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Abstract: Text classification aims to assign labels to textual units such as documents, sentences
and paragraphs. Some applications of text classification include sentiment classification and news
categorization. In this paper, we present a soft computing technique-based algorithm (TSC) to
classify sentiment polarities of tweets as well as news categories from text. The TSC algorithm is
a supervised learning method based on tolerance near sets. Near sets theory is a more recent soft
computing methodology inspired by rough sets where instead of set approximation operators used
by rough sets to induce tolerance classes, the tolerance classes are directly induced from the feature
vectors using a tolerance level parameter and a distance function. The proposed TSC algorithm takes
advantage of the recent advances in efficient feature extraction and vector generation from pre-trained
bidirectional transformer encoders for creating tolerance classes. Experiments were performed on
ten well-researched datasets which include both short and long text. Both pre-trained SBERT and
TF-IDF vectors were used in the experimental analysis. Results from transformer-based vectors
demonstrate that TSC outperforms five well-known machine learning algorithms on four datasets,
and it is comparable with all other datasets based on the weighted F1, Precision and Recall scores.
The highest AUC-ROC (Area under the Receiver Operating Characteristics) score was obtained in
two datasets and comparable in six other datasets. The highest ROC-PRC (Area under the Precision–
Recall Curve) score was obtained in one dataset and comparable in four other datasets. Additionally,
significant differences were observed in most comparisons when examining the statistical difference
between the weighted F1-score of TSC and other classifiers using a Wilcoxon signed-ranks test.

Keywords: sentiment classification; machine learning; tolerance near sets; transformer; news
classification; Natural Language Processing

1. Introduction

Text classification, also known as text categorization, is a classical problem in Natural
Language Processing (NLP), which aims to assign labels to textual units such as documents,
sentences, paragraphs, and queries. It has a wide range of applications including sentiment
analysis, news categorization, question answering, user intent classification, spam detection,
and content moderation, to name a few [1]. Popular NLP research areas where the user
opinions are analyzed to detect sentiment polarity include opinion mining and sentiment
analysis [2]. Polarity determination has been performed for product reviews, forums, blogs,
news articles, and micro-blogs. The field of sentiment analysis is greatly aided by a rich and
large source of information from platforms such as Twitter. The tasks of Twitter sentiment
analysis include sentiment polarity detection, Twitter opinion retrieval, tracking sentiments
over time [3], irony detection, and emotion detection [4–8]. Due to the word limit of 280 char-
acters, micro-blogs do not contain complete sentences. Moreover, micro-blogs often contain
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abbreviations and noisy texts. Therefore, it needs standard pre-processing techniques such
Parts-of-Speech (POS) tagging, removing of URLs, hashtags, usernames, stopwords, stem-
ming, and spelling correction to be applied to tweets due to the nature of messages posted by
users. Twitter sentiment classification identifies different polarities (e.g., positive, negative,
or neutral). Classification is based on textual features which can take different forms such as
(i) syntactic (e.g., n-grams, term frequencies, dependency trees), (ii) semantic (e.g., opinion
and sentiment words), and usually with the aid of lexicons, (iii) stylistic (e.g., emoticons) and
(iv) Twitter-specific features (e.g., hashtags and retweets). The main challenges encountered
with tweets are the length of the text (max. of 280 characters) and incorrect or improper use
of language. The following machine learning approaches are popular with text classification:
supervised [9], semi-supervised [10] and unsupervised [11,12]. Well-known sentiment lexi-
cons such VADER (Valence Aware Dictionary for Sentiment Reasoning) [13] were developed
as an improvement over NLTK and Textblob tools. In [14–17], deep convolutional and
recurrent neural networks were used in sentiment analysis.

In this paper, we present a soft computing technique-based algorithm (TSC) to classify
sentiment polarities of tweets and news categories from text. The TSC algorithm is a novel
supervised learning method based on tolerance near sets. Near sets theory [18,19] is a
more recent soft computing methodology inspired by rough sets [20] where instead of
set approximation operators used by rough sets to induce tolerance classes, the tolerance
classes are directly induced from the feature vectors using a tolerance level parameter ε and
a distance function. The tolerance forms of rough sets have been shown to be more effective
in text categorization applications [21] where overlapping classes are induced by a tolerance
relation. The tolerance near set-based classification algorithm was first introduced in [22].
Other applications of near sets in audio signal classification, music genre classification, and
community detection in social network can be found in [23]. A theoretical treatment of the
relationship between near and rough sets can be found in [24].

