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Abstract: Federated learning (FL) is a privacy-preserving distributed learning approach that allows
multiple parties to jointly build machine learning models without disclosing sensitive data. Although
FL has solved the problem of collaboration without compromising privacy, it has a significant
communication overhead due to the repetitive updating of models during training. Several studies
have proposed communication-efficient FL approaches to address this issue, but adequate solutions
are still lacking in cases where parties must deal with different data features, also referred to as
vertical federated learning (VFL). In this paper, we propose a communication-efficient approach
for VFL that compresses the local data of clients, and then aggregates the compressed data from all
clients to build an ML model. Since local data are shared in compressed form, the privacy of these
data is preserved. Experiments on publicly available benchmark datasets using our proposed method
show that the final model obtained by aggregation of compressed data from clients outperforms the
performance of the local models of the clients.

Keywords: federated machine learning; heterogeneous federated learning; communication efficient;
data privacy

1. Introduction

As organizations seek to modernize and optimize business processes, machine learn-
ing (ML) has emerged as a powerful tool for driving automation. It has aided in the
enhancement of business scalability and the improvement of business operations for com-
panies all over the globe by extracting meaningful insights from raw data to quickly solve
complex, data-rich business problems. Furthermore, in healthcare, machine learning (ML)
applied to electronic health records (EHRs) can yield actionable insights, ranging from
improving patient risk score systems to predicting disease onset and streamlining hospital
operations [1]. ML has also made a significant contribution to the agriculture sector by
assisting farmers in reducing farming losses by providing rich recommendations and in-
sights into crops [2]. There is virtually no application domain that could not benefit from
using ML techniques for decision support. Although organizations benefit from using
machine learning approaches on their data, using data from other similar organizations for
the same purpose could result in significant improvements to the existing organizational
processes. Recognizing the importance of collaboration, a significant emphasis has been
placed on integrating data from multiple organizations in order to design sophisticated
machine learning models for improving customer service and acquisition.

However, at present, data sharing among organizations has become critical due to
concerns of privacy, maintaining competitive advantages, and/or other constraints. Al-
though significant research has been conducted related to distributed learning [3], which
aims at performing tasks on data distributed across multiple servers, it mainly focuses on
reducing the time required to perform tasks by parallelizing computation power. On the
other hand, federated learning (FL) focuses on data locality [4] and is seen as a promising
technology approach that enables a network of autonomous organizations that face the
same machine learning task to collaboratively learn a global model that offers better predic-
tive performance for all participants without the need to share sensitive data. Generally, FL

Algorithms 2022, 15, 273. https://doi.org/10.3390/a15080273 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15080273
https://doi.org/10.3390/a15080273
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7186-7344
https://orcid.org/0000-0002-1989-0301
https://doi.org/10.3390/a15080273
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15080273?type=check_update&version=1


Algorithms 2022, 15, 273 2 of 14

can be divided into different scenarios based on how the data are partitioned or distributed
among the data owners, i.e., horizontally or vertically. Horizontal federated learning (HFL),
also known as Homogeneous FL, is used in scenarios where data owners possess data with
the same characteristics or features, but differ in the number of samples they possess in
their data. An example of HFL is a group of hospitals collaborating to build a model that
can predict a health risk for their patients, based on agreed data.

However, this is not the only possibility. Imagine a scenario in which multiple data
owners or clients wish to collaborate in the training of ML models having common samples
of data, but not the same features, for instance, a telecom company collaborating with a
home entertainment company (cable TV provider), or an airline collaborating with a car
rental agency. As the data are vertically partitioned rather than horizontally, HFL does not
fit in such cases. Vertical federated learning (VFL) can overcome client data heterogeneity
(same samples with different features). It can be referred to as the process of aggregating
different features and computing the training loss and gradients in a privacy-preserving
manner to build a model with data from both parties collaboratively. Although FL comes
with a lot of advantages, one of the major challenges of this approach is the communication
overhead, which is discussed further in Section 2.

