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Abstract: The employment of conventional optimization procedures that must be repeatedly invoked
during the optimization process in real-world engineering applications is hindered despite significant
gains in computing power by computationally expensive models. As a result, surrogate models that
require far less time and resources to analyze are used in place of these time-consuming analyses. In
multi-objective optimization (MOO) problems involving pricey analysis and simulation techniques
such as multi-physics modeling and simulation, finite element analysis (FEA), and computational
fluid dynamics (CFD), surrogate models are found to be a promising endeavor, particularly for the
optimization of complex engineering design problems involving black box functions. In order to
reduce the expense of fitness function evaluations and locate the Pareto frontier for MOO problems,
the automated multiobjective surrogate based Pareto finder MOO algorithm (AMSP) is proposed.
Utilizing data samples taken from the feasible design region, the algorithm creates three surrogate
models. The algorithm repeats the process of sampling and updating the Pareto set, by assigning
weighting factors to those surrogates in accordance with the values of the root mean squared error,
until a Pareto frontier is discovered. AMSP was successfully employed to identify the Pareto set
and the Pareto border. Utilizing multi-objective benchmark test functions and engineering design
examples such airfoil shape geometry of wind turbine, the unique approach was put to the test.
The cost of computing the Pareto optima for test functions and real engineering design problem is
reduced, and promising results were obtained.

Keywords: multi-objective optimization; mixed surrogates; Pareto frontier; wind turbine airfoil geometry

1. Introduction

Numerous competing objectives and constraint functions, as well as time-consuming
and expensive simulations, are present in the majority of real-world optimization issues.
High-fidelity models must frequently be expensively modelled in order to address these
problems. Finding the Pareto optimum of multi-objective optimization problems (MOO)
necessitates evaluating expensive fitness and constraint functions. However, only a few
tests are allowed in practice due to the restricted computing resources available to address
such problems, notably black box functions. Researchers [1–3] found that the development
of surrogate models employing a few high-fidelity solution assessments to replace compu-
tationally expensive models is promising and fruitful. Expensive functions are commonly
replaced by surrogate models such as the radial basis function, Kriging, or response surface
method [4].

In MOO problems demanding expensive computational analysis and simulation tools,
for example FEA and CFD, surrogate models have grown in prominence and received more
attention. Due to their capacity to imitate the real expensive model and their compliance
with challenging computational requirements, surrogate models have been proved to be
viable tools for MOO problems [5]. Numerous optimization applications demand labor-
and resource-intensive fitness evaluations. The load considerably increases when dealing
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with multiple-objective black box functions that need to be evaluated. The automated MOO
algorithm (AMSP) proposed in this paper is based on surrogate approximations.

The suggested algorithm automatically constructs an ensemble of surrogates from
the three available surrogate models based on a methodology that will be introduced and
explained in detail in this paper. The algorithm adaptively adjusts the effective surrogate
model to determine the Pareto frontier for the MOO problem. The Response Surface
Function (RSF), Radial Basis Function (RBF), and Kriging model are employed as surrogate
approximations in this work [6–11]. To fully make use of the potential design space, an
efficient sampling technique must be used. Traditional sampling techniques are afflicted
by the “curse of dimensionality”, which causes an exponential increase in the number of
sampling points needed to explore the design space as the number of design variables
rises. The Latin Hypercube Designs (LHD) method [12] was consequently modified in
this work. LHD is renowned for randomly and evenly covering the practicable portion
of the design space in its sampling. These significantly reduce computation costs and
increase the probability of finding the Pareto frontier for MOO problems. The suggested
algorithm (AMSP) consistently and accurately locates the Pareto frontier for MOO problems.
The computational cost is significantly reduced when AMSP is used to locate the Pareto
frontier for expensive black-box functions. AMSP was put to the test using benchmark test
problems and actual, realistic engineering challenges in order to show off its performance.
The outcomes are seen as promising and encouraging.

2. Literature Review

MOO has emerged as a possible approach to overcoming obstacles with conflicting
goals. The most effective trade-offs between a set of criteria are often determined by using
a group of Pareto optima to solve MOO issues. Finding the final Pareto frontier for use
in practice is challenging, especially when there are several competing objectives to take
into account.

In situations with two or three objective functions, it may be rather simple to describe
the set of Pareto-optimal solutions in the objective function space. When we identify
Pareto limits, we may completely understand the relationship between trade-offs between
objectives. It has been demonstrated that surrogate models may accurately and efficiently
identify Pareto-optimal solutions.

