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Abstract: In today’s competitive world, it is essential to provide a new method through which maxi-
mum efficiency can be created in the production and supply cycle. In many production environments,
sending goods directly from the producer to the consumer brings many problems. Therefore, an
efficient transport system should be established between producers and consumers. Such a system
is designed in the field of supply chain management knowledge. Supply chain management is
the evolutionary result of warehousing management and is one of the important infrastructural
foundations of business implementation, in many of which the main effort is to shorten the time
between the customer’s order and the actual delivery of the goods. In this research, the supply chain
consists of three levels. Suppliers are placed on the first level, cross-docks on the second level, and
factories on the third level. In this system, a number of suppliers send different raw materials to
several different cross-docks. Each channel is assigned to a cross-dock for a specific product. The
main goal of this article is to focus on optimizing the planning of incoming and outgoing trucks with
the aim of minimizing the total operation time within the supply chain. The arrival rate of goods from
suppliers to the cross-dock is stochastic with a general probability distribution. On the other hand,
the time required to prepare and send the goods is random with a general probability distribution.
The service time in each cross-dock depends on the number of its doors. Therefore, each cross-dock
can be modeled as a G/G/m queueing system where m represents the number of doors. The mathe-
matical model of the research has been developed based on these assumptions. Since the problem is
NP-hard, the time to solve it increases drastically with the increase in the dimensions of the problem.
Therefore, three metaheuristics, including multi-objective water flow, non-dominated sorting genetic,
and a multi-objective simulated annealing algorithm have been used to find near-optimal solutions
to the problem. After adjusting the parameters of the algorithms using the Taguchi method, the
results obtained from the algorithms were analyzed with a statistical test and the performance of the
algorithms was evaluated. The results vividly demonstrate that non-dominated sorting genetics is
the best of all.

Keywords: cross-docks; multi-objective water flow algorithm; non-dominated sorting genetic algo-
rithm; multi-objective simulated annealing algorithm

1. Introduction

A growing tendency to optimize the distribution network in order to decrease logistics
costs, which aims to ensure the optimum location of facilities, reduce inventory and trans-
portation expenses, verifies the necessity for distribution and supply chain management.
On the other hand, the efficient control of the physical flow of goods is the most significant
factor in reducing costs in the supply chain. Accordingly, many companies try to develop
their distribution strategies to achieve their material flow’s efficient management. The
presence of a middle center seems necessary to link producers and customers within a
supply chain system. Cross-docking is a method for distribution management and goods
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transportation leading to warehousing cost reduction via the direct transfer of cargo from
input vehicles to output vehicles without storage. Hence, product storage and recycling
costs are reduced by applying cross-dock systems and even by synchronizing input and
output vehicle flows [1]. In a cross-dock system, the main target is to remove storage and
reduce the over-transportation of goods. Therefore, the existing product in the warehouse
is stored for a short time [2]. The Material Handling Industry of America defines a cross-
dock as a warehouse focused on transferring goods from a vehicle to another vehicle [2].
A cross-dock acts more as an inventory coordinator than as filling a warehousing role,
shifting the focus from supply chain management to demand–supply management [3].
Galbert et al. (2008) presented a model based on customers’ perspectives for the optimal
use of cross-docking and concluded that lower demand variability and higher stock costs
exacerbate the effects of cross-docking. On the other hand, supply chain management can
be divided into three categories of supply chain designing, planning, and control [4].

The performance level includes scheduling problems, warehouse door allocation,
transportation within doors, and vehicle routing. The tactical level examines problems in
cross-dock layout design and the strategic level evaluates problems related to cross-dock
networks. Yu (2002) [5] examines three different models based on the number of available
doors, the vehicle loading pattern of doors, and the existence or absence of temporary
storage. Magableh et al. (2005) [6] expanded a simulation method of cross-docks in order to
evaluate the existing risk value in product transportation and showed the operation within
a cross-dock facility in a dynamic environment and with the existence of demand growth.
Ley and Elfayoumy (2007) [7] examined a model without a temporary warehouse and
unlimited transportation systems, and for solving their minimization objective function
they calculated the distance from the discharging site to the loading site. Yu and Egbelu
(2008) [8] presented a mixed integer programming model with cross-docks including an
entrance door and an exit door and combined it with product allocation problems. This
model was more flexible than unpredictable events. Chen and Lee (2009) [9] considered the
cross-dock scheduling problem in which an operation is performed based on a two-machine
flow shop. The first machine discharges input products and the second machine loads an
input vehicle. Vahdani and Zandieh (2010) [10] scheduled input and output vehicles in
cross-docks using the imperialist competitive Algorithm.