In this paper, we explore the effect of different vector-generation methods, tolerance
class sizes, balanced and imbalanced datasets as well as a number of sentiment classes on
the TSC algorithm. This paper is an extension of our previous work [25]. The extensions
include experimentation on three additional text datasets, new formal definition on text-
based tolerance relation, comparative work using TF-IDF vectors, additional metrics besides
weighted F1, and a statistical test to observe the difference in classifiers. We have also
demonstrated that with transformer-based vectors, our proposed TSC outperforms five
well-known machine learning algorithms on four datasets, and it is comparable with
all other datasets based on the weighted F1, Precision and Recall scores. The highest
AUC-ROC score was obtained in two datasets and comparable in six other datasets. The
highest ROC-PRC score was obtained in one dataset and comparable in four other datasets.
Additionally, significant differences were observed in most comparisons when examining
the statistical difference between the weighted F1-score of TSC and other classifiers using a
Wilcoxon signed-ranks test.

The proposed sentiment/text classification pipeline is given in Figure 1 where feature
vectors are generated using two pre-trained deep learning models BERT [26] and SBERT [27]
shown in step 2. In step 3, a cosine distance matrix using the training set is created. This
distance matrix is used to create tolerance classes in step 4. In step 5, a mean vector for each
of the tolerance classes is created. This vector represents a prototype class. In step 6, each of
these prototype classes are then labeled using the majority class of their respective tolerance
class members. In step 7, for each test example (in the testing set), the cosine distance is
computed from every prototype class. In step 8, the test example that has the smallest
distance value to the prototype class is selected. In step 9, the label of this prototype class is
then assigned to the test example. In the final step, the predicted label is then checked with
original label.
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Figure 1. High-level process flow of the proposed TSC algorithm.

This paper is organized as follows. In Section 2, we introduce formal definitions for
text-based tolerance relation and an illustration of sample tolerance classes. In Section 3, we
present the datasets used in this work as well as the proposed supervised TCS algorithm.
In Section 4, we discuss our findings in terms of the weighted F1-score measure using both
TF-IDF and transformer-based vectors on all the ten datasets followed by the concluding
remarks in Section 5.

2. Tolerance Relation: Definition

Near sets are essentially disjoint sets that contain objects with similar descriptions
provided the intersection of the sets is nonempty. The basic structure which underlies near
set theory is a perceptual system which consists of perceptual objects [19]). Near sets are
characterized by a perceptual system, a nearness relation and a near set [24]. In this work,
we define a nearness relation using Definition 1:

Definition 1. Text-based Tolerance Relation ∼=T ,ε
Let 〈T, F〉 be a universe o f nonempty set o f objects T and F be the f eature set. Let T ⊆ F
where T represents textual f eatures. A tolerance space 〈T,∼=T ,ε〉 isde f inedas:

∼=T ,ε= {(ti, tj) ∈ T × T : dist(ti, tj) ≤ ε} (1)

where dist is the cosine distance given in Equation (2). The tolerance relation ∼=T ,ε induces
a tolerance class TC where ε is a user-defined tolerance level.

dist(ti, tj) = 1−
φ(ti).φ(tj)

‖φ(ti)‖
∥∥φ(tj)

∥∥ (2)

In other words, given a set of text (objects) T, where ti ∈ T, i ∈ N, each tweet or text ti
can be represented as a k-dimensional word vector φ(ti) where text similarity is measured
using the cosine distance measure.

Remark 1. Our universe of text T described by the set of vectors φ is spread amongst tolerance
classes with a tolerance level ε for semantic textual similarity. An illustration with examples can be
found in [23].