Effective and durable search strategies are greatly needed to tackle such challenging
multi-objective optimization problems. The majority of algorithms are evolutionary ones
such as GA, PSO, and others. Black box functions have only been shown for a select few.
These are the solutions provided for multi-objective optimization problems that demand
pricey analysis and simulation methods, such as multi-physics modeling and simulation,
FEA, and CFD analyses. The optimization of computationally expensive black box functions
needs more focus and should be addressed due to the challenges these functions have
presented to the optimization community. A promising method that might help with the
resolution of these problems is the use of surrogate models. The expensive model (function)
is simulated and predicted using surrogate models, which have a reduced computational
cost. MOOP with expensive high fidelity computational models, such as sophisticated
simulations and thorough analyses, the standard multi-objective optimization methods,
are challenging to perform directly due to the high computational cost of objective and
constraint function evaluations. As a response to these problems, surrogate models gain
in popularity.

There are typically two scenarios in which black box functions are used to address
MOO problems. Numerous evolutionary algorithms (EAs) use the first scenario, which
closely resembles the Pareto optimal [13–15]. Due to the costly evaluations of numerous
non-Pareto set points required by these approaches, they are renowned for being com-
putationally expensive. In the second scenario, surrogate models are used to assess each
objective function. Naturally, the constructed surrogate models will determine how precise
the Pareto-optimal border is.



Algorithms 2022, 15, 279 3 of 17

Li et al. [16] created a hyper-ellipse surrogate to approach the Pareto optimum frontier
for bicriteria convex optimization problems. If the established approximation model is not
sufficiently accurate, the Pareto-optimal frontier will not be considered a good approxi-
mation of the genuine Pareto-optimal frontier. In order to make use of the multi-objective
design region and find the Pareto set using approximation models, Wilson et al. [17] used
two surrogate approximations (response surface and Kriging models). Prior to applying
the optimization strategy, they employ a technique that minimizes the loss of surrogate
approximation accuracy. Proos et al. [17] used the weighted and global criterion technique
to construct an algorithm that incorporates several criterion optimizations into evolutionary
structural optimization (ESO). Yang et al. [15] developed a strategy for managing surrogate
models for MOO. The framework includes a sequentially-updated surrogate model and
a GA-based method. Instead of before, as in the preceding case, the surrogate model is
altered during the optimization process [14]. The accuracy of the surrogate model is crucial
for maintaining the integrity of the identified border sets in their proposed method.

Yang’s [15] research had a hard time locating frontier areas close to the extremes. The
Pareto Set Pursuing (PSP) technique, proposed by Shan and Wang [18], entails creating sam-
pling guidance functions based on surrogate models. It was said that PSP had enormous
promise in terms of effectiveness, accuracy, and robustness. An artificial neural network
(ANN) approximation was merged with NSGA-II by Nain and Deb [19] in order to achieve
a computationally efficient search and enable the use of GAs on computationally expensive
problems. A progressively updated design and analysis of computer experiments (DACE)
model-based extended efficient global optimization method (ParEGO) for MOO challenges
is presented by Knowles [20]. In order to develop a multi-objective design optimization
approach, Kim and Chung [21] combined GA with Kriging. The developed method was
tested in a wing platform design competition, proving its efficacy and viability. A novel
multi-objective optimization approach based on the usage of surrogate models was devel-
oped by Liu et al. [22]. In each iteration, the approximation models are gradually produced
by the response surface approximations. The Pareto optimum set proposed by the approxi-
mations is located using a multi-objective genetic algorithm. The proposed approach relies
less on the accuracy of the surrogate models because it concentrates on identifying the real
Pareto ideal. Lim in [23] explored the use of substitute models in evolutionary search. Jang
in [24] employed an adaptive approximation framework to address the processing cost of
the entire stochastic fatigue analysis in the optimization process.

An adaptive Kriging model was created by Yang et al. [25] that increases the accu-
racy of the approximations by adding additional points to the model with each iteration.
Zhao et al. [26] suggested a dynamic Kriging methodology, which uses several sets of
approximation functions in various groups of points, was proposed as a way to regulate the
nonlinearity of the model space [26]. The suggested technique has proven to be extremely
successful when applied to challenging optimization problems [27]. By automatically
choosing pertinent surrogates during the search process, Gu et al. [28] developed an op-
timization approach to increase search efficiency by integrating a dynamic Radial Basic
Function (RBF) with an adaptive sampling technique. Diez et al. [29] developed a method
for improving both the existing solution and the approximation model. A dynamic RBF
function-based strategy was developed by Volpi et al. [30] who claimed it was successful
in solving high-dimensional problems. Iuliano [31] examined and discussed a number of
adaptation strategies.

