes are tractable in closed
form only for a small class of processes, and hence, simulating directly from the true bridge
distribution is generally infeasible. The data augmentation used in inference for diffusion
processes dates back to the seminal paper by Pedersen [1] almost three decades ago. Since
then, several papers have studied diffusion bridge simulation methods; see, e.g., [2–11].
The method by Delyon and Hu [5] exchanged the intractable drift term in the conditioned
diffusion with a tractable drift originating from the drift of a standard Brownian bridge.

In this paper, we further extend the original idea of Delyon and Hu [5] to Lie groups
and homogenous spaces. Several papers have built on the ideas of Delyon and Hu. For
example, a manifold equivalent drift term analogous to the drift term of a Brownian bridge
in Euclidean space was used in [6] to describe the simulation of Brownian bridges on the
flat torus, whereas [7] generalized this method to general finite-dimensional Riemannian
manifolds. Reference [11] used the drift to model Brownian bridges on the space of
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landmarks. Bui et al. [4,12] used a similar drift term on the space of symmetric positive
definite (covariance) matrices, exploiting the exponential map, which in the space of
covariance matrices is a global diffeomorphism. The present paper extends these ideas to
general Lie groups and homogeneous spaces.

As an application, we consider discrete-time observations in Lie groups and homoge-
neous spaces regarded as incomplete observations of sample paths of Brownian motions
arising from left- (or right-) invariant Riemannian metrics. The bridge simulation schemes
allow interpolating between the discrete-time observations. Furthermore, we observe
how varying the metric on Lie groups affects pushforwards of the Brownian motion to
homogeneous spaces being quotients of the group. These distributions encode the co-
variance of the data resulting from the metric structure of the Lie group. We define this
family of distributions and derive estimation schemes for recovering the metric structure
of the group both with Lie group samples and with homogeneous space samples. One
particular example is the two-sphere, S2 ∼= SO(3)/SO(2). Changing the metric structure
on SO(3) results in anisotropic distributions on S2, arising as the pushforward measure
from SO(3). Figure 1 illustrates the isotropic and anisotropic distributions on S2 induced
by a bi-invariant and left-invariant (not bi-invariant) metric on SO(3), respectively. The
resulting distributions are analogous to the von Mises–Fisher and Fisher–Bingham–Kent
distributions [13,14]. However, the approach is independent of the chosen embedding and
uses only the geometric relation between the group and quotient space.

(a) (b) (c) (d)

Figure 1. The two leftmost plots visualize the transition densities of (a) a Fisher–Bingham–Kent
distribution and (b) the pushforward density of a Brownian motion to S2 with a bi-invariant metric.
The pushforward measure of a Brownian motion on SO(3) to the sphere S2 results in anisotropic
distributions on S2 when the metric on SO(3) is not bi-invariant, for (c) T = 0.5 and (d) T = 1.0. The
coloring indicates the density of the pushforward (different color scheme for each subfigure).

For the simulation on homogeneous spaces, we use bridges to submanifolds as devel-
oped by Thompson [15] to condition on the fibers in the Lie group G over the target point
v ∈ M = G/H for some closed subgroup H ⊂ G. The resulting guiding term guides in the
direction closest to the fiber.

Statistics on Lie groups and homogeneous spaces find applications in many diverse
fields, including bioinformatics, medical imaging, shape analysis, computer vision, and
information geometry; see, e.g., [16–20]. Statistics in Euclidean spaces often rely on the
distributional properties of the normal distribution. Here, we use Brownian motions and the
heat equation to generalize the normal distribution to Lie groups and homogeneous spaces
as introduced by Grenander [21]. The solution to the heat equation is the transition density
of a Brownian motion. Through Monte Carlo simulations of bridges, we can estimate the
transition density and maximize the likelihood with respect to the Riemannian metric.

Contribution and Overview

We present simulation schemes on Lie groups and homogeneous spaces with appli-
cation to parameter estimation. We outline the necessary theoretical background for the
construction of bridge simulation on Lie groups and homogeneous spaces before demon-
strating how the simulation scheme leads to estimates of means and the underlying metric
structure using maximum likelihood estimation on certain Lie groups and homogeneous
spaces. The paper builds on and significantly extends the conference paper [22], which
introduced bridge simulation in the Lie group setting.
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The paper is organized as follows: In Section 2, we describe the relevant background
theory of Lie groups, Brownian motions, and Brownian bridges in Riemannian manifolds.
Section 3 presents the theory and results of bridge sampling in Lie groups, and Section 4
introduces bridge sampling on homogeneous spaces. Section 5 covers maximum likelihood
estimation of the starting point and Riemannian metric. Numerical experiments on selected
Lie groups and homogeneous spaces are presented in Section 6.

2. Notation and Background

We here briefly describe simulating conditioned diffusions in Euclidean space as devel-
oped in [5] before reviewing the theory on conditioned diffusions on Riemannian manifolds.