3. Materials and Methods

We have created a subset of ten selected benchmark datasets which are a mix of long
and short words (indicated by words per sentence) with a varying number and sizes of
sentiment classes (positive, negative, neutral and irrelevant). Due to memory limitations,
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some large datasets were trimmed and only a subset was used in our experiments. COVID-
Sentiment is a manually labeled dataset which is a subset derived from [28] using Tweets ID
for 1 April 2020 and 1 May 2020. We extracted 47,386 tweets with the help of Twitter API.
The tweets in languages other than English (ex: French, Hindi, Mandarin, and Portuguese)
were removed. Extensive pre-processing of 29,981 English language tweets from the
original dataset such as removal of HTML tags, @Username, Hashtags, URLs, and incorrect
spellings were also performed. A total of 8003 hand-labeled tweets were prepared for
experimentation. The Python regex module and NLTK stemming and lemmatization were
used in pre-processing before generating vector embedding for this dataset. The U.S. Airline
Sentiment dataset consisted of 14,621 tweets and the pre-processed dataset of 13,000 tweets
were used after the removal of duplicate and short tweets. For the IMDB Movie Review,
we used a subset of 22,000 reviews of the original dataset consisting of 50,000 reviews
and for the SST-2 dataset, the original dataset included 69,723 phrases and only 16,500
were used. For the Sentiment140 dataset, a subset of 16,000 tweets from 1,600,000 were
used. The SemEval 2017 includes 62,671 tweets in the original dataset. We were able to use
only 20,547 tweets in our experiments due to memory limitation. The AG-News dataset
contains 496,835 categorized news articles from more than 2000 news sources. Only the
four largest classes from this corpus were selected to construct this dataset. The title and
description fields were included in this dataset. These two columns were used as features
for classification. To generate vector embeddings, these columns are combined into a single
column. It contains four categories of news: “World”, “Sports”, “Business” and “Science”.
We used 3000 samples from each category as our training set for our experiments. This
dataset did not require any further pre-processing because it did not contain any grammar
or spelling mistakes.

3.1. Materials

Table 1 gives details of the dataset. For each dataset, the total size of training and
testing sets is given in column 3. In addition, columns 4, 5, 6, and 7 give the size of each
sentiment class used for training and testing (except for the AG-news dataset). The last
column shows the words per sentence (WPS) for each dataset. Only one dataset Sanders
corpus has four sentiment classes with imbalanced distribution. Datasets UCI Sentence,
Sentiment140, SST-2, IMDB Movie Review have two sentiment classes with a fairly balanced
distribution. Two datasets COVID-Sentiment, U.S. Airline Sentiment, SemEval 2017 have
three sentiment classes with imbalanced distribution. The 20 Newsgroups dataset is a
common benchmark used for evaluating the performance of text classification algorithms.
The dataset, introduced in [29], contains approximately 20,000 newsgroup posts and this
dataset is partitioned (nearly) evenly across 20 different newsgroups organized into broader
categories: computers, recreation, religion, science, sale, and politics. Scikit-learn was used
to prepare the training and testing datasets to remove noisy data. This dataset has 10,314
training samples and 782 testing samples with 209 words per document. Table 2 gives the
number of documents used in the training process and the size of the tolerance classes for
each newsgroup category with the best value for ε = 0.19.
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Table 1. Dataset Information.

Dataset Type Size Positive Negative Neutral Irrelevant

COVID-Sentiment Train 7000 22.02% 30.35% 47.63% -
Test 1003 23.53% 37.29% 39.18% -

U.S. Airline Sentiment Train 12,000 16.79% 61.02% 22.19% -
Test 1000 13% 67.5% 19.5% -

IMDB Movie Review Train 20,000 50.27% 49.73% - -
Test 2000 50.35% 49.65% - -

SST-2 Train 15000 55.37% 44.63% - -
Test 1500 55.53% 44.47% - -

Sentiment140 Train 15000 50% 50% - -
Test 1000 50% 50% - -

SemEval 2017 Train 17001 40.67% 15% 44.33% -
Test 3546 41.54% 15.76% 42.70% -

Sanders corpus Train 4059 10.24% 11.38% 45.26% 33.12%
Test 1015 9.85% 10.54% 47.68% 31.93%

UCI Sentence Train 2700 49.11% 50.89 - -
Test 300 58% 42% - -

Table 2. 20-Newsgroups dataset for best ε value of 0.19.