Agustina et al. (2010) [1] presented a mixed integer linear programming algorithm aim-
ing at minimizing system delivery costs, taking into consideration product combinations
and delivery windows. Dondo and Cerda (2015) [11] examined vehicle routing problems
and presented a reciprocating method, finding a near optimum solution. Shahin Moghadam
et al. (2014) [12] considered vehicle routing and scheduling in a cross-docks customer-
supplier network in which a set of homogenous vehicles transfer products from suppliers to
customers using cross-docks. Ahmadizar et al. (2015) [13] evaluated a model consisting of a
two-vehicle routing level with cross-docks. Yu et al. (2016) [14] considered one type of prod-
uct and cross-dock with homogenous capacity vehicles in which vehicles start the loading
operation at different points at various times. Amini and Tavakkoli-Moghaddam (2016) [15]
studied truck scheduling problems in cross-docks with the assumption of truck failure.
The truck failure rate was modeled by Poisson distribution and used three metaheuristic
algorithms to solve it.

Ahmadizar et al. (2015) [14] introduced a model that considers two-level vehicle
routing along with cross-docking. Cóccola et al. (2015) [16] proposed a truncated branch
and price solution algorithm to take care of a sensible issue including the satisfaction of a
rundown of transportation demands. Utama et al. (2016) [17] introduced the constructed
optimization model based on the water flow algorithm (WFA) to address the intermittent
street gridlock issue. Hasani Goodarzi et al. (2018) [18] proposed a pickup and drop-off
issue for the cross-docking technique, in which shipments from providers to retailers are
directly cross-docked. Ahkamiraad and Wang (2018) [19] presented a MILP model of an
exceptional multiple cross-docked VRP. Baniamerian et al. (2018) [20] proposed a vehicle
routing and scheduling issue with cross-docking and time windows in a three-echelon store
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network. Molavi et al. (2018) [21] introduced truck scheduling in a two-touch cross-dock
with hard due dates for outbound trucks. Fonseca et al. (2018) [22] proposed a Lagrangian
metaheuristic methodology for the cross-dock scheduling issue with parallel docks.

Gelareh et al. (2018) [23] proposed eight new MIP models and exhibited the numerical
identicalness of every one of the 11 models, along with thoroughly demonstrating a portion
of their properties. Musavi et al. (2018) [24] introduced a bi-objective model for a green truck
scheduling and routing problem at a cross-docking framework. Nassief et al. (2018) [25]
introduced two new MIP mathematical formulations for cross-dock door assignment
problems (CDAPs). Shaelaie et al. (2018) [26] considered a production network including
the multi-provider and a solitary client. They explored the impact of joining on parts
transport. Baniamerian et al. (2019) [27] proposed a practical version of a vehicle routing
problem with cross-docking. They planned three metaheuristic algorithms, namely a
hybrid GA with modified VNS, ABC, and SA to solve large-scale problems.

Seyedi et al. (2019) [28] created five heuristic algorithms for managing the truck plan-
ning issue in a cross-docking framework. Rijal et al. (2019) [29] proposed an integrated
scheduling and assignment of trucks at unit-load cross-dock terminals with mixed service
mode dock doors. They created an adaptive large neighborhood search algorithm for the
integrated problem. Corsten et al. (2019) [30] proposed an optimization model, which
coordinated the planning tasks of truck and workforce scheduling in a cross-dock for a
solitary working day. Dulebenets (2019) [31] concentrated on a truck scheduling problem
at a cross-docking facility. They proposed a delayed start parallel evolutionary algorithm
to solve the issue. Rahbari et al. (2019) [32] extended the applicability of the cross-dock to
disperse perishable items. Hadipour et al. (2019) [33] proposed a bi-objective mathematical
model to improve the dependability of a confounded framework. They utilized distinctive
repetition systems with part blending in every subsystem. Khorshidian et al. (2019) [34] pro-
posed a bi-objective mathematical model to coordinate truck scheduling and transportation
planning in a cross-docking framework in a forward/invert coordination organization.

Fard and Vahdani (2019) [35] proposed a bi-objective optimization model for the issue
of scheduling, the succession of trucks, and the task of trucks and forklifts to the doors in a
multi-door cross-dock with flexible doors. Hasani Goodarzi et al. (2020) [36] considered a
vehicle routing problem with cross-docking and parting pickup. They introduced a new
bi-objective mixed-integer linear programming model and a multi-objective evolutionary
algorithm to find high-quality solutions. Movassaghi and Avakh Darestani (2020) [37]
presented a mixed-integer, non-linear programming model to solve cross-dock scheduling
problems. Hasani Goodarzi and Zegordi (2020) [38] considered an inventory-routing
problem in a distribution network in which kanban is utilized as a way to execute a
just-in-time strategy.

