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Abstract: Deep neural networks are exposed to the risk of adversarial attacks via the fast gradient sign
method (FGSM), projected gradient descent (PGD) attacks, and other attack algorithms. Adversarial
training is one of the methods used to defend against the threat of adversarial attacks. It is a
training schema that utilizes an alternative objective function to provide model generalization for
both adversarial data and clean data. In this systematic review, we focus particularly on adversarial
training as a method of improving the defensive capacities and robustness of machine learning models.
Specifically, we focus on adversarial sample accessibility through adversarial sample generation
methods. The purpose of this systematic review is to survey state-of-the-art adversarial training
and robust optimization methods to identify the research gaps within this field of applications. The
literature search was conducted using Engineering Village (Engineering Village is an engineering
literature search tool, which provides access to 14 engineering literature and patent databases), where
we collected 238 related papers. The papers were filtered according to defined inclusion and exclusion
criteria, and information was extracted from these papers according to a defined strategy. A total
of 78 papers published between 2016 and 2021 were selected. Data were extracted and categorized
using a defined strategy, and bar plots and comparison tables were used to show the data distribution.
The findings of this review indicate that there are limitations to adversarial training methods and
robust optimization. The most common problems are related to data generalization and overfitting.

Keywords: adversarial attacks; adversarial attack generation; adversarial samples; adversarial
machine learning; adversarial training; deep neural network

1. Introduction

Neural networks are one of the most popular machine learning models, and they have
been used in many applications, such as image classification, natural language processing,
and other real-time applications [1]. Hence, ensuring the security of neural network models
is critical and of substantial importance [2]. Adversarial attacks [2] pose significant threats
to existing neural network models, and these attacks could perturb the model’s inputs
and cause the model to produce unexpected output results [3]. The perturbed inputs are
usually called adversarial samples.

Adversarial samples are the input data computed by an adversarial attack algorithm to
make a classifier model misclassify the sample [4]. Normally, an adversarial input sample x’
is computed from a clean input x with a restriction value, called epsilon ε. ε is a variable that
controls the strength of the perturbation [5]. The adversarial attack algorithm is responsible
for finding the adversarial sample from a clean sample with ε perturbation.

Adversarial training [5] is one of the most promising defensive methods to improve
the robustness of a model by reducing the malicious effect caused by adversarial attacks. In
general, a training model is able to generalize based on the adversarial sample it was trained
against [3,5,6]. Hence, the quality of the adversarial sample provided during the training
is important. In recent years, more adversarial training variations have been developed
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to tackle different shortcomings associated with adversarial training defense methods,
such as reducing overfitting, improving generalization, and improving the efficiency of
training. However, these problems still exist and there is no guarantee of robustness against
adversarial attacks [1], especially when new attack methods are currently being proposed.

In this work, we aim to understand the performance and effectiveness of adversarial
training methods. We are particularly interested in the adversarial sample generation
components of adversarial training methods. This is important because it is necessary
to understand what kind of adversarial samples a model can be trained and generalized
on and what the extent of the robustness of the current adversarial training methods is.
Normally, adversarial sample generation methods are modified versions of adversarial
attacks that are made to fit training schemas [5]. There are some other types of proposals
that use non-conventional attack methods in their training schemas, such as generative
models or other algorithms [7]. We aim to gather information from existing studies and to
analyze the robustness and efficiency improvements and other potential benefits that were
brought by those adversary generation components. In addition, we intend to identify the
shortcomings, including overfitting, efficiency problems, unachievable robustness, and
other research gaps of the adversarial training schema under study.

The end goal of this work is to provide the research community with information
about the status of the current development of adversarial training, and the adaption of
the newly developed adversarial attacks or other newly developed adversary generation
methods. Hence, this work can be viewed as a roadmap to guide other developers and
researchers to develop more advanced adversarial sample generation methods to benefit
adversarial training.

In the literature, there are few surveys related to the topic of adversarial training.
Silva et al. [1] conducted a literature survey of the current advances in adversarial attacks
and adversarial defense methods. They described the defensive method in three different
categories: gradient masking/obfuscation, robust optimization, and adversarial example
detection. They analyzed and discussed the advantages and limitations of each category.
The review paper from Wiyatno et al. [2] provided comprehensive information about
current adversarial attacks and state-of-the-art defense methods of machine learning models
in the image classification domain. Chen et al. [8] provided an overview of the adversarial
machine learning topic. Bai et al. [5] provided a review paper that discussed different
adversarial training architectures. However, the above literature reviews did not fully cover
the recent categories of adversarial training methods and did not focus on the adversarial
sample accessibility of each adversarial training method. Furthermore, the literature
surveys from Silva et al. [1] and Chen et al. [8] did not expand on the topic of adversarial
training and only reviewed some primary categories of adversarial training, while the
review by Wiyatno et al. [2] focused only on image classifiers. Chakraborty et al. [9] offered
a literature survey about adversarial machine learning. This review included support vector
machines, neural networks, deep neural networks, and convolutional neural networks and
focused on the application aspect of threats and defenses. Kong et al. [10] also surveyed
the application of adversarial attacks in the context of text classification and malware
detection. These two papers focused on the application aspect of adversarial training
instead of the technical properties of each method. In particular, they did not provide
a detailed categorization of adversarial training. Xiao et al. [11] provided a literature
review related to the safety and security of deep neural networks. This review looked at
safety concerns, verification methods, testing methods, security, and the interpretability of
machine learning models. In addition, the review provided information about different
adversarial attack methods and some defensive methods, including adversarial training, in
terms of adversarial machine learning. However, it did not discuss in detail the categories
of adversarial training. It only mentioned two variations of adversarial training, namely
projected gradient descent (PGD) adversarial training and ensemble adversarial training.

In this systematic review, we summarize, categorize, compare, and discuss the
currently available adversarial training defense methods and the adversary generation
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methods utilized by adversarial training methods, as well as their limitations and re-
lated research gaps. As a systematic review, we followed the guideline provided by
Barbara Kitchenham et al. [12] to conduct this review paper. According to Bai et al. [5],
adversarial training includes both adversarial regularization and conventional adversarial
training methods. Hence, both adversarial regularization and adversarial training methods
will be covered in this survey paper. To achieve these objectives, we defined the following
as our main research question: What are the limitations of the current adversarial train-
ing methods in general and the adversary generation component of adversarial training
in particular?

To answer this question, and to gain related insights and conclusions, the following
steps were followed:

1. Categorize adversarial training methods. The main criteria used for the categorization
were the adversarial generation methods, which refer to the standard methods that
use adversarial attacks to generate adversarial samples and include these samples in
training to improve the robustness of the training model [3].

2. Identify the advantages and disadvantages of these adversarial training methods.

The remainder of this paper is organized as follows: Section 2 presents background
information on adversarial samples and training and introduces the main concepts that
are necessary to understand the subject matter of this paper. The research methodology
is presented and discussed in Section 3. Section 4 discusses the categories and details of
the adversarial generation methods used by each adversarial training method. Section 5
discusses the current challenges and gaps in adversarial training. Finally, concluding
remarks and directions for future work are presented in Section 6.