The proposed algorithm is designed to handle highly non-linear black-box multi-
objective optimization problems. The algorithm is unique because it takes advantage of
three surrogates to identify the Pareto set and the Pareto frontier with less computational
cost. AMSP adaptively combines three surrogate models based on a selection criterion
that will be discussed later. To find the Pareto frontier for the multi-objective problem, the
method automatically assigns a weight factor to each surrogate model based on calculated
RMSE values. LHD was utilized to generate sampling points to refine the search for optimal
Pareto sets. AMSP uses the ensemble of surrogates to identify the Pareto frontier. These
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factors aided in the decrease of computation costs and boosted the likelihood of identifying
the Pareto frontier for MOO problems.

3. Multi-Objective Optimization

MOO is defined as a set of design variables that satisfy constraints and optimize
a vector function whose constituents are the objective functions. It can be expressed
as follows:

Optimize the vector function

f (x) = [ f1(x), f2(x), . . . , fk(x)]T (1)

by determining the decision variables vector;

x∗ = [x∗1 , x∗2 , . . . , x∗n ]T (2)

which will satisfy the m inequality constraints

gi(x) ≥ 0, i = 1, 2, . . . , m (3)

and the p equality constraints

hj(x) = 0, j = 1, 2, . . . , p (4)

where x = [x1, x2, . . . xn]
T is the vector of decision variables. In other words, we wish to

determine from among the set f of all numbers, which satisfy Equations (3) and (4). In
particular set x∗1 , x∗2 . . . x∗k which yields the optimum values of all the objective functions.

Pareto Frontier

The Pareto frontier or Pareto set is the set of all Pareto-efficient results. If no feasible
vector x exists that decreases some objective functions while simultaneously increasing at
least one other objective function, then the vector of, x∗ is Pareto-optimal. Following are
some mathematical ways to express the Pareto optimality:

A vector of x∗ is a Pareto optimum if and only if, for any x and i,

f j(x) ≤ f j(x∗), j = 1, . . . , m; j 6= i, fi(x) ≥ fi(x∗) (5)

Finding Pareto set points allows for the discovery of a Pareto frontier, which is the
main purpose of multi-objective optimization (MOO). Claiming that these points are in the
Pareto set or the Pareto frontier is challenging unless there is a strong method to determine
whether they are in the set or not. This could be quickly ascertained if a fitness function is
customized. The fitness function, which was utilized in this paper, will be discussed in the
section that follows.

4. The Proposed Algorithm

The proposed algorithm’s main objective is to identify the Pareto frontier with the
least amount of computing time for expensive black-box functions. This goal can be
achieved if appropriate tools, such as effective sampling techniques, are used. Because it
provides equal and random samples in the design space, the LHD sampling technique is
used in this work. The Pareto frontier should be approached repeatedly whenever more
samples are generated. A sampling guidance function is needed to judge if these sample
sites are near to or on the Pareto frontier. The following section introduces the sampling
guidance procedure.
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4.1. Sampling Procedure

There are many statistical methods available today for creating sample points based
on a specific probability density function (PDF). Latin Hypercube Designs (LHD) sampling
technique was used to create random and evenly distributed sample points in the design
space of interest. The search process starts with the creation of a surrogate approximation
model from a small number of sample points, then generates many points using the model.
Finally, the points are sorted, and a cumulative function that is similar to the cumulative
density function (CDF) proposed in [32] is created by adding up all the function values. The
generation of sample points based on a specific probability density function can be done
statistically using a variety of methods nowadays (PDF). Latin Hypercube Designs (LHD)
sampling technique was used to create random and evenly distributed sample points in
the design space of interest. The search starts by building a surrogate model from a small
number of sample points, then generates many points using the surrogate model, sorts the
points, and then builds a cumulative function similar to the cumulative density function
(CDF) proposed in [32] by adding up all the function values.

4.2. Surrogate Models

In this study, surrogate models served as crucial research tools. Three popular surro-
gate approximations were used: Kriging, RBF, and RSM. The next sections present each
surrogate along with its mathematical formulations.