2.1. Euclidean Diffusion Bridges and Simulation

Suppose a strong solution exists to an SDE of the form

dxt = b(t, xt)dt + σ(t, xt)dwt,

where b and σ satisfy certain regularity conditions and where w denotes an Rn-valued
Brownian motion. In this case, x is a Markov process, and its transition density exists.
Suppose we define the function

h(t, x) =
pT−t(xt, v)
pT(x0, v)

,

for some x0, v ∈ Rn. Then, it is easily derived that h is a martingale on [0, T) with h(0, x0) = 1,
and Doob’s h-transform implies that the SDE of the conditioned diffusion x|xT = v is
given by

dyt = b̃(t, yt)dt + σ(t, yt)dwt

where b̃(t, y) = b(t, y) + (σσT)(t, y)∇y log pT−t(y, v). In the case that the transition density
is intractable, simulation from the exact distribution is infeasible. Delyon and Hu [5]
suggested substituting the latter term in b̃ with a drift term of the form −(yt − v)/(T − t),
which equals the drift term in a Brownian bridge. The guided process obtained by making
the above substitution yields a conditioning, and one obtains

E[ f (x)|xT = v] = CE[ f (y)ϕT(y)], (1)

where ϕT is a likelihood function that is tractable and numerically computable, y is the
guided process, and the constant C > 0 depends on x0, v, and T.

2.2. Riemannian Manifolds and Lie Groups

Let M be a finite-dimensional smooth manifold of dimension d. M can be endowed
with a Riemannian metric tensor, i.e., a family of inner products {〈·, ·〉x}x∈M defined on each
tangent space Tx M. The Riemannian metric tensor gives rise to a distance function between
points in M. The tangent space is locally diffeomorphic with an open subset of M. The
Riemannian exponential map Expx : Tx M→ M provides this local diffeomorphism. On
the subset of M where Expx is a diffeomorphism, the inverse Riemannian exponential
map, also called the Riemannian logarithm map, Logx : M → Tx M is defined. The
Riemannian distance function can then be defined in terms of the Riemannian inner
product as d(x, y) = ‖Logx(y)‖x . The Riemannian logarithm map plays an important role
when defining guided bridges on manifolds.

Let X be a vector field on M assigning to each point X ∈ M a tangent vector X(x) ∈ Tx M.
A connection∇ on a manifold is an operation that allows us to compare neighboring tangent
spaces and define derivatives of vector fields along other vector fields, that is, if Y is another
vector field, then∇XY is the derivative of Y along X (also known as the covariant derivative
of Y along X). A connection also gives a notion of “straight lines” in manifolds, also known
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as geodesics. A curve γ is a geodesic if the vector field along γ is parallel to itself, i.e., if
∇γ̇t γ̇t = 0. The geodesic curves are locally length minimizing.

Generalizing the Euclidean Laplacian operator, the Laplace–Beltrami operator is de-
fined as the divergence of the gradient, ∆M f = div grad f . In terms of local coordinates
(x1, . . . , xd), the expression for the Laplace–Beltrami operator becomes

∆M f = det(g)−1/2

(
∂

∂xj
gji det(g)1/2 ∂

∂xi

)
f , (2)

where det(g) denotes the determinant of the Riemannian metric g and gij are the coefficients
of the inverse of g. (2) can be written as

∆M f = aij ∂

∂xi

∂

∂xj
f + bj ∂

∂xj
f , (3)

where aij = gij, bk = −gijΓk
ij, and Γ denote the Christoffel symbols of the Riemannian metric.

2.3. Lie Groups

Let G denote a connected Lie group of dimension d, i.e., a smooth manifold with a

group structure such that the group operations G × G 3 (x, y)
µ7→ xy ∈ G and G 3 x ι7→

x−1 ∈ G are smooth maps. If x ∈ G, the left-multiplication map, Lxy, defined by y 7→
µ(x, y), is a diffeomorphism from G to itself. Similarly, the right-multiplication map Rxy
defines a diffeomorphism from G to itself by y 7→ µ(y, x). Let dLx : TG → TG denote
the pushforward map given by (dLx)y : TyG → TxyG. A vector field V on G is said
to be left-invariant if (dLx)yV(y) = V(xy). The space of left-invariant vector fields is
linearly isomorphic to TeG, the tangent space at the identity element e ∈ G. By equipping
the tangent space TeG with the Lie bracket, we can identify the Lie algebra g with TeG.
The group structure of G makes it possible to define an action of G on its Lie algebra
g. The conjugation map Cx := Lx ◦ R−1

x : y 7→ xyx−1, for x ∈ G, fixes the identity e. Its
pushforward map at e, (dCx)e, is then a linear automorphism of g. Define Ad(x) := (dCx)e,
then Ad: x 7→ Ad(x) is the adjoint representation of G in g. The map G × g 3 (x, v) 7→
Ad(x)v ∈ g is the adjoint action of G on g. We denote by 〈·, ·〉 a Riemannian metric on G.
The metric is said to be left-invariant if 〈u, v〉y =

〈
(dLx)yu, (dLx)yv

〉
Lx(y)

, for every u, v ∈
TyG, i.e., the left-multiplication maps are isometries, for every x ∈ G. The metric is Ad(G)-
invariant if 〈u, v〉e = 〈Ad(x)u, Ad(x)v〉e, for every u, v ∈ g. Note that an Ad(G)-invariant
metric on G is equivalent to a bi-invariant (left- and right-invariant) inner product on g.
The differential of the Ad map at the identity yields a linear map ad(x) = d

dt Ad(exp(tx))|0.
This linear map is equal to the Lie bracket [v, w] = ad(v)w, v, w ∈ g.