News Category #Train Documents # Tolerance Classes

alt.atheism 442 230
comp.graphics 534 238
comp.os.ms-windows.misc 528 498
comp.sys.ibm.pc.hardware 540 445
comp.sys.mac.hardware 527 428
comp.windows.x 561 400
misc.forsale 535 312
rec.autos 526 342
rec.motorcycles 548 189
rec.sport.baseball 554 319
rec.sport.hockey 551 332
sci.crypt 537 437
sci.electronics 547 146
sci.med 551 285
sci.space 525 272
soc.religion.christian 542 494
talk.politics.guns 499 380
talk.politics.mideast 511 335
talk.politics.misc 421 248
talk.religion.misc 335 130

3.2. Methods

In this section, we present our proposed Tolerance Sentiment Classifier (TSC) in terms
of the two Algorithms 1 and 2. The TSC algorithm was implemented using Python on
a 16 GB RAM, Nvidia RTX 2060 GPU, 512 GB SSD machine using SBERT base vectors
(1 × 768 dimensional vectors). We considered mean and median values for determining the
prototype class vectors for the TSC algorithm. In addition, we experimented using TF-IDF
vectors with the TSC algorithm for all the datasets. However, the classification results with
TF-IDF vectors were unsatisfactory primarily because the cosine distance values started to
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converge to one and hence resulted in a number of the same values in the distance matrix
shown in Figure 2, which restricts the use of TF-IDF vectors.

Figure 2. Distance Matrix for TF-IDF Vectors.

Vector Embeddings with SBERT: Sentence-BERT (SBERT) is a modification of the
pre-trained BERT network that uses siamese and triplet network structures to derive se-
mantically meaningful sentence embeddings that can be compared using cosine-similarity.
SBERT is fine-tuned on SNLI [30] and the Multi-Genre NLI [31] data, which creates
sentence embeddings and significantly outperforms other state-of-the-art sentence embed-
ding methods such as InferSent [32] and and Universal Sentence Encoder [33] in terms
of accuracy.

Training Phase: Representative Class Generation Algorithm 1: In this phase, given a
tolerance level ε, tolerance classes are induced from the training set vectors using the cosine
distance, and the representative of each tolerance class is computed as the mean value of
the feature vector. The polarity (or category) of the representative vector is determined
based on majority voting.

Testing Phase: Polarity Assignment Algorithm 2: In the classification phase, TSC
uses the representative class vectors generated in the training phase and their associated
polarity/text category. The computeCosineDist function calculates the cosine distance
between each test set vector and all the representative class vectors. The DeterminePolarity
function chooses the representative class that is closest to the test set vector and assigns the
polarity of the representative to the test set vector. In the training phase, the complexity
of computeCosineDist function is O(n2). The complexity of generatetolerantpairs function is
O(n). In the testing phase, the complexity of DeterminePolarity function is O(n).

In the testing phase, the cosine distance is computed for each vector in the testing set
by comparing with all representative vectors obtained in the training phase. The test set
vector with the lowest cosine distance value is assigned the polarity (or category) of the
representative.
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Algorithm 1: Training Phase: Generating class representative vectors
Input : TV = {TV1, . . . , TVM} , // Transformer Vectors for training

ε > 0, // Tolerance level parameter
Output : (NT, {(R1, TextCat1), . . . , (RNT , TextCatNT)})

NT is the size of the Tolerance class set
// Create a distance matrix for all training vectors based on the function defined in

Equation 2
for p← 1 to M do

for q← p + 1 to M do
computeCosineDist(TVp, TVq, Cospq)

//a. Create object pairs satisfying the tolerance relation defined in Equation 1.
b. Create a neighborhood of training vectors.
c. Generate tolerance class set T where TCi is one tolerance class member induced by the

tolerance relation
d. Determine the majority polarity element in each Ti
e. Compute representative class vectors
for i← 1 to M do

for j← i + 1 to M do
ObjectPairs← generatetolerantpairs(Cosij, ε);

Ni ← createobjectneighbour(ObjectPairs, i, TV); // Compute the
neighbourhood Ni of ith training vector TVi

for all, o1, o2 ∈ Ni do
if o1, o2 ∈ ObjectPairs then

TCi ← {o2}; // Include o2 from Ni into TCi

T ← T ∪ {TCi}; // T is set of all tolerance classes
TextCati ← computeMajorityPol(Ti); // For each Ti, determine polarity/category
by majority voting

NT ← |T|; // Number of tolerance classes in T // End of the process of generating
set T which is set of all tolerance classes.