4.2.1. Kriging

The Kriging model is one of the most well known spatial interpolation models for
substituting the numerical relationship between input and output variables. It loses a lot
of efficiency when dealing with significant design variances. On the other hand, Kriging
surrogate models can significantly reduce the computational cost of regression because
they need significantly fewer sample data to be generated. Additionally, more trustworthy
prediction results can be produced because the Kriging fitting technique concentrates on
more representative samples.

The Kriging model regards the function of interest as a realized random function
(stochastic process). As a result, a linear combination of a global model and deviations,
Equation (6), is presented as the Kriging mathematical model:

y(x) = f (x) + Z(x) (6)

where y(x) is the unknown deterministic response, f (x) is a known (usually polynomial)
function of x, and Z(x) is a realization of a stochastic process with mean zero, variance σ2,
and non-zero covariance.

4.2.2. Radial Basis Function (RBF)

The interpolation of scatter data using radial basis functions has been shown to
be highly accurate in high-dimensional problems. Radial basis function interpolation,
Equation (7), is used to approximate the form.

f̂ (x) =
N

∑
n=1

ωn ϕ(x− xn) (7)

where ϕ(x)=∅(‖x‖) is a radial function. The positions xn, n = 1 . . . N are known as the
RBF centers.

4.2.3. Response Surface Function (RSF)

RSF was initially created to model experimental results [6], after which it was expanded
to include numerical experiment modeling. RSF is used in design optimization to reduce
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the cost of pricey analytical methods (for example, FEA or CFD analyses) as well as the
related numerical noise. Equation (8) can be used to express the response function:

y = f (x1, . . . , xn) + ε (8)

where ε represents the noise or the error observed in the response y. The surface represented
by f (x1, . . . , xn) is called a response surface.

4.3. Ensemble of Surrogate Models

The three surrogate models, RSF, RBF, and KRG, are integrated in an appropriate
linear approach to produce a better-weighted ensemble of surrogates that can duplicate the
high-fidelity surrogate in the feasible region of the design space.

Equation (9) represents the ensemble of surrogate’s equation:

ŷensemble(x) = βqRSF(x) + βrRBF(x) + βkKRG(x) (9)

where
βq + βr + βk = 1 (10)

where ŷensemble(x) is the surrogate model to the analysis/simulation function, f (X), at
sample point x; RSF(x), RBF(x) and KRG(x) represents the RSF, RBF and KRG surrogate
models respectively; βq, βr and βk are weighted coefficients that control how much each
model contributes to the combined surrogate.

4.4. Automated Ensemble of Surrogate’s Selection

Three surrogate models are built after producing a few sample points in the space of
interest using Latin Hypercube Designs. RSF, RBF and Kriging. These surrogates’ root mean
square error (RMSE) is calculated. In the next step, the surrogate with the highest RMSE
value (close to 1) is chosen to be heavily depended on and assigned high weight factor
and the one with low RMSE (close to zero) is assigned the lowest weight factor. Kriging
typically yields lower RMSE than RSF and RBF. In this method, a rule was established to
guide the mixed surrogate construction process, which is to first assess the RMSE and then
automatically assign weight factor based on the value of the RMSE. The weight factor is
selected as percentage so that the surrogate with RMSE close to 1 gets a weight factor 60%
and the one with low RMSE gets a weight factor of 10%. The surrogate that yields RMSE in
between gets 30% weight factor. If RMSE is close to 1, build Kriging. If the contrary is true,
then build either RSF or RBF based on which one has RMSE closer to 1.

4.5. Maximum Fitness Function

There are numerous approaches to define the fitness function for an objective func-
tion problem. The function that comes next is known as the maximal fitness function.
Equation (11) identifies the fitness function used in this study. Numerous programs have
successfully exploited this capability. Equation (12) illustrates the modified maximum
fitness function that was used in this study.

P(xi) = max︸︷︷︸
j 6=i;j∈P

[ min︸︷︷︸
1≤s≤k

{
fs(xi)− fs

(
xj
)}

] (11)

Pi = max
(

min
(

f i
s1 − f j

s1, f i
s1 − f j

s1, . . . , f i
sm − f j

sm

))
(12)

where, Pi denotes the fitness value of the ith design; f i
sk is scaled to kth objective function

value of the ith design, k = 1, . . . , m. The max in Equation (12) is over all other designs
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j 6= i in the set and the min is over all the objectives. The objectives fs1, fs2, . . . , fsm in
Equation (13) are scaled to a range [0, 1]. For example, for f i

s1,

f i
s1 =

unsc f1,i − unsc f1,min

unsc f1,max − unsc f1,min
(13)

where, unsc f1,i denotes the un-scaled value of the first objective for the ith design; unsc f1,min
denotes the maximum f i

s1 un-scaled value of the first objective among all designs; and
unsc f1,min denotes the minimum un-scaled value of the first objective among all designs.
In case that an objective function is a constant, the scaled objective function value is taken
as 1 in this work.