A one-parameter subgroup of G is a continuous homomorphism γ : (R,+)→ G. The
Lie group exponential map exp : g→ G is defined as exp(v) = γv(1), for v ∈ g, where γv
is the unique one-parameter subgroup of G whose tangent vector at e is v. For matrix Lie
groups, the exponential map has the particular form: exp(A) = ∑∞

k=0 Ak/k!, for a square
matrix A. The resulting matrix exp(A) is an invertible matrix. Given an invertible matrix B,
if there exists a square matrix A such that B = exp(A), then A is said to be the logarithm of
B. In general, the logarithm might not exist, and if it does, it may fail to be unique. In a
neighborhood sufficiently close to the identity, the Lie group logarithm exists and is unique.
By means of left-translation (or right-translation), the Lie group exponential map can be
extended to a map expg : TgG → G, for all g ∈ G, defined by expg(v) = g exp(dLg−1 v).
Similarly, the Lie group logarithm at g becomes logg(v) = dLg log(g−1v). The matrix
exponential and logarithms can be computed numerically efficiently (see [23], Chapter 5,
and the references therein).

Example 1. A few examples of Lie groups include the Euclidean space (Rn,+) with the additive
group structure, (R+, ·) the positive real line with a multiplicative group structure, the space of
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invertible real matrices GL(n) equipped with a multiplication of matrices forming a Lie group, and
the rotation group O(n), consisting of real orthogonal matrices with determinant one or minus one
forming a subgroup of GL(n).

The identification of the space of left-invariant vector fields with the Lie algebra g

allows for a global description of ∆G. Indeed, let {v1, . . . vd} be an orthonormal basis of TeG.
Then, Vi(g) = (dLg)evi defines left-invariant vector fields on G and the Laplace–Beltrami
operator can be written as (cf. [24], Proposition 2.5)

∆G f (e) =
d

∑
i=1

V2
i f (e)−V0 f (e),

where V0 = ∑d
i,j=1 Cj

ijVj and Ck
ij denote the structure coefficients given by

[Vi, Vj] = Ck
ijVk. (4)

By left-invariance, ∆G f (g) = ∆G f ◦ Lg(e) =
(
dLg

)
e∆G f (e).

2.4. Homogeneous Spaces

A homogeneous space is a particular type of quotient manifold that arises as a smooth
manifold endowed with a transitive smooth action by a Lie group G. The homogeneous
space is called a G-homogeneous space to indicate the Lie group action. All G-homogeneous
spaces arise as a quotient manifold G/H, for some closed subgroup H ⊆ G. H is a closed
subgroup of the Lie group G, which makes H a Lie group. Any homogeneous space is
diffeomorphic to the quotient space G/Gx, where Gx is the stabilizer for the point x. The
dimension of the G-homogeneous space is equal to dim G − dim H; the quotient map
π : G → G/H is a smooth submersion, i.e., the differential of π is surjective at every point.
This implies that the fibers π−1(x), x ∈ M, are embedded submanifolds of G. We assume
throughout that G acts on itself by left-multiplication.

Example 2. The rotation group SO(n) acts transitively on Sn−1; therefore, Sn−1 is an SO(n)-
homogeneous space. Consider a point in S−1 as a vector in Rn. Rotations that fix the point occur
precisely in the subspace orthogonal to the vector. Thus, the stabilizer or isotropy group is the
rotation group SO(n− 1) and Sn−1 = SO(n)/SO(n− 1). The set of invertible matrices with
positive determinant GL+(n) acts on symmetric positive definite matrices SPD(n). The isotropy
group is the rotation group SO(n), and thus, SPD(n) = GL+(n)/SO(n). A particular type of
homogeneous space arises when the subgroup is a discrete subgroup of G. For example, the space
Tn = Rn/Zn defines the n-torus as a homogeneous space.

2.5. Brownian Motion on Riemannian Manifolds

The Laplacian defines Brownian motion on M as a 1
2 ∆M-diffusion process up to its

explosion time τ. The stochastic differential equation (SDE) for a Brownian motion Xt in
local coordinates is

dXk
t = −1

2
gij(Xt)Γk

ij(Xt)dt + σk
j (Xt)dBj

t, (5)

where σ =
√

g−1 is the matrix square root of g−1.
On Lie groups, an SDE for a Brownian motion on G in terms of left-invariant vector

fields takes the form

dgt = −
1
2

V0(gt)dt + Vi(gt) ◦ dBi
t, g0 = e, (6)

where ◦ denotes integration in the Stratonovich sense. By [24] (Proposition 2.6), if the
inner product is Ad(G)-invariant, then V0 = 0. The solution of (6) is conservative or
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non-explosive and is called the left-Brownian motion on G (see [25] and the references
therein).

2.6. Brownian Bridges

In this section, we briefly review some facts on Brownian bridges on Riemannian
manifolds, including Lie groups. On Lie groups, the existence of left-invariant (respectively
right-invariant) vector fields allows identification of the Lie algebra with the vector space
of left-invariant vector fields making the Lie group parallelizable. This allows constructing
general semimartingales directly on the Lie groups.