Our key contribution in this paper is the introduction of a communication-efficient
vertical federated approach that uses a feature extraction technique to compress local
data of clients. The compressed data from the clients are then aggregated to train the
final machine learning model. As a result, clients can collaborate by sharing compressed
(latent) representations of their raw data without jeopardizing their privacy and security.
The whole iteration is just performed once, which reduces the amount of communication
needed significantly. Furthermore, our contributions include extensive experiments using
the proposed approach on four benchmark datasets and comparing its performance to a
centralized machine learning model. The rest of the paper is organized as follows: Section 2
discusses the existing methods designed to reduce the communication overhead in FL
environment, Section 3 elaborates on our proposed method in detail, Section 4 explains the
experimental setup of the performed experiments, Section 5 demonstrates the results of
the experiments and provides a brief analysis. Finally, Section 6 concludes the paper by
mentioning the overall observations from the experiments, while also providing insights
for possible future improvements.

2. Background
2.1. Vertical Federated Learning

Vertical federated learning (VFL) is the collaborative training of a model on a dataset
in which the features of the dataset are distributed across multiple organizations, but the
label information is owned by a single organization. Here, the organization which has
the label information is referred to as the guest client and those without label as host
client [4]. A collaboration between general and specialized hospitals is an example of
VFL. They may have the same patient’s data, but the general hospital owns the patient’s
generic information (i.e., features), whereas the specialized hospital owns the patient’s
specific testing results (i.e., labels/ground truth). As a result, they can use VFL to jointly
train a model that predicts a specific disease examined by the specialized hospital based
on the general hospital’s features [5]. For vertically partitioned data, privacy-preserving
machine-learning algorithms have been proposed, such as the secure linear regression
algorithm on vertically distributed data [6], privacy-preserving logistic regression [7] and
verifiable privacy-preserving scheme (VPRF) based on vertical federated random forest [8].
Figure 1 [4] illustrates the basic protocol of the vertical federated learning approach, which
involves the following major steps: (1) exchanging intermediate results, (2) computing
gradients or loss, and (3) updating models on each of the clients. When naively following
the protocol, every participating client has to communicate the intermediate results or
updated gradients during every training iteration. The total communication for each client
can easily grow significantly over the course of hundreds of thousands of training iterations
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on large data sets. As a result, if communication bandwidth is limited or communication is
expensive, FL can become ineffective [9].

Figure 1. Iterative Federated Learning Environment (Adapted from [4]).

2.2. Communication-Efficient Federated Learning

In general distributed learning environments, communication costs have always
been a constraint. Since federated learning is a form of distributed machine learning
that deals with data privacy issues, this field has attracted a lot of interest in terms of
improving communication efficiency. The studies that have been conducted related to
communication-efficient FL have focused on the issue of huge communication rounds or
bandwidth specifically in the HFL environment. The strategies that have been explored so
far that could make communication in FL more efficient include choosing selective clients,
reducing the number of model updates, and applying compression schemes to models.
Client selection is a strategy for improving communication efficiency, while lowering costs
by limiting the number of participants. As a result, just a portion of the parameters are
updated over the communication round. Chen et al. [10] proposed a communication-
efficient FL framework using a probabilistic device selection scheme such that only those
clients are selected for model transmission that have higher probabilities to improve the
convergence speed and training loss. Guha et al. [11] proposed a similar approach in which
restrictions were imposed on the number of local models sent to the server for aggregation
using various protocols (e.g., by random sampling, or by applying thresholds based on the
amount of local data or local validation error).

As the number of communication rounds between the devices and the central server
can be costly, reducing model updates is also a possible solution. Guha et al. [11] also
suggested training local models on devices to completion instead of computing increments
and then applying ensemble methods to effectively capture information regarding client-
specific models, reducing communication rounds to one in the best case. Bui et al. [12]
introduced a Partitioned Variational Inference (PVI) for probabilistic models, in which
they train a Bayesian Neural Network (BNN) over an FL environment that allows for both
synchronous and asynchronous model updates across many machines. Their proposed
approach, combined with the integration of other methods, allows for more communication-
efficient training of BNN on non-iid federated data. Some other studies that focus on
reducing communication overhead in FL settings include a study by Li et al. [13], in which
they designed a one-shot federated learning algorithm FedKT, which uses a knowledge
transfer technique that outperforms the other state-of-the-art federated learning algorithms
with a single communication round. Furthermore, Kasturi et al. [14] presented a federated
fusion learning approach that allows distribution parameters of local data to be sent to the
central server rather than model parameters. Synthetic data are generated at the central
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server using those distribution parameters, which are then merged to train a global machine
learning model. Hence, the communication between the client and server occurs in a single
round.