Ardakani et al. (2020) [39] proposed the truck-to-door sequencing problem. They
focused on optimizing truck-to-door sequencing with the intention of rehashing the
truck holding pattern in inbound trucks in order to minimize makespan. Nogueira et al.
(2020) [40] proposed an approach dependent on the parallel machine environment for the
cross-docking issue. Nikzamir and Baradaran (2020) [41] proposed a novel healthcare
waste location-routing problem with another point of view in medical services coordination
organization. They considered a stochastic essence for the discharge of defilement. Shahabi-
Shahmiri et al. (2021) [42] proposed a new multi-objective mixed-integer programming
(MIP) model for the scheduling and routing of heterogeneous vehicles conveying transient
products across various cross-docking frameworks. Castellucci et al. (2021) [43] incorpo-
rated network scheduling with cross-docks and 3D stacking constraints. They proposed an
effective logic-based decomposition Benders system.

Hasani Goodarzi et al. (2021) [44] developed a dependable organization of cross-docks
by considering interruption and unwavering quality issues to support against the hetero-
geneous danger of cross-dock frustration. Hasani Goodarzi et al. (2021) [45] concentrated
on a vehicle routing problem in a multi-product multi-door cross-docking framework.
They introduced an M/M/c queue model to consider the random arrivals of trucks at
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cross-docks. Yu et al. (2021) [46] presented the heterogeneous armada vehicle routing
problem with multiple cross-docks (HF-VRPMCD). They proposed an adaptive neighbor-
hood simulated annealing (ANSA) heuristic for solving HF-VRPMCD. Theophilus et al.
(2021) [47] concentrated on a truck scheduling problem at a cross-docking terminal. They
displayed the product decay using an exponential function. Qiu et al. (2021) [48] presented
a mixed integer programming model for the two-echelon production routing problems
with satellites. They proposed a branch-and-cut algorithm with substantial disparities and
a metaheuristic. Smith et al. (2022) [49] introduced the multi-tiered vehicle routing problem
with global cross-docking (MTVRPGC). Table 1 shows reviewed articles in the domain of
cross-docks for this research.

Table 1. Reviewed Articles on cross-docks. For this work.

Authors Year Objectives Objective
Function Metaheuristic Method Exact Solution,

Software
Multi-

Suppliers
Multi-

Products
Time

Window
Case
Study

Ahmadizar et al. 2015 [14] Cost Multi- Hybrid genetic
algorithm CPLEX X X - -

Cóccola et al. 2015 [16] Cost Single Branch-and-price
algorithm CPLEX X X X X

Utama et al. 2016 [17] Road traffic
flow Single Water flow

algorithm (WFA) CPLEX X X - X

Hasani Goodarzi et al. 2018 [18] Time, Cost Multi-
Multi-objective

imperialist competitive
algorithm (MOICA)

MATLAB X X X -

Ahkamiraad
and Wang 2018 [19] Cost Multi-

Hybrid of the genetic
algorithm and
particle swarm

optimization (HGP)

CPLEX X X X -

Baniamerian et al. 2018 [20] Cost Multi- Genetic algorithm (GA) CPLEX/MATLAB X X X -

Molavi et al. 2018 [21] Cost Multi-

Hybrid genetic
algorithm-reduced

variable neighborhood
search algorithm

(HGARVNS)

GAMS/MATLAB X X X -

Fonseca et al. 2018 [22] Time Single Hybrid Lagrangian
Metaheuristic CPLEX X X - -

Gelareh et al. 2018 [23] Cost Single - CPLEX X X - -

Musavi et al. 2018 [24] Time, Fuel
consumption Multi-

Archived
multi-objective

simulated annealing
(AMOSA)

MATLAB X X X -

Nassief et al. 2018 [25] Cost Multi- Column generation
algorithm CPLEX X X - -

Shaelaie et al. 2018 [26] Cost Multi-
Rounding algorithm
(RA), Single-period

algorithm (SPA)
CPLEX X X - -

Baniamerian et al. 2019 [27] Cost Multi-

Novel genetic algorithm
hybridized with
modified VNS

(GA-MVNS), Artificial
bee colony (ABC)

algorithm, Simulated
annealing (SA)

GAMS X X X -

Seyedi et al. 2019 [28] Time Single Cross-Dock Heuristic GAMS X X X -

Rijal et al. 2019 [29] Cost Multi-
Adaptive large

neighbourhood search
(ALNS)

Python, Gurobi
Optimizer X X X X

Corsten et al. 2019 [30] Cost Single - Gurobi
Optimizer X X X X

Dulebenets 2019 [31] Cost Multi-
Novel delayed
start parallel

evolutionary algorithm
GAMS/CPLEX X X - -

Rahbari et al. 2019 [32] Cost, Weight Multi- - GAMS/CPLEX X X X -

Hadipour et al. 2019 [33] Cost Multi-
Multi-objective

water-flow algorithm
(MOWFA)

MATLAB X X - -
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Table 1. Cont.