Let Pt
x = Px|Ft be the measure of a Riemannian Brownian motion, Xt, at some time t

started at point x. Let pt denote the transition density of Xt so that dPt
x = pt(x, y)d Vol(y)

with d Vol(y) the Riemannian volume measure. Conditioning the Riemannian Brownian
motion to hit some point v ∈ M at time T > 0 defines a Riemannian Brownian bridge. We
let PT

x,v denote the corresponding probability measure. The two measures are absolutely
continuous (equivalent) over the time interval [0, T), however mutually singular at time
t = T. This consequence is obvious because Px(XT = v) = 0, whereas PT

x,v(XT = v) = 1.
The corresponding Radon–Nikodym derivative is

dPT
x,v

dPx

∣∣
Fs

=
pT−s(Xs, v)

pT(x, v)
for 0 ≤ s < T (7)

which is a martingale for s < T. The Radon–Nikodym derivative defines the density for
the change of measure, and it provides the conditional expectation

E[F(Xt)|XT = v] =
E[pT−t(Xt, v)F(Xt)]

pT(x, v)
, (8)

for any bounded and Fs-measurable random variable F(Xs). The Brownian bridge is a
non-homogeneous diffusion on M with infinitesimal generator

Ls f (z) =
t
2

∆M f (z) + t∇z log pt(1−s)(z, v) · ∇ f (z).

The bridge can be described by an SDE in the frame bundle FM of M. Let Ut be a lift
of Xt = πFM(Ut), and using the horizontal vector fields Hi, . . . , Hd ∈ X(FM), we have

dUt = Hi(Ut) ◦
(

dBi
t +
(

U−1
t

(
π∗
(
∇H

u|u=Ut
log p̃T−t(u, v)

)))i
dt
)

, U0 = u0, (9)

where p̃t(u, v) = pt(π(u), v) denotes the lift of the transition density, B is an Rd-valued
Brownian motion, and (πFM)∗ : TFM → TM is the pushforward of the projection
πFM : FM→ M. Here, u0 ∈ FM is an orthonormal frame such that πFM(u0) = x0.

Further types of Riemannian bridges can be found in Thompson [15]. Brownian
bridges to submanifolds are here introduced by considering the transition density evaluated
at a submanifold N ⊂ M by

pt(x, N) :=
∫

N
pt(x, y)d VolN(y), (10)

where VolN denotes the volume measure on N. Conditioning on XT ∈ N gives

E[ f (Xt)|XT ∈ N] =
E[pT−t(Xt, N) f (Xt)]

pT(x, N)
, (11)

which holds for all bounded Ft-measurable random variables f (Xt). Fibers of homoge-
neous spaces are embedded submanifolds of a Lie group. We will later use this to derive a
simulation scheme on homogeneous spaces by conditioning on the fibers.
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The notion of Fermi bridges was also introduced in [15]. Fermi bridges have infinitesi-
mal generator

1
2 ∆− rN

T−t
∂

∂rN
, (12)

where rN(·) := d(·, N) = infy∈N d(·, y) and ∂
∂rN

= ∇d(·, N).

2.7. One-Point Motions

Consider the homogeneous space M = G/H, where H is a Lie subgroup of the Lie
group G, and let π : G → M denote the canonical projection. Suppose that G acts on M
on the left and that gt is a process in G. This induces a process in M. For any x ∈ M, the
induced process xt = gtx defines the one-point motion of gt in M, with initial value x.
The one-point motion, Xt = gtx, of a Brownian motion gt in G, started at g0 = e, is only
a Brownian motion in M under certain conditions (see, e.g., [24], Proposition 2.7). In the
case of a bi-invariant metric, a Brownian motion on G maps to a Brownian motion in M
through its one-point motion, which, in general, is not the case. For example, the one-point
processes of a G-valued Markov process might not preserve the Markov property if the
metric is not bi-invariant.

In this paper, we explicitly chose metrics whose Brownian motions do not descend
to Brownian motions in G/H. The non-invariant metrics result in processes in G/H with
an anisotropic covariance structure. The anisotropic distributions in G/H will arise from
non-invariant metrics, and the induced processes will, in general, not inherit the Markov
property.

2.8. Pushforward Measures

Let π : G → M be the projection to the homogeneous space M = G/H. Then, π is
a measurable map, and if µ is a measure on G, the pushforward of µ by π, defined by
π∗µ(B) = µ

(
π−1(B)

)
, for all measurable subsets B ⊆ M, is a measure on M. A numerical

example is provided in Figure 1, showing anisotropic distributions on the homogeneous
space S2 obtained from pushing forward Brownian motions of a non-invariant metric on
the top space SO(3).

The Riemannian volume measure VolG on G decomposes into a product measure
consisting of the volume measure on fibers in G, e.g., π−1(z), and the volume measure
on their horizontal complement, i.e., d VolG = d Volπ−1(z) d Vol|H(z), where d Vol|H is the
horizontal restriction of the volume measure in G. The measure of a process gt on G
pushes forward to M, and we denote the corresponding density with respect to the volume
measure on M for pM

t . Then, pM
t (x) =

∫
π−1(x) pG

t (g0, y)d Volπ−1(z)(y).

Lemma 1. Let gt be a Markov process on G, started at g0 ∈ G, with density pG
t (g0, ·), and let

Xt = π(gt). The conditional expectation on M satisfies

E[ f (X)|XT = v] = E
[

f (X)
pM

T−t(Xt, v)

pM
T (x0, v)

]
,

for all bounded, continuous, and non-negative Ft-measurable f on M. Furthermore,

E[ f̃ (g)|gT ∈ N] = E[ f (X)|XT = v],

where f̃ = f ◦ π.
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Proof. Let f be a bounded, continuous, and non-negative measurable function on M, and
let f̃ = f ◦ π. Then, it follows directly from (7) and (11) that

E[ f̃ (g)|gT ∈ N] =E
[

f (π(gt))
pG

T−t(gt, N)

pG
T (g0, N)

]
= E

[
f (π(gt))

pG
T−t(gt, π−1(v))

pG
T (g0, π−1(v))

]

=E
[

f (π(gt))
π∗pG

T−t(gt, v)

π∗pG
T (g0, v)

]
= E

[
f (Xt)

pM
T−t(Xt, v)

pM
T (x0, v)

]
.