The application of compression schemes to models is a widely used strategy to mitigate
the communication cost problem in large-scale machine learning. Gradient quantization is
a technique of quantizing the gradients into lower precision values to reduce the number of
gradients transmitted. For instance, 1-bit SGD [15] and QSGD [16] can reduce the gradient
to 10% of the uncompressed data. SignSGD [17] considers the case, wherein gradients
are quantized using only +1 and −1, and shows its convergence by the aid of a majority
vote of the clients. Some studies propose that applying quantization to the local or global
model can help to improve communication efficiency in FL as well. Bui et al. [12] applied
quantization to each local model before sending it to the server, reducing overall commu-
nication overhead. Similarly, quantization can be performed on the global model before
broadcasting it to the clients for local updates. The Lossy FL algorithm (LFL) introduced
in [18] quantizes the global model before it broadcasts and shares it across all the devices.
Ref. [19] proposes an improved sign gradient descent [17] to replace conventional gradient
descent in FL, which maintains the privacy of model parameters, while significantly de-
creasing the communication resource consumption. Gradient sparsification [20] is another
compression technique that enforces transmitting n out of d elements at iteration k, where
d is the total number of elements in the gradient vector and n is the number of the most
important elements to send at iteration k. The work in [21] proposes the sending of only gra-
dients larger than a pre-defined constant threshold. However, determining this threshold
is a challenging task for gradient sparsification. The techniques Top-k AllReduce [22] and
Deep Gradient Compression [20] were proposed to further improve compression efficiency.
Gradient sparsification has also been proven to reduce the overall training time in FL [23]
by adaptive selecting of the number of gradients or model parameters. Sattler et al. [9]
proposed a sparse ternary compression (STC), an extension of the existing compression
technique of top-k gradient sparsification [22] which was proven to outperform traditional
federated averaging approach in case of bandwidth-constrained learning environments.
However, experimental results demonstrating the effectiveness of most of these approaches
in VFL setting were not observed.

Liu et al. [24] proposed a Federated Stochastic Block Coordinate Descent (FedBCD)
algorithm for vertically partitioned data, in which each party conducts multiple local
updates before each communication to effectively reduce the number of communication
rounds among clients. Furthermore, Zhang et al. [25] developed an asynchronous stochastic
quasi-Newton (AsySQN) framework for VFL, which performs descent steps scaled by
approximate Hessian information, which converges much faster than Stochastic Gradient
Descent (SGD)-based methods in practice, allowing for a significant reduction in the number
of communication rounds. In [26], an asynchronous vertical federated learning framework
with gradient prediction and double-end sparse compression is proposed, where the
compression occurs at the local models to reduce training time as well as transmission
cost. The existing compression techniques in FL are focused on gradient compression,
which reduces training time and transmission costs, but still requires a sufficient number of
communication rounds. On the other hand, in this paper, we propose a method based on
the data compression technique that compresses local data of clients before aggregating
it for final model training. Since no local data are exposed, privacy is protected, and the
entire process is limited to a single communication round.

3. Proposed Method

The proposed method, as shown in Figure 2, is based on feature extraction techniques
that reduce the dimensionality of data by removing redundancy. The feature extraction
methods generally obtain new generated features by combining and transforming the
original feature set, thus giving it a new latent representation. In a vertical federated setting,
clients possessing relevant disjoint data are interested in training a global machine learning
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model without exposing their raw data to each other. One of the clients is assumed to have
labeled data (guest party) and the rest (host parties) have unlabeled data. The objective of
the guest party is to be able to use the data from the host parties in order to perform better
predictions for incoming new data, without compromising the privacy of data for itself as
well as for other clients. Algorithm 1 shows this proposed method in pseudo code.

Figure 2. Architecture of Proposed Method.

Algorithm 1 Communication-Efficient VFL

Host Clients
Local Data X ← {X2...Xk}
for each client i from 2..k do

X̂i ← Latent(Xi)
send X̂i to Client 1

Guest Client
X̂1 ← Latent(X1)
Receive X̂ ← {X̂2...X̂k} . Latent representations from host clients
D ←Merge X̂1, X̂ . Aggregate latent representation of all clients
Train Model on D

3.1. First Step

The first step of the proposed method begins with performing feature extraction,
also referred to as feature compression, on the local data of each client to generate latent
representations of the local data. We used two feature extraction methods, i.e., Principal
Component Analysis (PCA) and Autoencoders (AE), to perform the experiments for VFL
and lastly, compared the performance of both techniques. The specifics of building the
latent representations with each of these methods are described below.