4.6. The Proposed Algorithms Steps:

The steps of the suggested approach are summarized and discussed in the steps below:

1. Sampling initial random design points. Creating a small number of randomly dis-
tributed sample points in the design space. The sample procedure is carried out using
LHD [12].

2. The black box function (expensive function) is used to detect the current frontier
points after evaluating the generated sample points.

3. Calculating the built surrogates’ root mean square error (RMSE). In this step, three
mixed surrogates are introduced to imitate and replace the expensive function: the
response surface function (RSF), radial basis function (RBF), and Kriging (KRG)
surrogate model. After these substitutes are fitted to the previously acquired sample
points, RMSE is calculated. The surrogate with a higher RMSE value (near to 1) is
automatically adjusted by the algorithm, and it is given a higher weight factor than
the other surrogates with lower RMSE values (close to 0). The surrogate with the
lowest RMSE values receives a weight percentage of 10%, the surrogate with the
highest RMSE values receives a weight percentage of 60%, and the surrogate with
all other RMSE values receives a weight percentage of 20%. The subsequent stages
should make use of the selected mixed surrogate.

4. Creating a lot of cheap points in a short amount of time. They are used to assess the
enormous number of sample points produced by LHD after the development of the
mixed surrogate (cheap function).

5. Combining the sample points. The preliminary approximated Pareto border is iden-
tified or moved towards in this stage by combining all generated sample points
(expensive and cheap locations).

6. Identifying the candidate points out of all the ones that already exist (points obtained
in the previous step). These points are very likely to become Pareto set points.

7. For fresh sample points, evaluate fitness functions. The expensive black-box functions
were used to evaluate the points collected in step 5.

8. To identify the new frontier set, new sample points are combined with expensive
frontier points.

9. If convergence criteria (termination criteria) are met, the method ends; otherwise,
return to step 4.

4.7. Termination Criterion

Two termination criteria were adapted in this work.

1. If the difference between frontier points after two consecutive iterations is less than
0.0001, then terminate: and

2. If the maximum number of specified number of iterations has been reached, then the
algorithm should terminate.

Figure 1 depicts the proposed approach’s flow diagram. It explains how the algorithm
works in a nutshell.
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5. Numerical Examples and Results

The suggested approach is tested and validated using a number of well-known multi-
objective optimization benchmark test functions from the literature, which are reported
in Table 1. The results of the four test issues are shown in this section. The results of
optimizing a real-world example are also provided in this section.

5.1. Test Functions

The test functions tested using the proposed approach are reported in Table 1.

Table 1. Multi-objective test functions.

Test Function Constraints Domain

F1
Minimize f1(x) =

(
x2

1 − 5
)2

+ (10x2/A− 6)2;

Minimize f2(x) =
(
x2

1 − 7
)2

+ (10x2/A− 6)2 x1, x2 ε [−10, 10] Where A = 10

F2 Minimize f1(x) = (x1)
5 + x2;

Minimize f2(x) = (x1)
5 + 1− x2

x1, x2 ε [0, 1]

T1 Minimize f1(x) = (x1 − 2)2 + (x1 − 1)2;
Minimize f2(x) = x1

2 + (x2 − 6)2

h_1(x) = x_1− 1.6 ≤ 0;
h2(x) = 0.4− x1 ≤ 0;
h3(x) = x2 − 5 ≤ 0;
h2(x) = 2− x2 ≤ 0

x1 ε [0.4, 1.6]
x2 ε [2, 5]

T2 Minimize f1(x) = (x1 + x2 − 7.5)2 + (x2 − x1 + 31)2/4;
Minimize f2(x) = (x1 − 1)2/4 +

(
x2 − 42

)
/2

h_1 (x) = 2.5− (x_1− 2)̂3/(2− x_2) ≤ 0;
h_2 (x) = 3.85 + 8(x_2− x_1 + 0.65)̂2− x_2− x_1 ≤ 0

x1 ε [0, 5]
x2 ε [0, 3]

T3
Minimize f1(x) = 25−

(
x3

1 + x2
1(1 + x2 + x3) + x3

2 + x3
3

)
/10;