3. Simulation of Bridges on Lie Groups

In this section, we consider the task of simulating (6) conditioned to hit v ∈ G, at
time T > 0. The potentially intractable transition density for the solution of (6) inhibits
simulation directly from the bridge SDE (9). Instead, we propose to add a guiding term
mimicking that of Delyon and Hu [5], i.e., the guiding term becomes the gradient of the
distance to v divided by the time to arrival. The SDE for the guided diffusion becomes

dYt = −
1
2

V0(Yt)dt + Vi(Yt) ◦

dBi
t −

(
∇y|y=Yt

d(y, v)2
)i

2(T − t)
dt

, Y0 = e, (13)

where d(·, v) denotes the Riemannian distance to v. Note that we can always, for con-
venience, take the initial value to be the identity e. Equation (13) can equivalently be
written as

dYt = −
1
2

V0(Yt)dt + Vi(Yt) ◦
(

dBi
t −

LogYt
(v)i

T − t
dt

)
, Y0 = e,

where Logp is the inverse of the Riemannian exponential map Expp. Figure 2 illustrates one
sample path of the simulation scheme in (13) on the Lie group SO(3). The corresponding
axis-angle representation is visualized in Figure 3.

Figure 2. One sample path of the guided bridge process (13) on SO(3) visualized by its action on
the basis vectors (red, blue, green) of R3. The bridge is conditioned on the rotation indicated by the
black arrows.
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Figure 3. Angle–axis representation of the guided bridge defined by (13). (Left) The projection of the
path in SO(3) to S2. The trajectory on S2 corresponds to the motion of the tip of the blue vector, as
seen in Figure 2. (Right) The angle representation of the guided bridge in SO(3).

The guiding term in (13) is identical to the guiding term described in [4,7]. In [7], the
guided processes used the frame bundle of M. In the Lie group setting, since Lie groups
are parallelizable, the use of the frame bundle is not needed: the invariant vector fields Vi
provide a frame of reference at all points of G.

Numerical computations of the Lie group exponential map are often computationally
efficient; see [23] and the references therein for efficient algorithms. Therefore, by a change
of measures argument, the equation above can be expressed in terms of the inverse of the
Lie group exponential:

dYt = −
1
2

V0(Yt)dt + Vi(Yt) ◦
(

dB̄i
t −

logYt
(v)i

T − t
dt

)
(14)

Y0 = e, where B̄ is a Brownian motion under a new measure, say P̄. The measure P̄ can
explicitly be expressed as

dP̄
dP |Ft = exp

[
−
∫ t

0
Hv(s, Ys)−

1
2

∫ t

0

‖logYs
(v)− LogYs

(v)‖2
Ys

(T − s)2 ds
]

,

where P denotes the law of the SDE in (13) and

Hv(t, Yt) =

〈(logYt
(v)− LogYt

(v)
)

T − t
, V(Yt)dBt

〉
Yt

.

Note that when the metric is bi-invariant, the group logarithm and the Riemannian
logarithm coincide.

3.1. Radial Process

Below, we investigate the relation between the bridge measure and the above simula-
tion schemes. Let rv(·) := d(·, v) be the distance to v such that rv(gt) is the radial process.
Due to the singularities of the radial process on Cut(v) ∪ {v}, the usual Itô’s formula only
applies on subsets away from the cut-locus. The extension beyond the cut-locus of a Brow-
nian motion’s radial process was due to Kendall [26]. Barden and Le [27,28] generalized
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the result to M-valued semimartingales. The radial process of the Brownian motion (6) is
given by

rv(gt) = rv(g0)
2 +

∫ t

0

〈
∇gs rv(gs), V(gs)dBs

〉
gs
+

1
2

∫ t

0
∆Grv(gs)ds− Lv

s (g), (15)

where Lv is the geometric local time of the cut-locus Cut(v), which is a non-decreasing
continuous random functional increasing only when g is in Cut(v) (see [26–28]). Let
Wt :=

∫ t
0

〈
∂
∂r , Vi(gs)

〉
dBi

s, which is the local-martingale part in the above equation. The
quadratic variation of Wt satisfies d[W, W]t = dt by the orthonormality of {V1, . . . , Vd};
thus, Wt is a Brownian motion by Levy’s characterization theorem. From the stochastic
integration by parts formula and (15), the squared radial process of g satisfies

rv(gt)
2 = rv(g0)

2 + 2
∫ t

0
rv(gs)dWs +

∫ t

0
rv(gs)∆Grv(gs)ds− 2

∫ t

0
r(gs)dLv

s , (16)

where dLv
s is the random measure associated with Lv

s (X).
Similarly, we obtain an expression for the squared radial process of Y. The radial

process becomes

r2
v(gt) = rv(g0)

2 + 2
∫ t

0
rv(gs)dWs +

∫ t

0

1
2

∆Grv(gs)
2ds−

∫ t

0

rv(gs)2

T − s
ds− 2

∫ t

0
rv(gs)dLv

s . (17)

Imposing a growth condition on the radial process yields an L2-bound on the radial
process of the guided diffusion, [15]. Therefore, assume there exist constants ν ≥ 1 and
λ ∈ R such that 1

2 ∆Gr2
v ≤ ν + λr2

v on D\Cut(v), for every regular domain D ⊆ G. Then,
(17) satisfies

E[1t<τD rv(Yt)
2] ≤

(
r2

v(e) + νt
(

t
T − t

))(
T − t

t

)2
eλt, (18)

where τD is the first exit time of Y from the domain D.