2. Background

This section provides background information on adversarial samples for modern
machine learning models. It also discusses the general schema of adversarial training
and explains how adversarial samples are related to current adversarial training schemas.
In addition, it provides some historical information for readers to better understand the
context and the development of the research.

2.1. Adversarial Samples

The concept of adversarial samples appeared in 2014 when Szegedy et al. [4] proposed
the use of the box-constrained optimizer L-BFGS to generate misclassified data samples.
The algorithm could find indistinguishable perturbations at L2 distance to cause machine
learning models to fail to produce a correct result. This was one of the earliest indications
of the existence of adversarial samples.

Later, in 2015, Goodfellow et al. [3] provided a more detailed explanation of the phe-
nomenon of adversarial examples. They found that, when an image is perturbed in a
direction, the logit output of the classifier model normally changes in a linear way. They
hypothesized that this is caused by the partial linear properties of the activation function of
the neurons. With this hypothesis, they proposed the fast gradient sign method (FGSM) to
generate adversarial samples of clean images with only the gradient of the loss function.
Later, Goodfellow et al. [6] enhanced their previous approach by proposing a more ad-
vanced algorithm based on the FGSM to apply perturbations to the input image iteratively,
called the basic iterative method (BIM). This algorithm greatly improved the success rate of
the generated adversarial samples that attacked the network models. Another improve-
ment was proposed by Madry et al. [13] in 2018 that involved combining the BIM with
random initialization. This method is widely used as a benchmark algorithm to test and
train a robust model [5]. These methods primarily generate adversarial samples with L∞
norms. The L∞ norm is one of the commonly used distance metrics in adversarial machine
learning. The other commonly used metrics include L0 and L2 distance metrics. In this
case, the L∞ metric represents the max perturbation across all the input values for the
adversarial sample. Based on these findings, the adversarial samples were described as
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the error caused by the linear properties of the classifier models, which is different from
the normal bias and boundary error. The existence of adversarial samples is related to the
fundamental properties of the current machine learning models.

In addition to these adversarial attack methods, there are other attack methods that fo-
cus on different distance metrics and vulnerabilities of the models. The DeepFool algorithm
was proposed by Moosavi-Dezfooli et al. [14] to produce adversarial samples of inputs with
reduced perturbation distances compared to the FGSM. The algorithm considered the L2
norm to be the closest decision boundary to generate the adversarial samples. Carlini and
Wagner attacks (C&W attacks), proposed by Carlini et al. [15], considered all three distance
metrics (L0, L2, L∞) to construct a strong attack. This attack method was proven to be
highly effective with high transferability between models. The one-pixel attack proposed
by Su et al. [16] constrained the L0 norm to perturb a fixed number of pixels of original
inputs by utilizing an evolutionary algorithm. More adversarial attack methods have been
developed to produce misclassification samples for machine learning models [2]. Based
on these newly developed algorithms, a more general description of adversarial samples
could be any malicious data input specifically created for a machine learning model to
produce a misclassification result. In this study, we consider this more general description
our definition of adversarial samples.

2.2. Adversarial Training

The concept of adversarial training involves training the classifier to generalize the
adversarial samples as well as clean samples [5].

In the conventional training schema, shown in Figure 1, the training data pass forward
through the model, and prediction loss is backpropagated to improve the classification
results [4]. As a result, the model will generalize the distribution of the training data to
produce an accurate prediction of their labels. However, a model trained with this normal
procedure will be exposed to the threat of adversarial attacks [3]. Adversarial samples were
described as linear properties of neural networks by Goodfellow et al. [3]. The more general
explanation is that the model will only be able to generalize the training data distribution
rather than capture the real distribution due to its linearity.
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Adversarial training expands on conventional training methods by adding an extra
step into the training procedure, as illustrated in Figure 2. In this way, the model can
generalize both clean data and the adversarial data generated by the attack methods
utilized in the adversarial training. Therefore, the robustness of the model is improved
against adversarial attacks.
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Usually, the adversarial samples are generated based on the model’s current state,
whereas the latter is based on the previous batch of training steps [3] for any proposed
attack method. However, some schemas use a pre-trained model to generate adversarial
samples and include them in the training datasets [17]. In this procedure, the attack method
involved in the adversarial sample generation will be the focus of this paper. Throughout
the paper, we refer to them as the adversarial sample generation method or simply the
adversary generator. More details are discussed in Section 4.

Several popular adversarial training methods are also discussed here to provide better
context for the general historical development of adversarial training. In 2014, Szegedy
et al. [4] proposed the concept of using adversarial samples to train classifier models in
order to improve their robustness. Later, in 2015, Goodfellow et al. [3] suggested using
the FGSM to generate an adversarial sample in a mix with clean data to train the classifier.
The model improved the robustness against this single iteration attack. Madry et al. [13]
suggested using a multi-iteration method called projected gradient descent (PGD) to train
the model. They showed that when using the fast-single iteration method (FGSM), the
trained model is still vulnerable against more strong multi-iteration adversarial samples.
They suggested that by using PGD adversarial training, the model would gain universal
robustness against adversarial samples. The Modified National Institute of Standards and
Technology database (MNIST) model trained by this method could maintain over 90%
accuracy under PGD and FGSM attacks. This method has become a baseline method of
adversarial training [5].

In recent years, many adversarial training methods have been proposed to improve the
performance of the FGSM and PGD adversarial training. The performance improvements
have mainly been focused on enhancing robustness, reducing the computation complexity
of adversarial training, and reducing the overfitting effect of adversarial training [5]. Details
about the advantages and limitations of these methods are discussed in Sections 4 and 5 in
this paper.

3. Survey Methodology

This section provides our review protocol information, including our search strategies,
search sources, data collection procedures, and data extraction strategy.
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3.1. Search Strategies

In this systematic review, we mainly focus on surveying approaches related to robust
optimization or adversarial training in the deep neural network domain with a particular
focus on defense against adversarial attacks or adversarial samples. To ensure the overage of
papers, we used different terms to describe neural networks and deep neural networks. We
also considered “robust optimization”, “adversarial training”, and “adversarial learning” as
keywords in our searches. The common phrases used to describe the threat from adversarial
attacks include “adversarial sample”, “adversarial example”, “adversarial perturbation”,
“adversarial attack”, etc. Based on this, we defined our search query as follows:

(“neural network” OR “deep neural network” OR dnn OR nn OR “deep learning”)
AND (“robust optimization” OR “adversarial training” OR “adversarial learning”)
AND (defend* OR resist* OR against) AND (“adversarial sample*” OR “adversarial
example*” OR “adversarial perturbation*“ OR “adversarial attack”).

3.2. Search Sources

The search was primarily conducted using the Engineering Village engine [18]. En-
gineering Village is a comprehensive search platform provided by Elsevier (Elsevier is a
global publisher of scientific, engineering, and medical content) that includes a wide range
of content for engineering research purposes. It has great coverage of digital libraries, such
as IEEE and ScienceDirect. The primary indexing databases provided by the Engineering
Village that are related to our topic are shown in Table 1. Ei Compendex is one of the
most comprehensive literature databases for engineering, which provides over 20 million
records of publications. Inspec is a bibliographic database including publishers such as
IEEE, AIP, SPIE, and other commercial publishers. Ei Patents includes the engineering
patent records from the United States, European Union, and World Patent records [18]. The
patent records were also considered since they are good sources to track unique software
engineer solutions. Hence, we can use them as indexing sources for their related papers to
improve our snowballing process. We decided to use them as a primary indexing tool to
search for related papers.