3.1.1. Principal Component Analysis

The goal of PCA is to explain the correlation structure of a set of features using a
smaller set of linear combinations of these features [27]. These linear combinations are
referred to as components. Suppose there are m features in a dataset, applying PCA to it
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would yield d number of linear combinations in such a way that d components explain
most of the information in the dataset. Hence, the dimension of the dataset is changed from
m to d where d < m. The main steps for performing PCA on each of the client’s local data
are as follows:

• Standardizing the local data;
• Computing the covariance matrix of the features of the local data;
• Calculating eigenvalues and eigenvectors [28] for the covariance matrix;
• Sorting the eigenvectors by the magnitude of their corresponding eigenvalues;
• Determining d, the number of top principal components to select by methods such as

imposing threshold on magnitude of eigenvalues or cumulative variance of the data.

PCA is performed on the local data of each client to simplify it and bring it into
a new dimension while also retaining trends and patterns. Thus, latent or compressed
representations of the local data are generated. PCA, as a dimension reduction technique,
has several advantages. Computations are simple because PCA is based on linear algebra
and the PCA components are simply linear combinations of the original features. Correlated
features do not contribute significantly to the decision-making process in ML algorithms.
As a result, removing them has no negative impact on the final output. PCA can efficiently
eliminate these correlated features. However, PCA assumes that the principal components
are a linear combination of the original features. If this does not hold, PCA will not yield
sensible results. PCA is also sensitive to the scale of the features, so it is important that the
data be standardized beforehand.

3.1.2. Autoencoders

Each client builds their own undercomplete autoencoder, which is used to extract
important information from local data and convert it into latent data. These latent data
are essentially the compressed knowledge representation of the original data. An under-
complete autoencoder is an unsupervised feed-forward neural network with the same
inputs and outputs. The network is fully connected, with an encoder and a decoder. The
encoder converts the input to a latent representation with lower dimensionality, which is
then mapped by the decoder back to the original input. By minimizing the reconstruction
loss, the network learns both the encoder and decoder weights during training. An autoen-
coder in Figure 3 has three major layers: input, hidden (latent representation), and output.
Algorithm 2 describes a common method to train an autoencoder.

Algorithm 2 Autoencoder Training

procedure AE(e, b, X, η, θ)
X ← [X1, X2...Xn] ∈ Rn∗m is the input matrix
e← number of epochs
b← number of batches
η ← learning rate
θ ← {Wh, Wo, bh, bo}
where [Wh, Wo] ∈ Rn∗d, [bh, bo] ∈ Rd

for 0 to e do
for 0 to b do

Z ←Wh
TX + bh

X̂ ← f (WT
o Z + bo)

L(X, X̂)← ||X̂− X||2
g← compute gradients of L(X, X̂) with respect
to θ
for θi, gi in (θ, g) do

θi ← θi − η ∗ gi

Autoencoders are able to deal with linear as well as non-linear data depending on
the choice of the activation function, unlike PCA. However, autoencoders train through
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gradient descent and are slower comparatively. Autoencoders with a single layer and
linear activation function perform the same as PCA. In the case of autoencoders with
multiple layers and non-linear activation functions, they need to be carefully designed and
controlled by regularisation to avoid overfitting.

Figure 3. Undercomplete Autoencoder.

3.2. Second Step

Once all the clients have generated the latent representations of their local data, in the
next step, these latent data from all the clients are aggregated to train the global model. In
typical federated settings, the aggregation of local models is performed by a central server,
but in this case, the data aggregation is performed by the guest client that has the target
variable. The aggregated latent data are subsequently used to train the final global model
which makes predictions for new data in the future. Each time the guest party needs to
perform a prediction on new data, it requests from the other clients their latent data. The
guest party receives the latent data, aggregates them and can perform the task using the
final global model.

The latent data differ significantly from the original data of the clients but still contain
relevant important information. As a result, sharing latent data from clients poses no risk
of raw data exposure, while also improving performance.