//For each tolerance class in T, generate a representative class vector and its
polarity/category.
{(R1, TextCat1), . . . , (RNT , TextCatNT)} ← GenerateClassRepresentative(NT);

Algorithm 2: Testing Phase: Assigning Sentiment Polarities
Input : ε > 0, // Tolerance level parameter

, NT // Size of the tolerance class set T
, TV′ =

{
TV′1, . . . , TV′M

}
, // transformer vectors for testing

{(R1, TextCat1), . . . , (RNT , TextCatNT)} // Representative class vectors
generated in the training phase and their associated polarities
Output : (TV′ =

{
(TV′1, TextCat1), . . . , (TV′M, TextCatM)

}
) // Transformer

vectors with assigned polarities/categories
for i← 1 to M do

for j← i + 1 to NT do
computeCosineDist(TV′i , Rj, Cosij);

TV′ ← DeterminePolarity(Cosij) // Computes min. distance and assigns polarity
to the test set vector
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4. Results and Discussion

In this section, we discuss the performance of the TSC algorithm. Figure 3 gives
the weighted F1-score for all datasets for various tolerance values using the mean value
(TSC-mean) for the prototype class vector. The range of tolerance values is from 0.08 to
0.38. The TSC algorithm performs best with the UCI sentence dataset and has the worst
performance with the COVID-Sentiment dataset. With the 20-Newsgroups dataset, our
proposed algorithm shows a steep improvement with the tolerance value between 0.12 and
0.19. Figure 4 gives the median value (TSC-median) for the prototype class vectors. Note
that even though the relative performance is similar with all datasets, the most noteworthy
difference is with the U.S. Airline and IMDB datasets. Since the overall results with the
mean value are slightly better in terms of the weighted F1-score for all the datasets, we
used the mean value for the TSC algorithm (TSC-mean) in all our subsequent experiments.

Figure 3. TSC Algorithm: Weighted F1-score for all datasets using mean-value (TSC-mean) prototype
vectors for different ε values.

Figure 4. TSC Algorithm: Weighted F1-score for all datasets using median-value (TSC-median)
prototype vectors for different ε values.

Table 3 shows the number of tolerance classes for the best tolerance value (column 2)
for each dataset. The TSC algorithm generates these classes as described in Algorithm 1. It
should be noted that the SST-2 and UCI sentence datasets have an approximately similar
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number of tolerance classes and have two sentiment classes. It should be noted that ε
values range from 0.16 to 0.32. Other datasets with three and four sentiment classes do not
generate balanced tolerance classes.

Random Forest (RF) [34], Maximum Entropy (ME), Support Vector Machine (SVM) [35],
Stochastic Gradient Decent (SGD) [36] and Light Gradient Boosting Machine (LGBM) [37]
classifier implementations in Scikit-learn (https://scikit-learn.org/stable/) (accessed on 1
May 2022) with the following parameters were used. For the RF classifier, 100 trees and gini
index were used to determine the quality of split. The minimum and maximum samples
were set to 2 and 1, respectively, to split an internal node of the tree, and the maximum
number of features was set to 27 (square root of the size of the vector). Bootstrap samples
were used when building trees and the random_state parameter was set to 42. For the ME
(logistic regression) classifier, the l2 penalty term with the stopping criteria set to 10−4 was
used. The RBF kernel was used for the SVM classifier with a kernel cache size = 200 MB,
gamma set to scale, C value set to 1 and l2 penalty term. The hinge loss function was
used in the SGD classifier with default values for other parameters (penalty l2, alpha set to
0.0001, maximum iterations set to 1000 and learning rate set to optimal). Since the loss is
hinge, this classifier is a linear SVM. For the LGBM classifier, the max_leaf_nodes was set
to 31, and the learning_rate, n_estimators, min_child_weight, and min_child_samples were
set to 0.1, 100, 10−3, and 20, respectively.