Table 1. Databases used for this research.

Database Name Descriptions

Ei Compendex Engineering literature database

Inspec Engineering, physics, and computer science
literature database

Ei Patents Patent application database

3.3. Inclusion and Exclusion Criteria

We defined our inclusion and exclusion criteria (see Table 2) based on the scope of this
study. Since this is an active research field, we expected to find relatively new published
papers related to the topic. We searched for both conference papers and journal articles
and excluded papers from the following categories: (1) papers that were not written in
English, (2) papers with adversarial training approaches deployed for proposes other than
defending against adversarial attacks, and (3) papers related to models other than (deep)
neural networks. To focus on the most recent research, we included only papers that were
published from 2016 to 2021.
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Table 2. Inclusion and exclusion criteria of the papers.

Inclusion Criteria Exclusion Criteria

English Other languages

Related to adversarial training and
robust optimization Related to other defensive methods

Related to adversarial attack defense Not related to adversarial attack or defense

Related to neural network and deep neural
network models Not related to (deep) neural network classifiers

From 2016 to 2021 The end goal was solving another
domain problem

Related to unique solutions or improvements Review papers

3.4. Data Collection Procedure

The selection process was conducted in November 2021. Figure 3 shows the process
of paper inclusion and exclusion.
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Our search process included a two-step method involving a systematic search and
snowballing. We used these two steps to ensure the wide coverage of the papers. The
systematic search was conducted first to retrieve the core set of papers. From the retrieved
papers, we searched their references to check if there were more related papers that were
not retrieved originally. This process is called snowballing, where we expand the collected
papers based on the references of the core papers.

The first set of papers was obtained by using the pre-defined search query and the
Engineering Village search engine. In addition to the search query, we also defined the
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“language” and “the time of publication” criteria in the search engine. In this step, we
retrieved 238 papers. After this, the obtained papers were screened by reading through
the titles and the abstracts, and 82 papers were filtered out based on relevancy. Finally,
46 papers were selected after reviewing the full content of the papers.

After we selected 46 papers, we went through the references of each paper, and 34 new
papers were included in this part of the selection. After we went through each new selected
paper, we discarded the papers that were out of our pre-defined time of publication (i.e.,
from 2016 to 2021). As a result, another 32 papers were included in our study. Hence, in
total, 78 papers were selected for this survey.

3.5. Data Extraction Strategy

To address our research question, we focused on the adversarial sample generation
(or the adversary generator) component of the architecture for each proposed solution. We
categorize and sub-categorize all the methods based on their names and functionalities and
analyze the details of each method to summarize its advantages and limitations.

The adversary generator’s information is extracted from the papers and used for
categorization. Similar methods are categorized as one method if the difference is minor.
For example, PGD-10 and PGD are considered to be in the same category since the only
difference is the step parameters. On the other hand, a method that is developed from
another method but shows a significant improvement is classified into a different category,
such as IFGSM and FGSM. Finally, the number of different methods used is summarized
for quantitative analysis and comparison.

If an article does not include a specific method, we categorize it in the “other” category.
The analyzed data are presented as a bar plot in Figure 4.
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4. Findings

This section presents the results and findings of this survey. First, the summary of the
results shows the recent publication numbers in related fields. Second, the comparison table
is used to represent the major categories, advantages, and disadvantages of the adversary
generation method used in adversarial training. Then, the details of each method are
reviewed in the following subsections.
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4.1. Summary of the Results

The 78 included papers are listed below. Each paper includes a unique solution to the
adversarial training schema or proposes an optimization procedure utilizing adversary
generation. The distribution of the papers by year of publication is shown below.

From Figure 5, we can see an increasing interest in the research field related to this
topic. We think this presents a great opportunity to conduct this research to produce a
future roadmap.
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Based on the adversary generation approach used in adversarial training methods,
we categorize the adversarial training methods as shown in Table 3. Furthermore, we
discuss the details of the adversary generation methods and categorize them into further
sub-categories whenever applicable.

Adversarial training can be formulated as the following optimization problem:

min ∑i maxL( f (xi + δ), yi), (1)

The inner part of the formula is intended to maximize the loss L of the model f regard-
ing the output label y by adding perturbation δ into the input x. The optimization goal is
to minimize the maximum loss of the model. In the following sections, we want to use
the inner approximation function to lead the discussion. In general, inner approximation
functions are constructed using different attack methods. This approximation is important
to determine the upper limit of the adversarial optimization. Generally, the adversarial
training method with a similar inner approximation function will share similar benefits and
limitations, which are shown in Table 3. However, there might be several improvements
built upon these basic methods. The detailed discovery of the outer optimization related to
different improvements will be analyzed in the sub-categories to focus on the varieties of
adversarial training. Overall, adversarial attacks could be fitted into two more extensive
categories: white-box and black-box attacks [2]. The white-box or black-box adversarial
generation methods usually share some common properties. The overall structural rela-
tionship of the common adversary generation methods studied in this paper is shown in
Figure 6. The commonly used acronyms are also shown in the same figure.
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White-box attacks refer to the adversarial attacks that require the parameter infor-
mation of the targeted model [2]. This category of methods is the most used method in
adversarial training or robustness optimization, as can be seen in Figure 4. The conven-
tional white-box attacks used by adversarial training are referred to as FGSM, IFGSM,
PGD, and their variants [2]. These methods utilize the model’s gradient properties to
generate adversaries on the L∞ distance metric [2]. Therefore, the algorithm will consider
the maximum perturbed input values to measure the significance of the adversarial input
compared to the clean input counterpart. Since the perturbation noises are generated using
the inner parameters of the victim model, the adversaries generated should be consistent
if the model stays the same. The general benefit is that these methods use the internal
information of the models to produce relatively efficient and consistent adversaries [2].
However, with the growing interest in this research area, more adversarial attacks could
generate adversaries based on different distance metrics [2], which might be unreachable
via this type of adversary generation [19].

On the other hand, black-box attack methods are beneficial for adversarial training.
The biggest advantage of black-box attacks is that they generally require less information
to generate the adversaries; therefore, they are more flexible and model-independent [2].
Furthermore, black-box adversarial attacks usually consider more distance metrics in their
perturbation computations [15,16]. Hence, adversarial training based on these methods
could provide model robustness against adversarial samples based on these metrics.

We argue that the common black-box attacks are more diverse than other attack
methods, as they use different methods and theories to generate the adversarial samples.
Furthermore, the black-box adversarial training methods are less popular than the normal
white-box adversarial training methods, as shown in Figure 4. Therefore, the knowledge
and limitations of these methods used in adversarial training are not discovered. This might
be one of the most significant research gaps in the black-box adversarial training methods.

In addition to the methods, advantages, and limitations, the model architectures used
to evaluate the training methods are also summarized and listed in Table 3. In general,
adversarial training as a defensive method should provide a general improvement in the
robustness of most deep learning models. However, the performance might vary between
different architectures. With our protocol, we are unable to provide further information
about restricted limitations regarding the model architecture. Hence, we directly provide
information about model architectures involved in each paper since this information could
be useful to consider in future studies.
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Table 3. Comparison table of each adversarial sample generation method in adversarial training.