Minimize f2(x) = 35−
(
x3

1 + 2x2
2 + x2

2(2 + x1 + x3) + x3
3

)
/10;

Minimize f3(x) = 50−
(
x3

1 + x3
2 + 3x3

3 + x2
3(3 + x1 + x3)

)
/10;

h_1 (x) = 12− x_1̂2− x_2̂2− x_3̂2 ≥ 0 x1, x2, x2 ε [0, 5]
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5.2. Wind Turbine Airfoil Geometry Optimization

The geometry of a typical GT compressor blade airfoil [33] is optimized in this example
using the suggested algorithm. In both design and off-design scenarios, the objective is
to lower the total pressure loss coefficient. NURBS curves were used to parameterize the
geometry input used in the optimization process. This method treats the positions of the
non-uniform rational basis spline (NURBS) control points as design variables. Four NURBS
curves for each of the four segments of the compressor airfoil, each having nine control
points, make up the airfoil. Because each control point has two coordinates, x and y, there
are a total of 72 design variables. The junction points of the segments are one of 16 known
and set parameters. The remaining 16 parameters are found by enforcing C2-continuity
(which requires the second derivative to be zero at the endpoints) at the intersections of
the segments. As a result, 40 variables will remain as design variables in the optimization
procedure. However, to limit the number of design factors while maintaining a high level
of geometric flexibility, the geometry of the leading edge (LE) and trailing edge (TE) is
maintained constant to save CPU time.

The results of the airfoil optimization procedure strongly depend on the formulation
of the objective function. In order to simulate 2-D fluid flow, the geometry code creates
parameterized profiles that are then imported into the computational fluid dynamics
program COMSOL CFD. The acceptable profiles’ post-processed outputs are then fed into
the fitness calculation portion, where the airfoil loss values, L, should be minimized with
respect to any shape. The single objective function is shown in Figure 2 as follows:

Minimize L1% = (a1Ls) ∗ 100
Minimize L2% = (a2Ld) ∗ 100
Minimize L3% = (a3Lc) ∗ 100

(14)
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Subject to:
(|y3 − y7| and |y3 − y8|) ≥ 15% of the chord

0 ≤ xi/chord ≤ 100%
40% ≤ yi/chord ≤ 55%

(15)

where ai are weighting factors. The reduction of total pressure loss on the right (Lc) and left
(Ls) sides of the design point significantly expands the operating range. The quantities yi
and xi are design variables as shown in Figure 2.

The following are the weighting factors for the optimization process: a1 = 0.20,
a2 = 0.70, and a3 = 0.10.

Ls = (Po1 − Po2)stall/0.5ρV2
1 , Ld = (Po1 − Po2)des/0.5ρV2

1 ,
Lc = (Po1 − Po2)Choke/0.5ρV2

1 ,
(16)

where Po1 is intake total pressure, Po2 is outlet total pressure, and V1 is inlet velocity.
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6. Results and Discussion

Multiple benchmark multi-objective optimization problems and a real-world engi-
neering design challenge were used to test the proposed technique. Promising outcomes
were gathered using the suggested algorithm. There were numerous computational op-
timization runs (approximately five runs). As noted earlier, Table 2 presents samples of
the outcomes from five separate runs. The actual, real-world example (geometry of the
airfoil in a wind turbine) required between 986 and 1172 iterations, with 242 serving as
the median. The median number of function evaluations is 1213, with a range of 16,582 to
19,934. RBF surrogate model is the winner in the majority of test runs. The median number
of convergent Pareto points, which varies from 729 to 793, is 760.

Table 2. Test results of the introduced algorithm on multi-objective test functions.

F1 F2

Run Ite. Eval #Par.P Surr. RMSE Run Ite. Eval Par.P Suur. RMSE

1 37 75 48 RBF 0.9901 1 24 246 137 RBF 0.9721
2 32 61 45 RSF 0.9899 2 22 281 188 KRG 0.9704
3 23 56 35 KRG 0.9879 3 23 275 167 RBF 0.9569
4 30 66 43 RBF 0.9744 4 21 458 309 RSF 0.9565
5 33 71 47 RSF 0.9904 5 20 410 357 RBF 0.9777