4. Experimental Setup

This section describes the experimental setup used to evaluate the proposed method.
For performing the evaluation, the classification problem has been considered for simplicity.

4.1. Datasets

We tested our proposed method on several datasets in Table 1 from the UCI repository,
as well as other publicly available sources. One of the criteria for selecting the datasets was
that they be publicly available. Second, the size of the datasets was taken into account. We
chose the datasets in such a way that the number of samples as well as the features ranged
from small to large, so that the robustness of the proposed method could be evaluated.

• Adult Income Dataset: The adult income dataset [29] includes two labels: whether or
not a person earns more than $50,000 per year.
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• Heart Disease Dataset: The dataset [30] contains medical information of patients
across different hospitals. Predictions are made between patients with or without
heart disease.

• Wine Quality Dataset: The dataset [31] contains chemical properties of red and white
variants of the Portuguese “Vinho Verde” wine. Classification are made between red
and white wine.

• Rice MSC Dataset: The dataset [32] contains morphological and shape features of
five types of rice varieties. Classification of the rice variety is to be performed.

Table 1. Overview of Datasets.

Dataset Instances Features

Adult Income Dataset 22,404 14
Heart Disease Prediction Dataset 302 13
Wine Quality Dataset 5329 12
Rice MSC Dataset 75,000 106

All the datasets were pre-processed accordingly taking into account factors such as
missing values, duplication, and class imbalance. Over-sampling was used to balance
datasets with imbalanced classes. Moreover, One-Hot-Encoding was performed on the
categorical features of the datasets (e.g., Adult Income Dataset). To simulate a vertically fed-
erated environment, the datasets were vertically divided into nearly equal three partitions,
each representing data for 3 clients. It is assumed that one of the clients (guest party) has
the labels or ground truth. We used the following datasets to perform the evaluation.

4.2. Fitting and Selecting Components in PCA

The local data of each of the clients is split into train (70%) and test set (30%). For
the implementation of PCA the sklearn.decomposition.PCA class has been used. The fit()
function is applied on the train set at each client end to compute the eigen vectors. PCA
components are selected in such a way that 90% cumulative data variance is captured.
Later, the transform() function is used on both the train and test set to apply the projections
of the eigen vectors obtained. The transform() function on the train and test reduces the
dimension of the original data while also explaining 90% variance.

4.3. Training Autoencoder

Local data of each of the clients is split into 3 sets; training set (70%), validation set
(15%), and testing set (15%). The train, validation, and test splits are performed to prevent
the autoencoder model from overfitting and to accurately evaluate it. The hyperparameters
used for the training of autoencoders were:

• Encoding dimension: This refers to the number of nodes at the bottleneck and is the
dimensionality of the encoded representation of the data. For our experiments, a
reduction percentage (25%, 50%, 75%) was provided during training.

• Learning rate: The learning rate was varied between 0.1 to 0.001.
• Batch size: The batch size is the number of samples per gradient update. The following

values were tested: 10, 100, and 1000.
• Epoch: Experiments were tested with 1000 epochs
• Optimizer: This is the optimization algorithm that is used to minimize the loss. The

“Adam” optimizer was used for the experiments.
• Loss Function: This is the error function which is evaluated during the

neural network training stage and the training strives to minimize the losses.
The “mean_squared_error” loss function was used.
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4.4. Aggregated Model Training

After latent representations are generated from all the clients, they are aggregated by
the guest client (C1) for final model training. The aggregated data are then divided into
three groups: training (70%), validation (15%), and testing (15%). The Adult Income, Heart
Disease, and Wine Quality datasets were used for a binary classification task. The Logistic
Regression model was used to train the final model with these datasets. On the other hand,
the Rice MSC dataset was used for a multiclass classification task, and the Support Vector
Classifier (SVC) model was used to train the final model with this dataset.

5. Results

In this section, the experimental results obtained from the proposed method are pre-
sented. The performance metrics (Accuracy and F1-Score) obtained through the proposed
method have been compared against the centralized learning system and also the guest
party’s learning system using only its local data.

5.1. Performance using PCA

Tables 2–5 provide a comparison of the proposed method’s performance with central-
ized training and guest client training with its local data. Furthermore, they demonstrate
how the proposed method’s performance is affected when PCA is not performed on the
local data of guest client C1.