Methods The Articles include the Method Description Advantages Limitations Covered Model Architectures

FGSM/eFGSM/SIM [17,20–38] Single-step gradient-based
white-box attack

Efficient; low computation complexity
during the training compared to

iterative methods

Suffers from low precision; may cause an
overfitting problem; cannot provide

enough generalization of attacks

CNN:
[21,30,33,35–38]

ConvNet:
[26]

LeNet:
[20,22,27,31,34,36]

VGG:
[34,35]
ResNet:

[21–23,27,29,30,32,35]
WideResNet:

[20,21,27,28,30,38]
PreActResNet:

[24,25,28]
ResNeXt:

[32]
Inception model:

[17]
Inception ResNet:

[17]

PGD/IFGSM/BIM [13,17,28–31,33,39–70] Multi-step gradient-based
white-box attack

High precision attack; provides more
generalization than the FGSM; uses

random initialization to avoid
local minima

Higher computational complexity; may
also have an overfitting problem to

some extent

CNN:
[13,33,41,47,49,56,64]

AllCNN:
[59]

LeNet:
[31,43,48,50,51,59,67]

VGG:
[44,65]
ResNet:

[29,30,39,42,46,48,49,51,57,60,63,66,67,70]
WideResNet:

[13,28,30,42–47,49,50,52–55,58,63,64,66,68,70]
PreActResNet:

[28,56,68]
RevNet:

[48]
Inception:
[17,48,69]

Inception ResNet:
[17]

DenseNet:
[39]

IPMI2019-AttnMel:
[69]

CheXNet:
[69]

Transferred VGGFace:
[61]

LISA-CNN:
[61]

GANs:
[62]
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Table 3. Cont.

Methods The Articles include the Method Description Advantages Limitations Covered Model Architectures

JSMA [31] Saliency-based white-box attack

Can find minimal perturbations that lead
to adversarial samples; focuses on the most

impactful input instance, potentially
finding a closer decision boundary

Could be computationally complex in the
training process; not a popular method in

AT, so other disadvantages need to
be discovered

LeNet

L-BFGS [31] White-box iterative attack Flexible when modifying the
objective function

Could be computationally complex in the
training process LeNet

Auto encoder-decoder/
generative model [7,71–73] Generative model

Could be utilized in semi-unsupervised
learning; more efficient than using the

multistep attack during training; provides
a degree of generalization against attacks

Requires pre-training of the generative
model during the setup; performance

might depend on the generative model;
low transferability; catastrophic forgetting
might happen during the process since the

samples are diverse

CNN:
[71,72]
LeNet:

[7]
ResNet:

[7]
Convolution auto-encoder:

[73]

CW-l2 [74] Grey/black-box attack

High successful rate against distillation
defense method; high transferability across

the model; higher efficiency than JSMA;
higher success rate than the FGSM

and BIM

Still a multi-iteration attack with higher
computational complexity; not a popular

method in AT, so other disadvantages
remain to be discovered

CNN

Ensemble training
regularization [17,75–77] Improvements on ensemble

training as a defense method

Uses ensemble models as a defensive
mechanic; lowers the transferability of
adversarial attacks and improves the

robustness of the original ensemble model;
learns from the adversaries from
pretrained static model to better
approximate the distribution of

adversarial samples

Requires a pre-trained model to perform
the ensemble training

CNN:
[76]

ResNet:
[75–77]

Inception:
[17]

Inception ResNet:
[17]

Other methods do not belong
to the above categories [78–94] These methods are novel adversary generation methods that are proposed in different articles. These methods were proposed

for specific purposes. We will discuss them in Sections 4.8 and 4.9.

DNN (not specified):
[80,82]
CNN:
[85,88]
LeNet:

[83,84,86,89]
VGG:

[83–85]
AlexNet:

[84]
ResNet:

[81,84,89]
WideResNet:

[85,90–94]
PreActResNet:

[78,91]
Inception:

[84]
DenseNet:

[84,89]
svhnNet:

[83]
Adv-v3:

[87]
Inc-v3ens3:

[87]
IncRes-v2ens:

[87]
LSTM and Bi-LSTM:

[79]
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4.2. Fast Gradient Sign Method

The FGSM is a gradient-based white-box attack proposed by Goodfellow et al. [3]. The
formula of the optimization problem can be written as:

x′ = x + ε sign (∇L(x, y)), (2)

where ∇L represents the gradient of the model’s loss function in every input instance
regarding the input–label pair (x, y) and x’ represents the perturbed input by adding the
sign of the gradient onto input x. This method only requires a one-time calculation to
produce a perturbation with an L2 norm constraint. The advantage of this attack in terms
of adversarial training relies on its fast computation speed. However, Madry et al. [13]
pointed out that this method may not be sufficient to train a robust model. Furthermore,
a model trained using this method may have greater accuracy compared to the original
clean data [6], which is referred to as the label leakage problem. The disadvantages include
overfitting [20].

Other approaches have been proposed to improve the FGSM adversarial training and
overcome these disadvantages. Vivek et al. [20] used dropout scheduling to improve the
generalization of the model for the training data and reduce the overfitting effect during
single-step adversarial training. Huang et al. [21] found that the directions of perturbation
generated by the FGSM, and iterative methods might be different due to the landscape of
the loss function. Therefore, they proposed a regularization term during the adversarial
training to constrain the searched step and to ensure that the perturbation direction of the
FGSM is consistent with PGD. In this way, they can improve the performance of FGSM
adversarial training to give it the capacity to defend against more advanced attacks. Liu
et al. [22] analyzed an enhanced FGSM training to continuously add FGSM perturbation
to each epoch. In each epoch, one large perturbation is applied, and the next epoch will
reuse the data that the FGSM has attacked, and new perturbations will be applied until the
distance reaches a certain threshold. This method reduces the computational complexity
while improving the training performance with a single-step method. Wong et al. [23],
Andriushchenko et al. [24], Kim et al. [25], Song et al. [26], and Vivek et al. [27] improved
the concept of efficient single-step adversarial training through a unique regularizer, loss
functions, and domain adaptations. The fast-adversarial training method was found to be
more effective during the training compared to efficient PGD adversarial training [23], but
Li et al. [28] argued that this fast method has the problem of overfitting. The information
on efficient PGD training is presented in Section 4.3. Further improvements also include
using the iterative method for adversarial sample generation. We will discuss the details in
Section 4.3.

4.3. Projected Gradient Descent and Basic Iterative Method

PGD and BIM/IBGSM are similar. The BIM was proposed by Kurakin et al. [95] and
is a modified FGSM that involves converting it into a multi-step optimization. The formula
can be written as:

xt+1 = x′ + ∏(α sign(L(x, y))), (3)

The method uses the same approach as the FGSM to compute small step perturbations
and iteratively add the perturbations to the image based on the gradient sign of the input–
output pair (x, y). In this formula, x’ represents the perturbation image from the last
calculation step and xt+1 is the perturbed sample generated from the current step. In each
step, the distance of the perturbation is constrained by α, and the algorithm stops until it
reaches a threshold of attack strength.