3.2. Girsanov Change of Measure

Let Bt be a d-dimensional Brownian motion defined on a filtered probability space

(Ω,F , (Fs)s≥0,P), and let gt be a solution of (6). The process ∇rv(gt)
2

2(T−t) is an adapted process.
As gt is non-explosive, we see that

∫ t

0

∥∥∥∥∇rv(gs)2

2(T − s)

∥∥∥∥2

ds =
∫ t

0

rv(gs)2

(T − s)2 ds ≤ C, (19)

for every 0 ≤ t < T, almost surely, and for some fixed constant C > 0. Define a new
measure Q by

Zt :=
dQ
dP

∣∣∣∣
Ft

(g) = exp
[
−
∫ t

0

〈
∇rv(gs)2

2(T − s)
, V(gt)dBs

〉
− 1

2

∫ t

0

rv(gs)2

(T − s)2 ds
]

. (20)

From (19), the process Zt is a martingale, for t ∈ [0, T), and Qt defines a probability
measure on each Ft absolutely continuous with respect to P. By Girsanov’s theorem
(see, e.g., ([29], Theorem 8.1.2)), we obtain a new process bs, which is a Brownian motion
under the probability measure Q. Moreover, under the probability Q, Equation (6) becomes

dYt = −
1
2

V0(Yt)dt + Vi(Yt) ◦
(

dbi
t −

rv(Yt)

T − t

(
∂

∂rv

)i
dt

)
, (21)
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where
(

∂
∂r

)i
is the i’th component of the unit radial vector field in the direction of v. The

squared radial vector field is smooth away from Cut(v), and we set it to zero on Cut(v).
Away from Cut(v), the squared radial vector field is 2 Logv. The added drift term acts as a
guiding term, which pulls the process toward v at time T > 0.

From (20), we see that E[ f (Yt)] = E[ f (gt)Zt]. Using (16), we equivalently write
E[ f (Yt)ϕt] = E[ f (Xt)ψt], with

ψt,v := exp
[
−r2

v(gt)

2(T − t)

]
ϕt,v := exp

[∫ t

0

rv(Ys)

T − s
(dAv

s + dLv
s )

]
, (22)

where θv denotes the Jacobian determinant of Expv (see, e.g., [30]), dAv
s = ∂

∂rv
log θ−1/2

v (Ys)ds
is a random measure supported on G\Cut(v), and dLv

s is the geometric local time at Cut(v).

3.3. Delyon and Hu in Lie Groups

We can now generalize the result of Delyon and Hu ([5], Theorem 5) to the Lie group
setting. The result here for Lie groups is analogous to the Riemannian setting as covered
in [7].

Theorem 1. Let gt be a solution of (6). The SDE (13) yields a strong solution on [0, T) and
satisfies limt↑T Yt = v, almost surely. Moreover, the conditional expectation of g given gT = v is

E[ f (g)|gT = v] = lim
t↑T

E[ f (Y)ϕt,v]

E[ϕt,v]
, (23)

for every Ft-measurable non-negative function f on G, for t ∈ [0, T), where ϕt is given in (22).

When the geometry of G is particularly simple, the equivalence of measures hold on
[0, T]; see [7]. For example, in the case of G being simply connected:

Corollary 1. When G is simply connected, (23) becomes

E[ f (g)|gT = v] = CE[ f (Y)ϕT,v], (24)

where C > 0 is a constant, which depends on the initial point, the time T > 0, and the curvature in
the radial direction.

4. Simulation of Bridges in Homogeneous Spaces

We now turn to bridge simulation in homogeneous spaces by sampling bridges in G
conditioned on the fiber over v ∈ M = G/H. We simulated in the top space the Lie group
G and, subsequently, projected to the homogeneous space M. Inspired by Fermi bridges to
submanifolds, we guided toward the closest point in the fiber.

Guiding to the Closest Point

Recall that the projection π : G → G/H is a submersion; hence, the fibers π−1(x) are
embedded submanifolds of G. From Lemma 1, we obtain a conditional expectation in M
by conditioning on the fiber in the Lie group. The corresponding SDE for the Fermi bridge
in the Lie group setting is given by

dYt = −
1
2

V0(Yt)dt + Vi(Yt) ◦

dBi
t −

(
∇y|y=Yt

d(y, N)2
)i

2(T − t)
dt

, Y0 = e, (25)

where d(x, N) := infz∈N d(x, z) and N := π−1(v), for some v ∈ M.
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The one-point motion conditioned on v ∈ M corresponds to conditioning gt on the
fiber N := π−1(v), and we can use Fermi bridges directly. Because N is an embedded
submanifold of G, we obtain from Thompson [15] that ϕt,N is of the form

ϕt,N := exp
[∫ t

0

rN(Ys)

T − s

(
dAN

s + dLN
s

)]
, (26)

where dAN
s = ∂

∂rN
log Θ−1/2

N (Ys)ds and ΘN = θN ◦
(

Exp |Log(M\Cut(N))

)−1
. Similar to the

single-point case, we obtain

E[ f (X)|XT ∈ N] = lim
t↑T

E[ f (Y)ϕt,N ]

E[ϕt,N ]
,

for any bounded measurable function f . Again, there are various situations where it can be
justified to take the limit inside. See the discussion in [30], Appendix C.