Table 4 shows the AG-News dataset with a well-balanced tolerance class distribution
for the four categories (TC-World, TC-Sports, TC-Business and TC-Science) for ε = 0.2. It
should be noted all algorithms perform (third best) on this dataset. The 20-Newsgroups
dataset has the highest number of categories among all other datasets. It has twenty
sentiment classes and a fairly balanced tolerance class distribution as shown in Table 2.
Due to better semantic similarity of its vectors, the performance of TSC on this dataset is
better than the COVID-sentiment and SemEval 2017 datasets.

Table 3. Best tolerance ε value with sizes of tolerance classes for the positive, negative, neutral and
irrelevant text polarities.

Dataset ε Value TC-Positive TC-Negative TC-Neutral TC-Irrelevant

COVID-Sentiment 0.23 249 1136 2590 -

U.S. Airline 0.32 2009 8202 1234 -

IMDB 0.26 6979 12,956 - -

SST-2 0.23 6501 5531 - -

Sentiment140 0.16 926 1969 - -

SemEval 2017 0.26 6583 1755 5797 -

Sanders corpus 0.24 205 390 1415 1518

UCI Sentence 0.17 576 557 - -

Table 4. Best ε value for the TSC algorithm and tolerance class size for AG-News dataset.

Dataset ε Value TC-World TC-Sports TC-Business TC-Science

AG-News 0.2 1900 2607 2563 2398

Table 5 gives the weighted F1-score for all datasets with the TF-IDF-based ML algo-
rithms. The size of TF-IDF vectors depends on the vocabulary of that dataset, which means
having longer sentences results in better vocabulary for the TF-IDF approach, which is an
advantage over transformer vectors. While building vocabulary with TF-IDF, the frequency
of the words was considered to compute the vectors. We considered default parameters of
TF-IDF to build the vocabulary. The minimum and maximum document frequency was
set to the default value of 1.0. The results show that TF-IDF-based ML algorithms give the

https://scikit-learn.org/stable/
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best results in longer sentences or document-level classification tasks such as IMDB and
20-newsgroups datasets. Table 6 gives the experimental results with the transformer-based
vectors. Here, our proposed TSC algorithm performs best in the U.S. Airline, IMDB, UCI
SST-2 and 20-Newsgroup datasets and is comparable with the COVID-Sentiment, SST-2 and
Sentiment 140 datasets. It can be observed that balanced tolerance classes are an indication
of good semantic similarity between vectors generated by the transformer model. This can
be seen with SST-2 and UCI sentence datasets that have approximately a similar number of
tolerance classes with a weighted F1-score of over 85%. Another observation is that these
two datasets contain only two sentiment classes. On the other hand, the TSC algorithm
performs very well with the 20-Newsgroups datasets.

Table 5. TF-IDF-based weighted F1-score (rounded) results for five classifiers. Best results are in
bold face.

Dataset RF ME SVM SGD LGBM

COVID-Sentiment 67 59 62 62 58
U.S. Airline 78 79 79 80 80
IMDB 83 87 89 89 86
SST-2 82 82 82 82 74
Sentiment140 71 74 72 72 73
SemEval 2017 64 64 65 63 65
Sanders corpus 74 74 75 75 69
UCI Sentence 70 77 76 76 63
AG-News 78 84 84 85 82
20-Newsgroups 62 73 74 76 66

Table 6. SBERT vector-based weighted F1-score (rounded) results for six classifiers. Best results are
in bold face.

Dataset TSC-Mean RF ME SVM SGD LGBM

COVID-Sentiment 55 44 57 57 57 56
U.S. Airline 77 77 77 77 75 77
IMDB 76 69 73 73 72 72
SST-2 85 85 85 86 85 85
Sentiment140 70 68 72 72 66 70
SemEval 2017 60 54 64 63 63 60
Sanders corpus 69 70 76 74 76 75
UCI Sentence 89 84 86 87 87 83
AG-News 82 79 88 81 88 83
20-Newsgroups 66 41 58 52 52 53

Tables 7 and 8 give the weighted precision and recall scores for all the tested classifiers.
Based on this score, the proposed TSC algorithm performs best in the UCI, SST-2, IMDB
and 20-Newsgroups datasets. These results mirror the values obtained with the weighted
F1-score except with the U.S. Airline dataset.