The PGD method, on the other hand, uses the same schema to generate the adver-
saries [13]. However, the difference is that the PGD method uses a random initial perturba-
tion of the Lp norm, which creates a randomized data sample within an Lp distance around
the original data. This increases the efficiency of finding the adversarial samples.
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Madry et al. [13] suggested that the iterative-based attack methods are more effective
during adversarial training. These methods provided more precise worst-case perturbations
and more generalization toward possible adversarial attacks. As a result, the adversarially
trained model with an iterative-based attack can defend against stronger attacks than the
model trained by the FGSM. Therefore, these methods are commonly used in adversarial
training and robust optimization.

However, the major downside of the PGD and iterative adversarial training is that
the computational complexity is significantly increased due to the multiple steps of per-
turbation noise calculation [2]. Some papers also reported the phenomenon of overfitting
still exists in iterative adversarial training [5,39]. Finally, other works showed that the PGD
adversarial training could not guarantee robustness against every other type of adversarial
sample, especially when the adversary is generated by other Lp metrics [19]. The following
sections outline some proposals for improving the iterative adversarial training to solve
these shortcomings. A summary of PGD-based adversarial training (PGD AT) is presented
in Table 4.

Table 4. Sub-categories of PGD AT.

Sub-Categories of PGD AT Motivations Improvement/Modifications

Curriculum training Reducing overfitting and
improving the performance

Adjusting attack strength
based on the accuracy of

the model

Adaptive training Improving the precision
of attacks

Adapting attack strength for
each data instance instead of

each batch

Efficient training Reducing training time
and complexity

Embedding the perturbation
inside the gradient update
function loop; reducing the

nested loops

Adversarial regularization Improving on the
cost functions

Modifying the loss functions
and regularization terms

(Semi-)Unsupervised training Solving the data
hungry problem Utilizing the unlabeled data

Others See details in Section 4.3.6 See details in Section 4.3.6

4.3.1. Curriculum Training

The curriculum adversarial was proposed in 2018 by Cai et al. [39] to solve the overfit-
ting problem associated with the iterative methods [5]. The curriculum adversarial training
uses both weaker attack strength and stronger attack strength to train the model. The
method evaluates whether the model can achieve enough accuracy under weaker attack
strength settings and then gradually increases the strength after high accuracy is reached.
Zhang et al. and Wang et al. [40,41] used a similar approach by monitoring the attack
strength of the PGD and incorporating an early stop PGD or dynamic adversarial training.

4.3.2. Adaptive Training

To further obtain accurate adversarial data during the training process, several adap-
tive adversarial trainings have been proposed that use an adaptive attack strength for each
instance of data. Balaji et al. [42], Ding et al. [43], and Cheng et al. [44] describe a situation
in which each of the data within the training dataset could have a different distance to
the closest decision boundary of the model. Therefore, they propose adaptive adversarial
training using PGD with a flexible attack strength depending on the distance between the
data and boundary.
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4.3.3. Efficient Training

There have also been attempts to solve the heavy computational requirement of the
iterative-based attack method during the training process. The free adversarial training
model [45] modified the PGD for adversary generation by efficiently reusing the gradient
from the backward passing of the training process to produce the adversarial samples.
However, Wong et al. [23] argued that the free adversarial training might not actually be
faster; therefore, they proposed fast adversarial training as a new training schema (for more
information see Section 4.2). The free adversarial training with layer-wise heuristic learning
(LHFAT) [46] enhanced the free adversarial training (FAT) method [45], which simultane-
ously updates the adversaries and model parameters. The layer-wise heuristic learning
will update the weights more efficiently. Li et al. [28] also used a combination of the FGSM
and PGD to construct an efficient training schema, thus mitigating the effect of overfitting
when only using FGSM and reducing the computational time of the PGD. The PGD and
FGSM were selected based on whether the model exhibited an overfitting phenomenon.

4.3.4. Adversarial Regularization

Adversarial regularization is another category of training schema that modifies the
cost function or regularization terms to cooperate with adversarial training. The general
idea is to construct a standalone cost formulation for the purpose of adversarial training
to achieve better overall performance of the model. Zhang et al. [47], Kannan et al. [48],
Wang et al. [49], and Mao et al. [50] proposed the solutions to corporate PGD adversarial
training with a modified regularizer for better performance. Zhang et al. [47] used a method
called TRADES to improve the robustness of the model. They presented a concept of a
trade-off between standard generalization and adversarial generation. A regularizer with
a combination of natural and boundary errors was proposed to minimize the loss of the
model to balance the standard accuracy and robustness. The formulation can be written
as follows:

minE
{

φ( f (X)Y)}+ maxφ
(

f (X) f
(
X′

)
/λ

)}
, (4)

where φ is any loss function defined, f is the model, λ is a control variable, Y is the
output label, and X and X’ are the clean input and perturbed input, respectively. However,
Stutz et al. [71] suggested that the model generalization and robustness could coexist.
Kannan et al. [48] considered the logit results of the model produced by both clean and
adversarial data. They created a regularization term by reducing the distance between the
logit pairs. Wang et al. [49] considered the situation when the train data were correctly or
incorrectly classified initially and designed two regularizers for each case. Mao et al. [50]
adapted a triplet loss to push the samples in different classes further while pulling the
sample with the same class closer. Zhong et al. [51] used a similar method, but they only
considered the margin between the clean data and the adversarial data.

4.3.5. Unsupervised/Semi-Unsupervised Training

There are also some unsupervised or semi-unsupervised variants of PGD adversarial
training. The purpose of unsupervised learning is to solve the potential data hungry
problem in machine learning and expand the dataset to provide better generalization. These
are the papers that proposed an adversarial training schema by utilizing the unlabeled
data [52–55]. Zhai et al. [54] proposed a unique regularization term by considering the
decision boundary’s correctness and stability. They used labeled and unlabeled data to
train each of the regularization terms. Uesato et al. [52] used a similar method; however,
they also proposed another approach that utilized the pseudo-label from another model
with standard generalization. Therefore, they could train a model with a similar standard
accuracy compared to the standard model while improving the adversarial accuracy with
unlabeled data. Carmon et al. [53] utilized the Gaussian model for generating pseudo-labels
for unlabeled data to achieve semi-supervised adversarial learning. Hendrycks et al. [55]
used an auxiliary rotation algorithm to improve on original PGD adversarial training.
A rotation transformation method is utilized to construct extra data samples to join the
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self-supervised learning procedure. They claimed that their improved version achieved
better robustness and clean accuracy compared to the original PGD adversarial training.

4.3.6. Other Methods Related to PGD and BIM

Maini et al. and Stutz et al. [56,57] used PGD as a base method to discover the
potential existence of unseen adversarial samples. Maini et al. [56] combined the different
perturbations under multiple distance metrics to find the worst adversarial results. Stutz
et al. [57] forced the confidence distribution to change smoothly outside the normal attack
distance to reduce the possibility of unseen adversaries.