T1 T2

Run Ite. Eval #Par.P Surr. RMSE Run Ite. Eval Par.P Suur. RMSE

1 19 446 363 RBF 0.9812 1 27 58 39 RSF 0.9744
2 19 443 358 RSF 0.9963 2 29 59 37 RBF 0.9730
3 16 368 306 KRG 0.9811 3 34 73 44 KRG 0.9773
4 17 379 313 RSF 0.9792 4 28 65 44 RSF 0.9302
5 15 332 264 RBF 0.9971 5 38 87 46 RBF 0.9565

T3 P1

Run Ite. Eval #Par.P Surr. RMSE Run Ite. Eval Par. P Suur. RMSE

1 250 1216 760 RSF 0.9325 1 1172 18,857 3464 RSF 0.9772
2 234 1213 765 RBF 0.9355 2 1218 19,934 3615 RSF 0.9821
3 273 1294 793 RBF 0.9781 3 986 16,582 3146 RSF 0.9763
4 232 1170 752 RSF 0.9932 4 1019 19,121 3623 RBF 0.9775
5 219 1172 729 RBF 0.9946 5 997 18,587 3455 RBF 0.9801

# Par. P = Number of Pareto points.

A comparison of the complete airfoil geometry was carried out, as seen in Figure 3.
Solid lines depict the geometry of the initial (Datum) unoptimized airfoil. The unoptimized
airfoil geometry is shown by the continuous line, while the airfoil shape generated by the
AMSP optimizer is shown by the dashed line. The most obvious inference from this graph
is that the geometry of the airfoil in the second half of the chord, from maximum thickness
to TE, has been significantly affected by the optimization process. An enhanced airfoil
shape is produced when three surrogates are combined into an ensemble. This indicates
better pressure distribution and greatly increases the lifting force and lowers the drag force
of the turbomachinery blades.
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Figure 3. Airfoil shape design before and after optimization process.

Figures 4–7 present the performance space and the evaluated points for test functions
F1, F2, T1, T2, and T3 respectively. Figure 4a displays the sampling points coordinates in the
feasible design space, Figure 4b shows sampling design at which the sampling design were
evaluated using the objective functions. Figure 4c displays the Pareto design coordinates
and Figure 4d displays the Pareto frontier after all Pareto coordinates were converged
iteration after iteration to form the Pareto frontier. The same can be seen in Figures 5–8
for test functions F1, F2, T1, T2, and T3. It is quite noticeable that the proposed algorithm
successfully converged to optimal Pareto set and successfully identified the Pareto frontier
for all tested benchmark multi-objective functions and most importantly for the practical
problem, which is the wind turbine blade shape/profile optimization. The algorithm was
capable of identifying the Pareto frontier for a real-life practical problem, seen in Figure 8,
with three objective functions and 40 design variables. By identifying the optimal design
variables x1, y1, . . . , x10, y10, the optimal airfoil profile was generated that minimizes the
loss values L1, L2, and L3.
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Figure 4. Computational simulations Pareto frontier determination of test function F1 (a) coordinates
od sampling points; (b) sampling points in feasible design space; (c) coordinates of Pareto points;
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Figure 5. Computational simulations Pareto frontier determination of test function F2 (a) coordinates
od sampling points; (b) sampling points in feasible design space; (c) coordinates of Pareto points;
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Figure 6. Computational simulations Pareto frontier determination of test function T1 (a) coordinates
od sampling points; (b) sampling points in feasible design space; (c) coordinates of Pareto points;
(d) the seeking Pareto frontier.
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Figure 7. Computational simulations Pareto frontier determination of test function T2 (a) coordinates
od sampling points; (b) sampling points in feasible design space; (c) coordinates of Pareto points;
(d) the seeking Pareto frontier.
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Figure 8. Computational simulations Pareto frontier determination of test function T3 (a) coordinates
od sampling points; (b) sampling points in feasible design space; (c) coordinates of Pareto points;
(d) the seeking Pareto frontier.

Table 3 reports the total number of iterations, the total number of objective function
evaluations, and the total number of Pareto points in the ideal Pareto frontier. The efficient
Pareto set was successfully identified with a reasonable number of Pareto set points and a
low computing cost using RBF, which is devoted to the sample points, and Kriging, which
interpolates the sample points and gives good accuracy. Table 3 displays the variation
range, median, and Pareto set points for the iterations, function evaluations, and number
of iterations.
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Table 3. Summary of test results of AMSP.