Table 9 gives the AUC-ROC score for all the tested classifiers. A pair-wise comparison
of all combinations (ovo) with the weighted average score parameter was used for obtaining
the results. Based on the AUC-ROC score, the proposed TSC algorithm performs best in
the UCI and SST-2 datasets that have an approximately similar number of tolerance classes
and two classes. It is also noteworthy that the UCI and AGnews datasets have the best
separability (90%), and IMDB (88%), 20-Newsgroups (87%) and SST-2 (85%) have scores
above 84% based on the tested classifiers. Since SGD is a linear SVM, for most datasets, the
weighted F1, Precision and Recall scores are either similar or identical.
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Table 7. SBERT vector-based Weighted Precision score for six classifiers. Best results are in bold face.

Dataset TSC-Mean RF ME SVM SGD LGBM

COVID-Sentiment 0.58 0.60 0.59 0.59 0.59 0.60
U.S. Airline 0.77 0.75 0.79 0.76 0.78 0.77
IMDB 0.76 0.69 0.73 0.73 0.72 0.72
SST-2 0.85 0.83 0.85 0.85 0.85 0.85
Sentiment140 0.71 0.69 0.72 0.72 0.71 0.71
SemEval 2017 0.59 0.58 0.65 0.64 0.63 0.62
Sanders corpus 0.70 0.78 0.76 0.74 0.77 0.78
UCI Sentence 0.90 0.87 0.86 0.87 0.87 0.85
AG-News 0.81 0.80 0.85 0.82 0.82 0.83
20-Newsgroups 0.67 0.42 0.59 0.53 0.60 0.51

Table 8. SBERT vector-based Weighted Recall score for six classifiers. Best results are in bold face.

Dataset TSC-Mean RF ME SVM SGD LGBM

COVID-Sentiment 0.56 0.50 0.57 0.57 0.57 0.57
U.S. Airline 0.78 0.76 0.80 0.77 0.78 0.79
IMDB 0.76 0.69 0.73 0.73 0.72 0.72
SST-2 0.85 0.83 0.85 0.85 0.85 0.85
Sentiment140 0.70 0.68 0.72 0.72 0.67 0.70
SemEval 2017 0.59 0.57 0.64 0.63 0.63 0.61
Sanders corpus 0.70 0.76 0.77 0.75 0.76 0.78
UCI Sentence 0.89 0.84 0.86 0.87 0.87 0.83
AG-News 0.81 0.80 0.85 0.82 0.82 0.83
20-Newsgroups 0.66 0.44 0.58 0.52 0.55 0.50

Table 9. SBERT vector-based AUC-ROC score for six classifiers. Best results are in bold face.

Dataset TSC-Mean RF ME SVM SGD LGBM

COVID-Sentiment 0.65 0.71 0.68 0.70 0.70 0.67
U.S. Airline 0.75 0.77 0.76 0.77 0.77 0.79
IMDB 0.76 0.83 0.83 0.86 0.88 0.87
SST-2 0.85 0.82 0.81 0.82 0.82 0.73
Sentiment140 0.70 0.71 0.74 0.72 0.73 0.73
SemEval 2017 0.66 0.71 0.71 0.71 0.70 0.72
Sanders corpus 0.77 0.77 0.78 0.79 0.80 0.76
UCI Sentence 0.90 0.72 0.78 0.77 0.76 0.67
AG-News 0.87 0.86 0.90 0.90 0.90 0.88
20-Newsgroups 0.82 0.81 0.86 0.86 0.87 0.82

Table 10, gives the AUC-PRC score for all the tested classifiers. The loss function
for the SGD classifier was changed from hinge (default) to modified_huber to enable proba-
bilistic outputs (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
SGDClassifier.html accessed on 1 May 2022). Since all other metrics for SVD were based on
the hinge loss function, the results for this classifier (indicated in blue) could be omitted in
the overall analysis. Based on the AUC-PRC score, the proposed TSC algorithm performs
best with the IMDB dataset and is comparable with the UCI, SST-2, Sentiment140 and
COVID-Sentiment datasets.