Dong et al. [58] considered adversarial sample distribution rather than an individual
adversarial sample in adversarial training. Yuan et al. and Liu et al. [29,59] used the PGD
and FGSM to train the robust GANs network to defend the classifier. Rao et al. [60] targeted
the issue when the adversarial attack was used to produce a visible adversarial patch
attack. Wan et al. [30] used a Gaussian mixture and a unique regularizer to differentiate the
adversarial sample’s features from the normal clean data’s features. Wu et al. [61] proposed
a solution against rectangular occlusion attacks, which could be applied to physical space.
The attack is based on generating adversarial patterns with the PGD. Ruiz et al. [62] exposed
an adversarial attack threat with a GANs face image generator. They proposed a training
method to train a robust generative adversarial network. Jiang et al. [63] used a novel
network with an extra output head during the adversarial training. Ma et al. [64] tried to
apply the adversarial training concept to medical images by searching and adjusting the
local decision boundary location. There are a few other examples; they are listed in Table 3.

4.4. L-BFGS and JSMA Methods

There are other well-known white-box attacks that are utilized in adversarial training.
The L-BFGS is a white-box attack proposed by Szegedy et al. [4]. This attack uses a
flexible objective function to optimize the adversaries. Therefore, the algorithm can be
modified easily for different conditions but the optimization problem in this method
is relatively difficult to solve [96], which may lead to reduced efficiency in adversarial
training. The Jacobian-based saliency map attack (JSMA) is a saliency-based white-box
attack method [97] that exploits the idea of the attention saliency map of the model. The
perturbations were added to higher attention input instances to impact output space with
minimal perturbation distance. These methods were only considered in method-based
ensemble adversarial training (MBEAT) [31]; therefore, there is limited information about
the limitations of the method when it is used in adversarial training. Zhang et al. [78] used
a named YOPO algorithm to freeze the layers of the network while only including the
first layer for adversarial sample generation. This method reduced the complexity of the
adversarial training.

4.5. Generative Model

The articles on generative models are listed in Table 3. The general idea of those
methods includes utilizing generative adversarial networks (GANs) or an auto encode–
decoder to generate adversaries. Usually, these methods include unsupervised or semi-
unsupervised training concepts. These methods often exploit the current machine learning
techniques to auto-generalize a learning model on the adversarial sample distribution to
produce adversarial samples. However, Wiyatno et al. [2] reviewed an adversarial attack
that uses generative networks to generate adversarial samples and summarized the flaws
of the adversaries generated by these methods. One of the flaws is that the adversaries
generated by the GANs methods may not be generalized enough compared to other
methods. The paper also surveyed another method that uses transformation networks for
adversary generation; however, the resulting adversaries often have low transferability, and
the generator training process may have catastrophic forgetting properties. Furthermore,
there are fewer papers that evaluate these adversarial attacks when they are utilized by
adversarial training. Hence, there is a research gap in this area of study.
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Wang et al. and Stutz et al. [7,71] proposed the GANs network as a training schema
to improve model robustness. Wang et al. [7] used a generative network to discover the
adversarial perturbation of a discriminator network. The perturbation strength will be
limited by ε after being generated. The two networks were trained jointly as the strength
of the adversaries and the robustness of the discriminator increased simultaneously. The
generative model could learn the distribution of adversarial perturbations without any
supervision. However, the method only considers L∞ norm adversaries. Stutz et al. [71]
implemented VAE–GANs to produce an adversarial sample on the manifold of the image
data. This type of perturbation limits the perturbation direction in order to find the
generalization errors of the decision boundaries within the data samples.

Sreevallabh Chivukula et al. and Bai et al. [72,73] proposed using an auto encode-
decoder to generate adversarial samples. Sreevallabh Chivukula et al. [72] used the Stackel-
berg game concept to form a competition between the generative models. The CAE model
was proposed by Bai et al. [73] to construct an encode–decoder structure in the training
process. The encoder is the neural network model that provides the prediction, while the
decoder responds by producing adversarial samples of the encoder model. In this case, the
two models are trained together to improve the robustness of the prediction.

4.6. C&W-L2 Attack

C&W attack is a grey/black-box attack proposed by Carlini et al. [15]. The strength of
this attack is that it generates highly transferable adversarial samples to bypass defensive
methods such as distillation. Wen et al. [74] trained a detector network as an attachment
model to count the attacks. The detector model was trained by the logit output before the
SoftMax layer of the victim model was attacked by the C&W attack.

4.7. Ensemble Models

Pang et al. and Tramèr et al. [17,75] proposed and improved the concept of ensemble
adversarial training. Ensemble adversarial training considers the adversarial samples
of other trained static models and uses them to train a robust model [17]. This method
can generate adversaries that represent a more accurate approximation of real adversarial
distributions compared to the adversarial samples generated during the adversarial training.
Pang et al. [75], Kariyappa et al. [76], and Yang et al. [77] improved upon this concept and
lowered the transferability of strong adversarial samples between the ensemble models.

The novelty of this method is that it provides a viable way to decouple the adversary
generation from the target training model. This could mean that the adversarial training
process could be alternated, in which the adversarial samples are static and could be pre-
pared before the training; therefore, it might partially solve the problem of computational
cost in conventional adversarial training [6]. Moreover, the method appears to have better
robustness against black-box attacks as the ensemble training can lower the transferability
of adversarial samples from other models [17]. However, the trained model might still be
vulnerable to white-box attacks such as the iterative least-likely class method and random
start FGSM or more powerful black-box adversarial samples [17].

4.8. Novel Perturbation Methods

There are several other related research papers that were published after the year 2017
that we believe it is important to consider here as well. This collection of methods includes
novel ways to approximate the inner maximization of adversarial training formulations.
Most of them do not use the conventional attack algorithms or use a specially modified
version of the attack for some purposes. However, there is insufficient information to draw
conclusions regarding limitations and advantages since they are less popular or have been
published more recently. Therefore, we propose this as a future research path to verify
these novel solutions.
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4.8.1. Methods Targeting Specific Application Domains

The PWWS is an adversarial attack that targets text classification [98]. The method
approximates the importance of the words presented in the input space related to the
output classification. Du et al. [79] utilized PWWS to train a robust text classifier.

Khoda et al. [80] proposed a method to craft malware that can evade the deep learning
malware detector. The method uses the Jacobian matrix to find out the most impactful
features of the malware related to the output of the deep learning detector and modify
them to lower the detection confidence. The method was specialized in the study field of
malware detection.

Those adversarial training methods mainly focus on one field of application; therefore,
they are not general for constructing a universal framework.

4.8.2. Instance-Wise Perturbation

An instance-wised adversarial attack was proposed by Kim et al. [81] to achieve the
goal of self-supervised learning. The goal of this attack is to deviate the model output of an
input instance by transforming the image using stochastic augmentation. Therefore, during
the training, the classification of the transformed data in the model will be equalized to the
original label.

4.8.3. Adversarial Attack with Riemannian Space

Zhang et al. [82] implemented a unique adversarial attack to perturb the input data
in Riemannian space. The difference between the proposed attack and the traditional
adversarial attack in L2 space is that this attack method considers the perturbation distance
in the geometry of the loss function instead of the fixed L2 distance. They propose that this
method provides higher precision perturbation.