Table 2. Experimental Results on Adult Income Dataset.

Accuracy F1 Score

Centralized Training with unpartitioned data 81.45 81.46
Guest party with local data 68.88 68.87
Performance after PCA at all clients 78.46 78.44
Performance after PCA at all clients except C1 62.22 62.19

Overview of Feature Dimensions
Client 1 Client 2 Client 3

Feature dimension before PCA 26 34 43
Feature dimension after PCA 20 24 38

Table 3. Experimental Results on Heart Disease Prediction Dataset.

Accuracy F1 Score

Centralized Training with unpartitioned data 86.81 86.21
Guest party with local data 81.31 81.10
Performance after PCA at all clients 81.49 81.51
Performance after PCA at all clients except C1 81.24 81.23

Overview of Feature Dimensions
Client 1 Client 2 Client 3

Feature dimension before PCA 4 5 4
Feature dimension after PCA 2 3 3
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Table 4. Experimental Results on Wine Quality Dataset.

Accuracy F1 Score

Centralized Training with unpartitioned data 75.10 74.29
Guest party with local data 66.10 58.95
Performance after PCA at all clients 74.79 72.18
Performance after PCA at all clients except C1 74.79 72.08

Overview of Feature Dimensions
Client 1 Client 2 Client 3

Feature dimension before PCA 4 4 4
Feature dimension after PCA 3 2 2

Table 5. Experimental Results on Rice MSC Dataset.

Accuracy F1 Score
Centralized Training with unpartitioned data 88.20 88.17
Guest party with local data 73.83 73.40
Performance after PCA at all clients 84.92 84.91
Performance after PCA at all clients except C1 79.92 79.53

Overview of Feature Dimensions
Client 1 Client 2 Client 3

Feature dimension before PCA 26 42 38
Feature dimension after PCA 7 7 9

The experimental results using the proposed method with PCA show that the aggre-
gated model outperforms the local model of the guest client across all datasets. However,
if PCA is not performed on the local data for the guest client, performance varies across
datasets. For example, the accuracy and F1 score improve for the Wine Quality Dataset
(Table 4), but decrease for the other datasets. This might be a result of the reduction of noise
in the dataset due to the application of PCA on it.

5.2. Performance using Autoencoders

Tables 6–9 provide a similar comparison to that shown in Section 5.1, but with an
undercomplete autoencoder as a feature extraction technique. The table also provides an
overview of how well the autoencoders perform when encoding local data of the clients.
To gain a better understanding and observe the effect on overall performance, experiments
were also carried out by varying the compression rates/encoding dimensions (25, 50, and
75 percent) of the autoencoders. A common observation across all datasets is that the
performance of the aggregated model after applying the proposed method degrades as the
compression rate of the autoencoder is reduced.

Table 6. Experimental Results on Adult Income Dataset.

Accuracy (%) F1 Score (%)

Centralized Learning 81.45 81.46
Guest Party Performance 68.88 68.87

Autoencoder Performance
Compression 25% Compression 50% Compression 75%

Training Loss Validation Loss Training Loss Validation Loss Training Loss Validation Loss

C1 74.27 75.69 76.72 77.15 80.14 80.66
C2 0.0189 0.0194 0.0326 0.0340 0.0698 0.0699
C3 9.84 10.06 36.14 37.22 45.15 46.61

Performance on Aggregated Latent Data
Compression 25% Compression 50% Compression 75%

Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

Encoding C1 77.88 77.89 75.19 75.20 75.72 75.73
Without Encoding C1 80.83 80.84 79.79 79.79 79.31 79.32
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Table 7. Experimental Results on Heart Disease Prediction Dataset.

Accuracy (%) F1 Score (%)

Centralized Learning 86.81 86.21
Guest Party Performance 81.32 81.10

Autoencoder Performance
Compression 25% Compression 50% Compression 75%

Training Loss Validation Loss Training Loss Validation Loss Training Loss Validation Loss

C1 15.78 15.46 23.60 22.12 33.05 32.15
C2 7.98 7.98 16.13 15.16 19.98 21.12
C3 5.87 5.46 8.87 7.72 10.25 9.98

Performance on Aggregated Latent Data
Compression 25% Compression 50% Compression 75%

Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

Encoding C1 78.76 78.77 78.17 78.19 75.29 75.31
Without Encoding C1 81.84 81.84 80.98 80.99 80.74 80.75

Table 8. Experimental Results on Wine Quality Dataset.