Authors Year Objectives Objective
Function Metaheuristic Method Exact Solution,

Software
Multi-

Suppliers
Multi-

Products
Time

Window
Case
Study

Khorshidian et al. 2019 [34] Time, Cost Multi- - LINGO X X X X

Fard and Vahdani 2019 [35] Cost, Energy Multi-

Multi-objective
imperialist competitive

algorithm (MOICA),
Multi-objective grey

wolf optimizer
(MOGWO)

GAMS X X X -

Hasani Goodarzi et al. 2020 [36] Time, Cost Multi-
Multi-objective

evolutionary algorithm
(MOEA)

GAMS X X X X

Movassaghi and
Avakh Darestani 2020 [37] Time, Cost Multi- - GAMS X X X -

Hasani Goodarzi and
Zegordi 2020 [38] Cost Multi- Memetic algorithm GAMS/CPLEX X X - -

Ardakani et al. 2020 [39] Time Single Heuristic algorithm GAMS X X X -

Nogueira et al. 2020 [40] Time Single Constructive heuristic CPLEX X X X -

Nikzamir and
Baradaran 2020 [41]

Cost, Emission
of

contamination
Multi-

Multi-objective water
flow algorithm

(MOWFA)
MATLAB X X X X

Shahabi-Shahmiri
et al. 2021 [42]

Time, Cost,
Capacity

utilization
rate

Multi- - GAMS X X X X

Castellucci et al. 2021 [43] Cost Multi- - GAMS X X X -

Hasani Goodarzi et al. 2021 [44] Cost Multi- Lagrangian relaxation
algorithms GAMS/CPLEX X X - X

Hasani Goodarzi et al. 2021 [45] Cost Multi- Genetic algorithm (GA) GAMS X - - X

Yu et al. 2021 [46] Cost Multi-
Adaptive neighborhood

simulated annealing
algorithm

C# X X - -

Theophilus et al. 2021 [47] Cost Multi- Evolutionary algorithm GAMS X X X -

Qiu et al. 2021 [48] Cost Multi- Branch-and-cut
algorithm CPLEX X X - -

Smith et al. 2022 [49] Time, Vehicles Multi-
Multi-objective ant

colony optimization
(MACO) algorithm

CPLEX X X - X

Despite the strong desire to research cross-docks, provide a new concept of modeling,
and design different algorithms, this field still faces many shortcomings, which are mainly
related to the extension of existing models to approach real-world problems. As a result,
the main motivation of this article is to present a model that reduces the time of product
transfer and increases the quality of the system’s performance, and also causes integration
in the entire supply chain system.

As can be seen, most of the researches have considered the problem by assuming
the accuracy of the input parameters. Few studies have considered warehouse entry and
service rates to be probable. In all these researches, the probability distribution of entering
the warehouse and the probability distribution of the service rate in the warehouse follow
the exponential or normal process. Therefore, it can be claimed that none of the researches
have examined and modeled the warehouse service rate and warehouse entry rate with a
general probability distribution. Therefore, this research intends to model and optimize
cross-docks by considering the entry and service rates with the distribution of general
probability in warehouses. In this case, each warehouse is modeled as a G/G/m queue
system, where m represents the number of doors. Issues such as warehouse location will
also be considered during modeling.

In spite of the fact that cross-docks attracted much attention in a practical approach,
the main reason behind the existence of these shortcomings is the complexity in solving
the problem and improving the solution methods to enhance the quality of the solution
and the solution time. Therefore, in this paper, we aim to minimize operational time
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and cost simultaneously and use metaheuristic algorithms to overcome these deficiencies.
Thus, this paper is trying to present an analytical model for the cross-docking concept
using queue theory. Regarding the proposed model, minimizing material transportation
costs and customer waiting time is a determined mathematical target. On the other hand,
considering a general probability distribution for warehouse servicing rate and entrance
rate, along with location–allocation problems, is one of the innovative aspects of this paper.
In practical scope, the proposed model is far closer to real-world problems because of
considering uncertainty.

This paper’s structure is as follows: in the second section, we define the conceptual
supply chain model. In the third section, we present the proposed mathematical program-
ming model considering the probable warehouse servicing rate and entrance rate and
evaluate the proposed solution method. In the fourth section, we analyze the related results
to the presented solutions, and finally, in the fifth section, we discuss conclusions and
suggestions for future research.