In terms of the three reported metrics (weighted F1, AUC-ROC, AUC-PRC) from
Tables 6, 9 and 10 respectively, overall, the proposed TSC algorithm performs best with
mostly balanced datasets having two sentiment classes (binary classification) with the U.S.
Airline dataset being the exception. TSC performs poorly with two highly imbalanced
datasets having more than sentiment classes (i.e., Sanders corpus and SemEval 2017). The
weighted F1 score is computed only on predicted classes, whereas the AUC scores reflect
the performance of a classifier over a range of values (prediction score). In comparison

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
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with other classifiers, the proposed TSC algorithm does better in more datasets with the
AUC-ROC score. However, if we examine the overall AUC scores ≥ 80, TSC gives better
performance with five datasets using the AUC-PRC score as compared to four datasets
with the AUC-ROC score. Another point to note is that the size of tolerance classes for
negative sentiment is larger the size of tolerance classes for the positive sentiment in two of
these datasets (i.e., IMDB and US Airline). This result leads us to conclude that perhaps
balanced tolerance classes may not be a significant factor and may depend on the vector
generation method. Table 11 gives the results of the Wilcoxon signed-ranks test based on
the weighted F1-score of the classifiers using a two-sided test with α = 0.05 to test the null
hypothesis that there is no difference between the TSC-mean and other classifiers. The
results are a pair-wise test on all datasets. Based on these results, the null hypothesis can
be rejected (i.e., there is a difference between between the classifiers based on weighted
F1-score).

Table 10. SBERT vector-based AUC-PRC score for six classifiers. Best results are in bold face.

Dataset TSC-Mean RF ME SVM SGD LGBM

COVID-Sentiment 0.58 0.54 0.61 0.64 0.43 0.60
U.S. Airline 0.80 0.83 0.87 0.87 0.71 0.86
IMDB 0.84 0.78 0.81 0.82 0.76 0.81
SST-2 0.90 0.90 0.93 0.94 0.85 0.92
Sentiment140 0.75 0.74 0.79 0.79 0.53 0.77
SemEval 2017 0.62 0.60 0.69 0.70 0.59 0.66
Sanders corpus 0.72 0.84 0.84 0.85 0.58 0.86
UCI Sentence 0.95 0.90 0.95 0.96 0.83 0.92
AG-News 0.85 0.86 0.90 0.91 0.75 0.90
20-Newsgroups 0.42 0.38 0.62 0.64 0.35 0.54

Table 11. Wilcoxon signed-rank test.

Classifiers Test-Statistic p-Value

TSC-mean—RF 1 0.017
TSC-mean—ME 15 0.6736
TSC-mean—SVM 21 0.8582
TSC-mean—SGD 21 0.8583
TSC-Mean—LGBM 7.5 0.5270

5. Conclusions

In this paper, we present a tolerance near sets-based (TSC) algorithm to classify
sentiment polarities as well as news categories from text. We have introduced formal
definitions and illustrate our method using tolerance classes for generating representative
vectors. The performance of the TSC algorithm was tested with ten well-researched text
classification datasets including a manually labeled dataset from Twitter about opinions on
COVID-19 across the globe. The curated datasets include long and short words, a mix of
sentiment classes as well as balanced and imbalanced datasets. We have analyzed the effect
of TF-IDF and the transformer vector-generation method (SBERT) on the performance of
the TSC algorithm and five classical ML algorithms. We have demonstrated that the TSC
algorithm performs well in seven out of ten datasets using weighted F1, Precision and Recall
scores. The highest AUC-ROC score was obtained in two datasets and comparable in six
other datasets. The highest AUC-PRC score was obtained in one dataset and comparable in
four other datasets. Additionally, significant differences were observed in most comparisons
when examining the statistical difference between the weighted F1-score of TSC and other
classifiers using a Wilcoxon signed-rank test. As future work, optimization of the TSC
algorithm in terms of computing tolerance classes is a natural extension of the current
work by using parallel computing with CUDA to compute the distance matrix. This is
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necessary in order to extend this work to the original dataset, which is larger than the
curated datasets, and to test whether balanced tolerance classes are indeed a definitive
factor in classification performance. Another factor to consider is to use some filtering
criteria to control the size of the vocabulary when computing TF-IDF vectors specific to the
datasets. This could be important when comparing with TSC where a fixed size vector was
used. Experiments with other word-embedding methods (e.g., Word2Vec, GloVe, fastText)
as well as examining the impact of the bag-of-words representation dimensionality will
be explored.
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