Accuracy (%) F1 Score (%)

Centralized Learning 75.10 74.29
Guest Party Performance 66.10 58.95

Autoencoder Performance
Compression 25% Compression 50% Compression 75%

Training Loss Validation Loss Training Loss Validation Loss Training Loss Validation Loss

C1 0.2049 0.2709 0.2157 0.2387 0.3624 0.3819
C2 0.5218 0.5338 0.6073 0.6169 0.8411 0.8732
C3 0.2902 0.3007 0.3034 0.3407 0.5148 0.5332

Performance on Aggregated Latent Data
Compression 25% Compression 50% Compression 75%

Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

Encoding C1 78.43 78.45 78.10 78.15 75.36 75.39
Without Encoding C1 81.69 81.70 81.29 81.30 81.24 81.25

Table 9. Experimental Results on Rice MSC Dataset.

Accuracy (%) F1 Score (%)

Centralized Learning 88.20 88.17
Guest Party Performance 73.83 73.40

Autoencoder Performance
Compression 25% Compression 50% Compression 75%

Training Loss Validation Loss Training Loss Validation Loss Training Loss Validation Loss

C1 61.46 62.98 77.52 79.43 93.41 96.24
C2 42.39 43.73 61.48 63.68 78.66 79.91
C3 18.21 19.18 21.57 22.05 31.06 34.37

Performance on Aggregated Latent Data
Compression 25% Compression 50% Compression 75%

Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

Encoding C1 78.57 78.80 71.78 71.42 71.60 70.89
Without Encoding C1 74.23 73.90 74.17 73.85 74.02 73.79

In the case of the Adult Income Dataset in Table 6, it is seen that the autoencoder per-
forms well during the compression of local data of other clients compared to the guest
client. As the autoencoder becomes quite lossy when encoding the local data of the guest
client, it stands to reason that the aggregated model’s performance would be improved if
the local data of the guest client were not encoded with the autoencoder.
A similar trend is noticed in the case of the Heart Disease Dataset as well
(Table 7). However, it is only in this case that the autoencoders’ training loss is greater than
their corresponding testing losses, indicating overfitting. As autoencoders require a large
number of samples to be trained, a small number of samples tends to overfit it. Overfitting
is possible due to the small number of samples in the Heart Disease Dataset.

The losses of the autoencoders across all clients are very low in the case of the Wine
Quality Dataset, indicating that the autoencoders can compress the raw local data with max-
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imum information even at the highest compression rate (75%). As a result, the aggregated
model constructed using the proposed approach outperforms both the local model of the
guest client and even the central model.
An important observation is that when the dimension of the dataset is too large, as in the
case of the Rice MSC Dataset (Table 5), the autoencoders become lossy. The high losses of
the autoencoders indicate that the local data are not being compressed, having most of
the information. Hence, a drop in the performance of the aggregated model is observed.
However, it is clear that if the autoencoder losses are minimized, the proposed method will
perform well, just as it did in the other datasets discussed earlier. The performance of the
autoencoders can be improved by increasing the number of hidden layers and properly
tuning the hyperparameters while training.

6. Conclusions and Future Work

In this paper, we propose a communication-efficient approach for vertical federated
learning in which clients are assumed to have different features but are interested in
collaborating to build a global ML model. Our approach mimics the concept of centralized
learning (aggregating local data from clients on a single site), but also ensures privacy
by compressing the data. The experimental results show that our proposed method is
sufficiently robust to be applied to data sets of varying sizes. As all algorithms used in
our proposed method have been proven to converge [33–36], the proposed method will
converge as well. Furthermore, it has been demonstrated that the performance of the final
model using our proposed method outperforms the local model of the guest client, which
was the goal of the study. However, depending on the type of data, a proper decision on
the compression technique to be used must be made. There is room for improvement by
incorporating feature selection methods on the aggregated compressed data at the client
end so that the guest client only needs the important features from the host client when
making predictions on new data in the future. In our future work, a detailed comparison
between the performance of our proposed approach and the existing leading ones related
to communication-efficient vertical federated systems will be included.
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