2. Methods and Modeling

In this paper, the design of the distribution network includes three levels in which the
first level is allocated to suppliers, the second level to cross-docks, and the third level to
factories. In this system, there are several suppliers that transfer different raw materials
to several cross-docks. Each channel is allocated to a cross-dock for a special product.
Then, these materials are transferred to factories in the least possible time. The entrance
rate of items from supplier to cross-docks is probable and follows a general probability
distribution. On the other hand, item startup and delivery within cross-docks are also
probable and follow a general probability distribution. Service time in each warehouse
depends on the number of existing doors; therefore, we can model each warehouse in the
form of a G/G/m queue system where m stands for the number of doors (Figure 1).
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Figure 1. Three-level structure in the supply chain.

The first level includes several suppliers and each supplier tries to meet distribution
network requirements by offering various products.

• Suppliers’ locations are not predetermined and their final location is selected from
among several potential locations.

• The manufactured items by suppliers are transferred to the warehouse by different
transportation vehicles.

• This level includes costs related to suppliers and items transferred from suppliers
to warehouses.

• The second level includes cross-docks or distribution centers.
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• Warehouse locations are not determined in advance and are chosen from among
several potential locations.

• There are several servers in each warehouse in charge of receiving, packaging, and
sending items.

• Warehouses are of cross-dock type and items are sent as soon as they are packaged.
Hence, storage costs are neglected.

• Location costs are fixed and unique and determined based on warehouse location.
• The third level includes a factory which is in charge of producing the final product.
• Factory location is not predetermined and the final location is selected from among

several potential locations.

Regarding examined features in the desirable distribution network, decisions are made
as follows:

Location decisions

• Which potential suppliers should be established so that related costs are minimized?
• Which potential warehouses should be established so that related costs are minimized?
• Which potential factories should be established so that related costs are minimized?
• Allocation decisions
• Which active suppliers should be chosen by warehouses for supplying their desired

products so that total cost is minimized?
• Which active warehouses should be chosen by factories for supplying their desired

products so that total cost is minimized?
• Which transportation vehicle should be selected for transferring products between

suppliers and warehouses?
• Which transportation vehicle should be selected for transferring products between

warehouses and factories?

Related decisions to warehouse planning
How many servers should exist in each established warehouse to respond to product

transfer and packaging so that costs are minimized?
The proposed model assumptions are as follows:

• The discharging process for input vehicles follows first in first out. It means that the
first input vehicle that enters the cross-docks area is allocated to a free entrance door if
there is any; otherwise, it will wait in the area.

• Door capacities are the same in each warehouse.
• Input and output trucks are not allowed to exit the warehouse and interrupt their

respective services until the discharging and loading processes are over.
• Servicing time (load discharging) in each door is probable and follows a general

probability distribution.
• Warehouses and factories are capacitated.

Decision-making variables are as follows in term of concept:

1. Supplier locations
2. Cross-dock locations
3. Factory locations
4. Allocating suppliers to warehouses
5. Allocating warehouses to factories
6. Determining item transportation between suppliers and warehouses
7. Determining item transportation between warehouses and factories
8. Determining the number of existing doors in each warehouse

Considering the decision-making variables, the indices and parameters in this model
are found in Table 2.
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Table 2. Indices and parameters.

Indices Description

I Suppliers index
J Cross-dock index
K Factory index
V Vehicle index

Parameters Description

P1 Maximum number of allowed suppliers
P2 Maximum number of allowed cross-docks
P3 Maximum number of allowed factories
λi Demand entrance rate from supplier i
µj Service rate for each sever in cross-dock j

FSi Fixed cost of locating supplier in potential node i
FCj Fixed cost of locating supplier in potential node j
FMk Fixed cost of locating factory in potential node k
cijv Shipping cost from supplier i to cross-dock j via vehicle v
c′jkv Shipping cost from cross-dock j to factory k via vehicle v
tijv Shipping time from supplier i to cross-dock j via vehicle v
t′jkv Shipping time from cross-dock j to factory k via vehicle v
uj Employing cost for each server in cross-dock j
Mj Maximum number of servers who can be placed in cross-dock j

Dependents and independent variables of the research model are embedded at Table 3.

Table 3. Dependent and independent decision variables.

Si.
{

1, if a supplier is located in node i
0, otherwise

Crj

{
1, if a cross− dock is located in node j
0, otherwise

PDk

{
1, if a factory is located in node k
0, otherwise

Aij

{
1, if supplier i is allocated to cross− dock j
0, otherwise

Bjk

{
1, if cross− dock j is allocated to factory k
0, otherwise

Si

{
1, if a supplier is located in node i
0, otherwise

Gijv

{
1, if vehicle v is selected for transferring goods from supplier i to cross− dock j
0, otherwise

Hjkv

{
1, if vehicle v is selected for transferring goods from cross− dock j to factory k
0, otherwise

mj Number of existing servers in cross-dock j

The first objective function is Equation (1) which aims at minimizing location-fixed
costs, transportation costs, and cross-dock costs.