5. Maximum Likelihood Estimation

A Brownian motion depends both on its starting point and the underlying Riemannian
metric. We can consider both parameters of the model and, given the data, seek to estimate
the parameters by the maximum likelihood (MLE). The resulting optimal starting point will
in this case be a diffusion mean [31]. As visualized in Figure 1, the pushforward measure
of a Brownian motion generated by a non-invariant metric induces distributions on the
quotient space, and these distributions will be anisotropic if the metric on the top space is
not bi-invariant. Here, we describe a setting for estimation of the underlying metric by the
maximum likelihood.

Consider i.i.d. observations y1, . . . , yn on G or G/H. Let pt(·|θ) and π∗pt(·|θ) be the
densities of Brownian motions with parameters θ = (g, A), where g represents the starting
point and A the metric tensor at g. The inverse A−1 = Σ can be thought of as the covariance
of the model. We obtain a likelihood as

L(θ|y1, . . . , yn; T) =
n

∏
i=1

pT(yi|θ), (27)

and, similarly, π∗L = ∏ π∗p.
The bridge sampling scheme introduced above yields approximations of the intractable

transition densities in (27). In the d-dimensional Euclidean case, importance sampling
yields the estimate [9]

pT(u, v) =

√
det(A(T, v))

(2πT)d e−
‖u−v‖2A

2T E[ϕT,v],

where ‖x‖A = xT A(0, u)x. Thus, from the output of the importance sampling, we obtain
an estimate of the transition density. Similar to the Euclidean case, we here obtain an
expression for the heat kernel pT(e, v) as pT(e, v) = q(T, e)E[ϕT,v], where

q(T, g) =

√
det A(v)
(2πT)d exp

(
−d(g, v)2

2T

)
=

√
det A(T, v)
(2πT)d exp

(
−
‖Logg(v)‖2

A

2T

)
, (28)

where the equality holds almost everywhere and A ∈ Sym+(g) denotes the metric
A(e) := A(0, e). The Logg map in (28) is the Riemannian inverse exponential map (Expg)

−1.
Algorithm 1 provides a detailed description of the iterative MLE approach. Visual

examples of the iterative MLE can be found in Figures 4 and 6.
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Algorithm 1: Parameter estimation: iterative MLE.

// Initialization
Given n data points {v1, . . . , vn}.
// Specify initial parameters θ0 = (g0, A0) and a learning rate η.

for k = 1 to K do
for j = 1 to n do

Sample m bridges from (13) conditioned on vj to obtain the estimate for
E[ϕT,vj ] ≈

1
m ∑m

i=1 ϕi
T,vj

end

`θk−1
(v1, . . . , vn) = ∏n

j=1

√
det Ak−1(T,vj)

(2πT)d e−
‖Logvj

(gk−1)‖
2
Ak−1

2T 1
m ∑m

i=1 ϕi
T,vj

// Compute the gradient
ξk = ∇θk−1

log `θk−1
(v1, . . . , vn)

// Update the parameters

θk = θk−1 − ηξk
end
// Return the final parameters θK = (gK, AK)

6. Experiments

In this section, we present numerical results of bridge sampling on specific Lie groups
and homogeneous spaces: the three-dimensional rotation group SO(3) and the general
linear group of invertible matrices with positive determinant GL+(3). Exploiting the bridge
sampling scheme described above, we show below how to estimate the true underlying
metric on SO(3) with iterative maximum likelihood estimation. This estimation, in turn,
allows finding the parameters of the anisotropic pushforward distributions as displayed in
Figure 1.

The space of the symmetric positive definite matrices SPD(n) is an example of a non-
linear space in which geometric data appear in many applications. The space SPD(3) can be
obtained as the homogeneous space GL+(3)/SO(3), where GL+ is the space of invertible
matrices with a positive determinant.

6.1. Discretization

We numerically approximate the Stratonovich integrals by the Euler–Heun scheme. With
a time discretization t1, . . . , tk, tk − tk−1 = ∆t and corresponding noise ∆Bti ∼ N(0, ∆t), the
numerical approximation of the Brownian motion (6) takes the form

xtk+1 = xtk −
1
2 ∑

j,i
Cj

ijVi(xtk )∆t +
vtk+1 + Vi(vtk+1 + xtk )∆Bi

tk

2
(29)

where vtk+1 = Vi(xtk )∆Bi
tk

is used only as an intermediate value in integration. For the
guided bridge simulations, we add the corresponding drift to (29) to obtain the numeri-
cal scheme.

6.2. Importance Sampling and Metric Estimation on SO(3)

This section takes G as the special orthogonal group SO(3), the space of three-
dimensional rotation matrices. The special orthogonal group is a compact connected
matrix Lie group. The rotation group SO(3) is a semi-simple Lie group, and bi-invariant
inner products exist. In the case of a bi-invariant metric, the Riemannian exponential
map Exp coincides with the Lie group exponential map exp, and thus, the Riemannian
distance function d(R, I)2 = ‖LogI(R)‖2, from the rotation R to the identity I, satisfies
∇Rd(R, I)2 = 2 log(R).
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Figure 2 illustrates the numerical approximation with a sample path from the guided
diffusion conditioned to hit the rotation represented by the black vectors. Another way
of visualizing the guided bridge on the rotation group SO(3) is through the angle–axis
representation. Figure 3 represents a guided process on SO(3) by presenting the axis
representation on S2 and its corresponding angle of rotation.