4.8.4. Boundary-Guided Generation

This method was proposed by Zhou et al. [83] to consider the hidden distribution of
the input dataset. A supported vector machine (SVM) was utilized to find the decision
boundary over the data distribution. Then, a generative network was used to transfer
the adversarial samples close to the boundary of the input data and adjust the decision
boundary by training the model using these adversaries. The advantage of this training
schema is that it can produce diverse adversarial samples and potentially provide more
generalization in terms of the robustness of the model.

4.8.5. Layer-Wised Perturbation

This novel noise generation method was proposed by Liu et al. [84]. In contrast with
traditional perturbation, the researchers tried to add perturbation into the intermediate data
within each network’s hidden layer. They aimed to improve the robustness of every layer
of the network to prevent the negative impact of both the adversarial attack and corrupted
data sample. Similarly, Chen et al. [85] proposed a layer-wised adversarial generation
by adding the adversarial perturbation into the intermediate layer of the network. The
perturbation is calculated using the gradient of the loss function regarding the layer output.

4.8.6. TUP

Wang et al. [86] proposed an adversarial attack method to produce the target universal
perturbation (TUP). This type of perturbation will let the model output a false label for
most of the input data. The idea of utilizing this adversarial sample determines a weaker
decision boundary for the networks.

4.8.7. Self-Supervised Perturbation

Naseer et al. [87] proposed a novel self-supervised perturbation method. The goal of
this method is to construct a model-independent self-supervised adversary generator. The
optimization objective function of this method is to maximize the output gradient between
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the original image and the adversarial image while constraining the attack strength within
ε distance in L infinite space.

4.8.8. Attack-Less Adversarial Training

This method was proposed in a patent paper by Ho et al. [88] that maps the pixels in an
input image to another value instead of using any state-of-the-art adversarial attack method.
This approach aimed to train the model on a different form of the necessary features to
provide a generalized defense of perturbation and to bypass the problem of overfitting.

4.8.9. Iterative Quantized Local Search

The iterative quantized local search method was proposed by Guo et al. [89] to search
the adversaries in a discrete manner. The researchers thought that attacks such as the PGD
only search for the perturbation in continuous space but might not be able to apply the
found adversaries to a real application. At the same time, search on continuous space is
more computationally expensive. Their algorithm tackled these two problems.

4.8.10. Feature Scatter

Zhang et al. [90] utilized the feature scatter method in the training process to prevent
label leaks from conventional adversarial training. They formulated their inner maximiza-
tion optimization problem as optimal transport distance and produced perturbation based
on this metric instead of using normal attacks. The formula could be written as:

minθ
1
n ∑n

i=1 Lθ

(
x′ i, yi

)
s.t. v∗ , ∑n

i=1 viδx′i
= maxD(µ, v), (5)

where D is the optimal transport distance between two distributions of samples. The
method minimizes the average loss Lθ regarding each perturbed input–output pair (x’i, yi)
under the constraint of maximizing optimal transport distance D between clean and per-
turbed samples’ distributions.

4.9. Adversarial Training Extension

In this section, some extension methods are introduced to enhance the performance of
general adversarial training. These methods might add additional steps to conventional ad-
versarial training, mix multiple training methods, or use different optimization approaches.
Most of them did not introduce any new threat models during the training and did not use
specific attack methods to train. However, these studies are still valuable for researchers to
consider in this research area.

4.9.1. Method-Based Ensemble Adversarial Training

The method-based ensemble adversarial training (MBEAT) utilizes varieties of ad-
versarial attacks in the training process [31]. This method further increases the model’s
generalization across the data that are attacked by different attack methods.

4.9.2. Adam Optimizer with Local Linearization Regularizer

Mao et al. [50] used an Adam optimizer and a local linearization regularizer to speed
up the robust optimization of the model while maintaining the robustness compared to
regular adversarial training.

4.9.3. Adversarial Vertex Mixup

Lee et al. [91] considered a soft label approach to reduce the overfitting effect of
adversarial training. They introduced an adversarial vertex on top of the adversarial
sample and computed the relative location of the vertex to the samples to produce a soft
label of the adversarial training data.
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4.9.4. Adversarial Interpolation

Zhang et al. [92] included adversarial samples and their corresponding adversarial
labels in the training process. The interpolation method was used to measure the distance
between the extracted features of the target image and the clean image and then perturb
the clean image in a way so as to close the distance to the target image. They considered
this method to produce the adversarial sample with soft labels. The adversarial samples
and soft labels could be used in adversarial training.

4.9.5. Adversarial Training with Hypersphere Embedding

Pang et al. [93] included embedding mechanisms in the hypersphere during the
training process to improve the overall performance of learning and generalization in
adversarial samples.

4.10. Summary of the Findings

The adversarial attacks and defenses are currently one of the hottest topics in this
research field. One of the most effective ways to defend against these attacks is adversarial
training. The current increase in the number of published papers indicates that there are
still many opportunities for the development of adversarial training.

In Section 4, the common adversarial sample generation techniques within adversarial
training are analyzed. In this section, we summarize the adversarial training methods
based on their primary goals. In summary, the most popular adversarial training methods
are the FGSM and PGD, which account for 20 and 35 papers, respectively. Madry et al. [13]
proposed the PGD adversarial training as a universal adversarial training method for
first-order adversaries. The method implemented by this paper is used as a standard
benchmark method for adversarial training and evaluation. There are eighteen papers
proposing an efficient adversarial training schema using modified FGSM or PGD for
the fast adversarial training process, and one paper heavily modified the adversarial
sample generator to achieve the same goal. Seven papers proposed an improvement to
traditional PGD adversarial training to reduce the overfitting problem on complex data
and improve the adversary generation for every instance of training data. Six papers
mainly considered new regularization terms in adversarial training to improve the model
robustness. Five papers proposed a semi-supervised adversarial training process with
four papers focused on PGD adversaries, while one paper proposed a unique adversarial
sample generation method. There are five papers proposing a training method that utilizes
black-box adversaries’ generation, four of which include a generative network or auto
encode–decode architecture. Two papers proposed a solution to train neural networks
against unseen adversarial samples.

4.11. Threats to Validity

In this section, the potential threats to the validity of our study are discussed.

4.11.1. Internal Threats

The primary internal threat to the validity of this study is the selection bias caused by
the subjective opinion of the first researcher. The other influential factors also include the
bias from the primary search engine used by the study and the categorization method used
to summarize the studied papers. The bias from the search engine refers to the influence on
the inclusion results and the conclusion of the study caused by the potential favored search
results returned by the search engine. Furthermore, the experience and subjective opinion
of the first researcher can also influence the definition of the categorization method, and it
could also affect the conclusion of the study.

The following steps were used to mitigate the selection bias. First, the papers were
filtered out by matching selection criteria. The primary consideration for the criteria
included the words within the titles, introductions, keywords, and methodologies of the
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papers. Papers without any methodology provided were excluded. Then, the papers were
evaluated multiple times before inclusion.

To minimize the bias from our primary search engine, we included a snowballing
procedure in our paper collection procedure. In this step, further evaluation was conducted
to identify the relevancy of the core selected papers and the newly included papers to
the topic.

Furthermore, the categorization method used in this study considered each studied
method’s methodology. The names of the generation components were used for catego-
rization if they were available, and the descriptions of the components were used if the
names were not available to avoid the influence of any subjective opinion on the process.
The categories provided by Bai et al. [5] were also considered for our study.