Min Z1 =
I

∑
i=1

FSiSi +
J

∑
j=1

FCjCrj +
K
∑

k=1
FMkPDk +

I
∑

i=1

J
∑

j=1

V
∑

ν=1
cijvGijv

+
J

∑
j=1

V
∑

ν=1

K
∑

k=1
c′jkvHjkv +

J
∑

j=1
mjuj

(1)
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The second objective function tries to minimize the transfer time of products from
supplier to cross-dock and from cross-dock to factory and also includes product waiting
time in the cross-docks. Regarding the fact that the entrance rate to each cross-dock and
service rate in each cross-dock follow a general probability distribution, the average product
waiting time at the cross-dock is calculated using Equation (2).

WTj

(
GI
G
c

)
=

ρj

√
2(mj+1)−1(Caj + Csj

)
mjµj

(
1− ρj

) (2)

where ρj stands for probability in cross-dock j which is calculated as (3):

ρj =
τj

mjµj
(3)

In this equation, τj is the issued demand to cross-dock j which is defined as (4):

τj =
I

∑
i=1

λiAij (4)

The second objective function is based on Equation (5), in which its first part is related
to the transfer time from supplier to cross-dock, its second part is related to transfer time
and its third part is related to waiting time and the presence of goods at the cross-dock.

Min Z2 =
I

∑
i=1

V

∑
ν=1

J

∑
j=1

λitijvGijv +
J

∑
j=1

V

∑
ν=1

K

∑
k=1

djt′jkvHjkv +
J

∑
j=1

[
WTj(GI/G/c) +

1
mjµj

]
(5)

Model constraints are defined as follows:

∑I
i=1 Si ≤ P1 ∀i (6)

∑J
j=1 Crj ≤ P2 ∀ j (7)

∑K
k=1 PDk ≤ P3 ∀k (8)

Crj ≤ mj ≤ Mj ×Crj ∀j (9)

∑V
ν=1 ∑J

j=1 Gijv ≥ Si ∀i (10)

∑K
k=1 ∑V

ν=1 Hjkv ≥ Crj ∀j (11)

Gijv ≤ M Aij ∀i, j, v (12)

Hjkv ≤ M Bjk ∀j, k, v (13)

Aij ≤ M Si Crj ∀i, j (14)

Bjk ≤ M PDkCrj ∀j, k (15)

∑I
i=1 ∑J

j=1 Gijv ≤ 1 ∀v (16)

∑J
j=1 ∑K

k=1 Hjkv ≤ 1 ∀v (17)

τj ≤ mjµjCrj ∀j (18)

mj ≥ 0 ∀j (19)

Si , Crj , PDk, Gijv , Hjkv, Aij, Bjk ∈ {0, 1} ∀I, j , k, v (20)
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Constraint sets (6)–(8) ensure the maximum number of permitted suppliers, cross-
docks, and factories in order to avoid facility overlap. Constraint (9) insures that the number
of existing servers in each cross-dock doesn’t exceed the predetermined allowed number.
Constraint sets (10)–(15) control the dependence between independent and dependent
decision variables. Constraint (16) selects a vehicle for transferring products between the
supplier and the cross-dock. Constraint (17) selects a vehicle for transferring products
from a cross-dock to a factory. Constraint (18) insures that the servicing ability in cross-
docks is more than the entrance rate to cross-docks, i.e., the productivity rate is less than
1. Constraint sets (19)–(20) control decision-making variable values. Since the proposed
model is regarded as NP-hard, the necessity of expanding efficient algorithms is verified.
To do that, in this paper, we use non-dominated sorting genetic algorithms (NSGA-II), a
multi-objective simulated annealing algorithm, and a multi-objective water flow algorithm
to solve it.

2.1. Genetic Algorithm

The genetic algorithm uses a two-phase mechanism to define the solution. In the first
phase, solutions are generated as coded items, and then, in the second phase, the coded so-
lutions are decoded and show decision-making variable values as the result. Chromosome
encryption and decryption methods for the proposed problem, which includes 8 potential
distribution centers, 6 potential cross-docks, 5 potential factories, and 10 vehicle types are as
follows: The first section shows the location of the suppliers. This section consists of a 1*P
vector, where P is the maximum number of allowed suppliers. All of the vector digits are
in (0, 1) intervals. To encrypt data, first, all of the numbers are multiplied by the potential
number of suppliers and rounded up, and locations 5, 6, and 7 are selected to place the
supplier. To determine which location is finally selected to place the supplier, the second
section of the encrypted chromosome is multiplied by the number of potential nodes, and
locations 5 and 6 are selected for the placing supplier. The third section determines the
appropriate vehicles for good transferring from suppliers to cross-docks. This part includes
a 1*P vector, where P is the maximum number of vehicles and all of the numbers are
between 0 and 1. To decrypt the numbers, at first, all of the numbers are multiplied by the
maximum number of transportation vehicles and rounded upwardly, and vehicles 4, 2, and
6 are selected to transfer materials from suppliers to cross-docks.