Test Function
Number of Iterations Number of Evaluations Number of Pareto Set Points

Range Median Range Median Range Median

F1 [23–37] 31 [56–75] 66 [35–48] 44
F2 [20–24] 22 [246–458] 334 [137–357] 232
T1 [15–23] 18 [332–446] 394 [264–363] 321
T2 [27–38] 32 [58–87] 69 [37–46] 42
P1 [219–273] 242 [1170–1294] 1213 [729–793] 760

For each test problem, more than five runs have been completed because LHD creates
sample points in the region of interest at random. The best outcome from those several
runs is represented by these results. For five distinct runs, the quantity of iterations, total
quantity of evaluated points, and quantity of converged frontier points were noted.

It worth mentioning that the task can be completed in a relatively small number of
iterations. All the evaluated points are plotted together with the feasible performance space,
as shown in Figures 4–8 to better observe the accuracy of converged frontier points. The
converged frontier points are extremely close to the genuine Pareto frontier, as can be seen
by the graphs.

Benchmark test functions were used to compare the proposed algorithm’s performance
to that of other MOO algorithms. Table 4 shows that AMSP outperforms the other MOO
techniques, such as Pareto Set Pursuing (PSP) and Multi-objective Optimization Genetic
Algorithm (MOGA). In terms of the number of fitness evaluations, AMSP outperformed
the other algorithms in terms of efforts and resources needed. In addition, the cost of
computation was lowered reflected in reduction of number of function evaluations and
computation time. Furthermore, when AMSP was utilized, more Pareto set points were
obtained. As a result, a more accurate and smoother Pareto border was identified.

Table 4. Performance comparison of multi-objective optimization algorithms.

Test
Problem

Number of
Iterations

Number of
Fun. Evaluations

Number of
Pareto Set Points

Range Median Range Median Range Median

F1
AMSP [23–37] 31 [56–75] 66 [35–48] 44

PSP [21–35] 33 [58–79] 68 [36–44] 42
MOGA [520–710] 480 [919–1087] 995 [20–24] 22

F2
AMSP [20–24] 22 [246–458] 334 [137–357] 232

PSP [22–24] 23 [260–440] 339 [151–360] 241
MOGA [492–780] 503 [1060–1313] 1197 [112–126] 119

T1
AMSP [15–23] 18 [332–446] 394 [264–363] 321

PSP [17–23] 20 [356–476] 400 [33–42] 37
MOGA [310–316] 313 [16,246–20,174] 18,841 [19–22] 21

T2
AMSP [27–38] 32 [58–87] 69 [37–46] 42

PSP [52–88] 70 [55–83] 71 [29–44] 35
MOGA [418–489] 450 [19,900–22,446] 21,000 [17–21] 19

P1
AMSP [219–273] 242 [1170–1294] 1213 [729–793] 760

PSP [240–264] 246 [1210–1290] 1246 [604–616] 606
MOGA [620–980] 800 [310,200–360,900] 33,555 [14–18] 16

AMSP = Automated Multiobjective Surrogate Based Pareto Finder; PSP = Pareto Set Pursuing’ MOGA = Mulitiob-
jective Genetic Algorithm

The reduction in computation cost is reflected in a smaller number of fitness function
evaluations, as seen in Figure 9. In terms of the number of fitness tests required to determine
the Pareto optima, AMSP is slightly better than PSP but far better than MOGA. This suggests
that AMSP is suitable for complex optimization problems and black box functions, as well
as practical engineering applications, due to its ability to handle the burden of effectively
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exploiting the design space and simulating expensive fitness functions with inexpensive
surrogates that can be easily evaluated with fewer resources.

Figure 9. Performance comparison of used optimization algorithms on test problems in terms of
computational cost.

7. Conclusions

A novel and new multi-objective optimization algorithm for identifying the Pareto
frontier has been proposed. To find the best Pareto frontier for expensive and black
box functions, the suggested algorithm AMSP automatically selects and fits the suitable
surrogate approximation model based on RMSE values. Without prior knowledge of the
target function, AMSP provides decision makers with a Pareto set for choices. Even if
the frontier surface is highly nonlinear or discontinuous, AMSP algorithm can produce
solutions that reflect the full Pareto-optimal frontier. With fewer efforts, resources, and
expensive function evaluations, AMSP can identify the best Pareto frontier for all tested
benchmark test functions with less computational cost and resources. To test the suggested
algorithm and show its benefits and drawbacks, a variety of multi-objective benchmark
test problems and a practical engineering multi-objective application were examined.
The obtained results demonstrated that AMSP could identify the Pareto frontier with
comparably good accuracy. When compared against other MOO algorithms, the newly
suggested algorithm produced promising outcomes.
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