Figure 4 illustrates how importance sampling on SO(3) leads to a metric estimation
of the underlying unknown metric, which generated the Brownian motion. We sampled
128 points as endpoints of a Brownian motion from the metric diag(0.2, 0.2, 0.8), and used
20 time steps to sample four bridges per observation. An iterative MLE method using
gradient descent with a learning rate of 0.2 and initial guesses of the metric diag(1, 1, 1)
and diag(0.5, 0.5, 0.5) yielded convergence to the true metric.
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Figure 4. The importance sampling technique applies to estimate the metric on the Lie group SO(3).
Sampling a Brownian motion from an underlying unknown metric, we obtain convergence to the
true underlying metric using an iterative MLE method. Here, we sampled four guided bridges per
observation, providing a relatively smooth iterative likelihood. (Top left) Estimation of the unknown
underlying metric using bridge sampling, starting from the metric diag(1, 1, 1). Here, the true metric
is the diagonal matrix diag(0.2, 0.2, 0.8) represented by the red lines. The diagonal is represented
by the colors diag (purple, blue, yellow). (Top right) The corresponding log-likelihood evolution
through the iterations. (Bottom left) Estimation of the unknown underlying metric using bridge
sampling, starting from the metric diag(0.5, 0.5, 0.5). (Bottom right) The corresponding iterative
log-likelihood.

6.3. Diffusion Mean Estimation on the Space of Symmetric Positive Definite Matrices

The space of symmetric positive definite (SPD) matrices is used in a range of applica-
tions, one example being diffusion tensor imaging where the element of SPD(3) models
the anisotropic diffusion of water molecules in each position of the imaged domain. The
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SPD matrices constitute a homogeneous space GL+(n)/SO(n) of invertible matrices with
the positive determinants’ quotient the rotation group.

Figure 5 illustrates discrete-time observations of three sample paths of a guided bridge
in SPD(3).

Figure 5. Discrete-time observations from three sample paths on SPD(3). The sample paths are
obtained as the pushforward of the Fermi bridge in GL+(3). The start and endpoint are the left- and
rightmost figures, where the SPD matrices are indicated by the bold face arrows.

In Figure 6, the bridge sampling scheme derived above is used to obtain an estimate
of the diffusion mean [31,32] on SPD(3) by sampling guided bridge processes in the space
of invertible matrices with positive determinants GL+(3). This sampling method provides
an estimate of the density on GL+(3), which projects to a density in SPD(3). Exploiting the
resulting density in SPD(3), the iterative MLE yields convergence to the diffusion mean.
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Figure 6. Given 256 data points in SPD(3), we estimated the diffusion mean on the homogeneous
space by sampling bridges in the top space conditioned on the fibers. The iterative MLE in Algorithm 1
yielded the convergence of the diffusion mean parameter, using a learning rate of 0.005 and one
bridge sample per observation. (Left) The purple, blue, and yellow lines correspond to the diagonal
of the metric matrix, whereas the remaining colors represent the off-diagonal. The true mean value is
the identity matrix indicated by the red lines. (Right) The corresponding log-likelihood evolution
through the iterations.

6.4. Density Estimation on the Two-Sphere

The two-sphere S2 can be considered the homogeneous space SO(3)/SO(2) of three-
dimensional rotations, identifying the subgroup of two-dimensional rotations as a single
point. Conditioning on the fiber SO(2) in SO(3), we obtain guided bridges on S2. In
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the case of a bi-invariant metric on G, the G-valued Brownian motion pushes forward
to an M-valued Brownian motion. Figure 1b illustrates the estimated transition density
on S2 from sampling bridges in the Lie group conditioned on the fiber SO(2), when the
underlying metric is bi-invariant. When altering the metric to a non-invariant variant
one, the G-Brownian motion does not in general push forward to an M-Brownian motion.
The non-invariant metrics result in a covariance structure exhibiting anisotropy, which is
illustrated by Figure 1c,d.

7. Conclusions

In this paper, we presented algorithms for estimating the parameters of a class of
densities that are the generalization of the Euclidean normal density to Lie groups and
homogeneous spaces. We used the heat equation to generalize the normal distribution to
Lie groups and homogeneous spaces, where the left- (or right-) invariant metric generalizes
the notion of the covariance of a normal density. We presented algorithms for bridge simu-
lation and for estimating the metric given the i.i.d. Lie group or homogeneous space-valued
samples. The estimation algorithm was based on Monte Carlo simulations of Brownian
bridges. These algorithms are expected to impact many diverse fields, including bioin-
formatics, medical imaging, shape analysis, computer vision, and information geometry,
where Lie groups or homogeneous spaces are the natural model spaces for data samples.

8. Code

The code used for the experiments is available in the Theano Geometry http://
bitbucket.org/stefansommer/theanogeometry and Jax Geometry http://bitbucket.org/
stefansommer/jaxgeometry software packages (accessed on 7 July 2022). The implementa-
tion uses automatic differentiation libraries extensively for the geometry computations, as
is further described in [33].
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