The fourth section represents appropriate places for locating cross-docks. This part
includes a 1*P vector, where P is the maximum number of allowed cross-docks and all of the
numbers are between 0 and 1. To decrypt numbers, at first, all of the numbers are multiplied
by the maximum number of cross-docks and rounded upwardly, and then, vehicles 1, 4,
and 8 are selected to transfer materials from cross-docks to factories. The seventh section,
which represents factory locations consists of 1*P vector, where P is the maximum number
of allowed cross-docks and all of the numbers are between 0 and 1. To decrypt numbers, at
first, all of the numbers are multiplied by the number of potential factories and rounded
upwardly, and then, factories are located in 3, 6, and 5. To determine which location is
finally chosen for placing suppliers, the eighth section of the chromosome is multiplied by
the number of potential points, and the supplier is located in places 3 and 4. To determine
which goods (1) from which supplier and with which vehicle and (2) from which cross-dock
to which factory and with which vehicle should be transferred, the obtained results by
previous phases are placed in a separate matrix as Table 4. Regarding the first column,
products are transferred from supplier 5, by vehicle 4 to cross-dock 3, and then, by vehicle
8 from cross-dock 3 to factory 4.
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Table 4. Goods transfer pattern within supply chains levels.

Supplier 5 5 6
Vehicle 4 2 6

Cross-dock 3 3 6
Transportation

Vehicle 8 4 1

Factory 4 4 3

The ninth section determines each cross-dock server. This section consists of a 1*P
vector, where P is the number of potential cross-docks and acquires one of the values from
0 to 1. To decrypt numbers, all of them are multiplied by the maximum number of servers
and rounded upwardly, and then, 1, 2, and 5 servers are located in cross-docks. In the
next step, the selection of the parent population that is affected by crossover and mutation
operators is performed based on a crowded tournament selection operator. In mutation,
each person’s chromosome is changed individually and without any need to be merged
with another person’s chromosome based on probability rules. In this paper, we use the
number of generations as the break condition, and its size is determined by parameter
tuning based on Maghsoudloo et al. (2016).

2.2. Multi-Objective Simulated Annealing Algorithm (MOSA)

In the present paper, at first, a large number of stochastic solutions are generated and
their objective functions are determined. Then, we calculate the existing standard deviation
in the obtained results and use them to determine the initial temperature. In the proposed
algorithm, we used 1.5 times more than the existing standard deviation in initial solutions
to determine the initial solution. For each target, a separate temperature is needed. The
temperature reduction trend is determined as a linear equation ti = αti−1. The maximum
number of produced solutions in each temperature is used as a basis for examining the
balance condition in that degree. MOSA has two loops. The number of iterations in the
internal loop is determined based on parameter tuning and the number of iterations in the
external loop is determined based on the number of iterations just like NSGA-II.

2.3. Multi-Objective Water Flow Algorithm (MOWFA)

This algorithm includes four main operators: 1. motion and flow division; 2. flow
integration; 3. water evaporation; 4. raining. The structure of presenting the MOWFA
algorithm solution and determining the fitness level is the same as NSGA-II and is stochastic.
At the beginning of the water flow algorithm, we assume there is only one flow with the
stochastic location. Flow division depends on the liquid power. The divided sub-branches
are located in the vicinity of the main flow location. When a water flow divides to several
sub-branches, flow density is also divided into several sub-branches. When more than two
water flows move toward a common space, all of them are merged into a flow with the
most mass and kinetic energy. If we call the existing flow i, and other flows which join
to it j, after merging them, the flow j is removed and the new flow volume and speed are
updated. Using an integration operator, the extra elements of the solution won’t affect
object function values anymore and extra search is avoided. If there is no improvement
after several phases, flow loses its kinetic energy, evaporates, and randomly falls to another
space that has one or more common features with this space (like rain). The break condition
in MOWFA is the number of iterations as those of NSGA-II and MOSA algorithms.