4.11.2. External Threats

The external threats to the validity of the study primarily relate to the coverage of the
selected papers. The snowballing method was mentioned in internal threats Section 4.11.1 to
expand the coverage of the papers. Considering the active status within the research field of
the study, we included every paper that could be found related to a newly proposed method,
regardless of its length and writing style. Hence, the study could provide information
on less mature ideas as well as well-studied methods. However, we cannot guarantee
complete coverage of the topic due to the limitations of this study regarding the time range
criteria, limited iteration of the snowballing process, and language criteria.

4.11.3. Construct Validity

The threats to the construct validity relate to the design of the search query and the
inclusion and exclusion criteria of the study. To minimize the construct threats, synonyms
and acronyms were included in the search query to expand the possible search results.
Furthermore, the scope was also completely defined by the search query and inclusion and
exclusion criteria to limit our study to the security of the machine learning models.

5. Discussion
5.1. Generalization Problem

In [99], Schmidt et al. discuss model generalization in the standard dataset and
adversarial samples and the problem of overfitting. Despite methods proposed to reduce
the effect of the limitation, the solution is not guaranteed. There is usually a trade-off
between standard and adversarial accuracy in the current robust model, especially in a
larger model. Schmidt et al. [99] found that the robust optimization achieved less total
accuracy with the same size dataset, indicating that there might be a need for a larger
dataset to achieve enough generalization. Therefore, adversarial optimization is potentially
more data-hungry than normal training. Schott et al. [19] also said that the traditional
gradient-based optimization attack (FGSM and PGD) adversarial training schema might not
be able to train a robust model against all possible adversarial samples. Therefore, a more
advanced adversary generation method or adversarial samples based on other distance
metrics or using other, less popular methods should be considered in future adversarial
training methods. Additionally, the current accuracy of the adversarially trained classifier
with high dimension adversarial samples is still significantly lower than the standard
accuracy [5]. Furthermore, the performance of the model generalization on the black-box
adversaries has not been fully studied. We think this could be one of the directions for
future adversarial learning research.

5.2. Generalization and Efficiency

To achieve fast adversarial training, there are methods that use a heavily modified
version of the PGD or single-step versions of the FGSM as we mentioned in Section 4.
However, the trade-off forces the adversarial samples generated to have less precise attacks
in general. Although there are some proposed improvements to align the adversaries’
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generation performance under weaker attack methods, the performance in most cases is
still not ideal, especially for more complex datasets [5,23].

5.3. Against Potential Unseen Adversaries

Recently proposed methods rarely counter the problem of the unseen adversarial
samples. Recently, Bai et al. [5] stated that the recent attack methods are not sufficient to
work out the hidden adversarial samples. Most adversarial attacks use the preset Lp norm
values to control the distance of the perturbation, which might not reflect all possibilities
of attacks. There are also constraints that exist for the other methods, such as generative
models and evolutionary algorithms [2].

There is a solution that uses multiple Lp norm perturbations to adversarially train
the model [56]. Maini et al. suggested considering multiple Lp norms to determine the
worst-case perturbation. Another method proposed by Stutz et al. [57] enforced the smooth
distribution of confidence during training to ensure the smooth transition over the decision
boundary. Dong et al. [58] also considered the distribution of the adversarial samples
produced by multiple adversarial attacks.

However, as Bai et al. [5] stated, the current study on unseen adversarial attacks is
insufficient. Combining the problem with generalization [5], the data sample we used in
the training set and test set does not always reflect the real distribution of the data. There
could also be adversarial samples of unseen data points outside the training and test set.

6. Conclusions and Future Work

In this paper, we reviewed the current existing adversarial training methods and
approaches to improve the robustness of the neural network classifiers. The goal of this
study is to identify the current advances and limitations of this type of robust optimization
technique. We selected 78 papers in this review, and the results show that:

1. The current research on adversarial training or robust neural network optimization
focuses on the FGSM and PGD adversarial samples.

2. The major goals of current approaches include balancing standard and adversarial
generalization and efficiency. The commonly used methods include modifying the
traditional FGSM and PGD and modifying the regularization terms of the training
objective function.

3. Some other methods have been proposed to be incorporated into adversarial training,
such as generative networks and other black-box generation methods.

4. Generalization problems have been studied frequently; however, there is still a gap
between the standard accuracy, adversarial accuracy, and efficiency of training. Gen-
eralization towards unseen adversarial samples has been studied occasionally, but
there is potentially more to explore.

To address these challenges, we may require more data samples for both adversarial
and non-adversarial samples. Ideally, if we could pre-include the adversarial samples
within the training dataset, we can train the model using standard training processes and
retain a similar training complexity. We could look into the idea of ensemble adversarial
training that uses a simple static model to pre-construct a general standard decision bound-
ary of the data [17]. We can then generate a dataset to conclude potentially vulnerable data
points from this pre-train model to train our final robust model.

Furthermore, there are some new adversarial generation methods available in addition
to the currently popular methods. The GANs model could be one of the suggestions to
produce out-of-set samples. In recent years, GANs have been proven to be effective as
adversary generators [100,101]. The concept of using GANs to produce an adversarial but
real-looking picture has been utilized in this field of research. A GANs network could
be used to capture the latent space representation of adversarial samples. We need more
research to evaluate the results when GANs models are used to approximate the inner
maximum of the adversarial training. Furthermore, we can also utilize the realistic image
generated by GANs and combine the unsupervised learning schema to solve the data-
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hungry problems. This method could be limited by current GANs limitations; however,
it may be a solution to discover more vulnerable data samples in the input space. The
evolutionary-based algorithms could also help with solving those problems. The benefit of
an evolutionary-based algorithm is that it provides an effective optimal search that could
potentially have a wide coverage range of perturbation. The evolutionary attacks have
been experiments on the current models and it is an effective method of protecting against
them [102,103]. These attacks could also be utilized to solve the inner approximation of
adversarial training. By using these methods, we can discover more out-of-set data samples
with potential hidden vulnerabilities. This could be a method to defend unseen adversarial
samples and provide further generalization for the model. We suggest that they should be
considered in robust optimizations.

For the application domain, the adversarial sample was found in recurrent networks
and generative models [104–108]. As the current research mainly focuses on computer
visions, it is necessary to extend the variety of adversarial training to different applications.

Additionally, there are still gaps in our true understanding of the adversarial samples
and adversarial training. Hence, the improved visualization tools regarding the adver-
sarial optimization problems could also help us to explain, understand, and improve the
current implementation.

In conclusion, it is challenging to build a natural robust deep learning model. We
might need more knowledge and significant modifications to deep neural network models
in the future to achieve this goal. Before that, adversarial training might be an effective
solution to improve the models’ adversarial robustness. Hence, it is essential to enhance
the efficiency and the generalization of adversarial training. Currently, adversarial training
primarily improves the robustness of a model involving the collection of data from a dataset.
However, there is no guarantee that the training can be generalized to all possible situations
in real-life applications. Therefore, new techniques should be developed to expand our
current understanding of adversarial optimization. There is still a research gap between
recently proposed methods and a robust deep learning model.
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