3. Discussion and Results Evaluation

After a brief review of the multi-objective metaheuristic algorithms criteria, the op-
timum values of algorithm parameters are determined via parameter tuning. Then, the
obtained results of the three metaheuristic algorithms are evaluated and compared with
each other using 32 random samples. Calculations are performed using a laptop with
4 GB RAM and a 2 duo 3.2 GHz processor, Core i5. We also used Minitab17 software for
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parameter tuning and MATLAB 2010 software for algorithm programming. In this paper,
evaluation criteria include mean ideal distance (MID) which is used to calculate the average
distance of Pareto solutions from a Cartesian coordinate system. The less the MID, the
more the algorithm efficiency will be. MID is calculated as Equation (21).

MID =
1

NPS

NPS

∑
i=1

ci where ci =

√√√√ m

∑
j=1

f2
ji (21)

where m is the number of objectives and fji is the value of jth objective function. The spread
of the non-dominance solution (SNS) shows the dispersion of Pareto queue solutions from
their qualities. According to Asef et al. (2014) SNS is calculated from Equation (22) in which

ci =
√

f2
1 + f2

2:

SNS =

√
∑m

j=1(MID− ci)
2

n− 1
(22)

Maximum spread or diversity in a bi-objective mode equals the Euclidean distance
between two boundary solutions in the target space. The more this criterion, the best the
answer. Equation (23) represents the computational trend of this criterion:

D =

√√√√ m

∑
j=1

(
max

i
fj
i −min

i
fj
i

)2
(23)

The NOEF criterion or number of evaluating functions represents the speed of the
algorithm running. The only difference is that this criterion is more practical and obvious
than the computational time criterion and its size is not related to the computer system.

The next step is to tune the parameters which is impossible without an experiment
design. To achieve this, we used the Taguchi method which uses an orthogonal array (OA)
to measure the effect of one factor on the average and determine the deviation from the
average. One of the best advantages of the orthogonal array is that for each level of a factor,
all the other factor levels are repeated equally, thus, we can repeat the results of experiments.
Another advantage of the orthogonal array is its expense efficiency. Furthermore, in the
Taguchi method, experimental data’s difference or response variable variance values are
examined and the signal-to-noise ratios (S/N) are used to simplify its concept. In the
first step of parameter tuning, the studied parameters are identified and their levels are
determined. One of the fundamental parameters is the number of iterations, which depends
on the size of the problems. In this paper, the number of iterations is determined via 5IJ,
where I is the number of suppliers and J is the number of cross-docks. Other parameters
and search domains of their levels are presented in Table 5. This parameter is evaluated in
five levels, and finally, the best level is selected.

Table 5. Controllable parameters and their levels.

Algorithm Parameters Description First Level Second Level Third Level Fourth Level Fifth Level

MOWFA
Pop size The number of first flows 10 20 30 40 50

M0 The initial mass 50 60 70 80 90
V0 The initial speed 20 30 40 50 60

MOSA
Inner loop The number of iterations in

the inner loop 10 20 30 40 50

alpha Temperature reduction rate 0.95 0.96 0.97 0.98 0.99
Pop size Population size 10 15 20 30 40

NSGA-II
Pop size The initial population size 60 80 100 120 140

Pc Crossover rate 0.75 0.80 0.85 0.90 0.95
Pm Mutation rate 0.05 0.07 0.09 0.12 0.15
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The number of required experiments for the factors above equals 35 = 243. However,
regarding time and cost, this kind of experiment is not affordable. Accordingly, we get
help from fractional iteration plans. In this problem, the freedom degree is set to 1 for
the total average and 4 for each five level factors. Therefore, the total of freedom degrees
equals 1 + (4× 3) = 13. Thus, we have to select an array with at least 13 rows, and the L25
orthogonal array meets this requirement. The designed array structure and experiment
results for NSGA-II, MOSA, and MOWFA are presented in Table 5. MID is considered a
response variable. Each experiment is repeated three times and MID values are considered
a basis for experimental results. Figure 2 demonstrates how the S/N criterion values are
changed for different algorithm levels. The levels in which the S/N criterion has reached
its maximum are optimum levels. It represents the MOWFA algorithm, and the best
level of population size is its third level. Therefore, the appropriate population size for
MOWFA is 30. The optimum levels of two other factors of MOWFA are also evaluated in
the domain and for the M0 factor, the third, and for V0 the fourth levels are chosen. Figure 3
demonstrates the related results to the MOSA algorithm. The best level of population size
is placed within the evaluated domain and is its third level. Therefore, the appropriate
population size for MOWFA is 30. Thus, the appropriate population size for MOSA is 20.
The optimum level of two other factors is also evaluated in the domain and for both factors
i.e., for the inner loop and alpha, the third level is chosen. Figure 4 shows the related results
to the NSGA-II algorithm. The best level of population size is placed within the evaluated
domain and is its third level. Therefore, the appropriate population size for NSGA-II is 100.
The optimum levels of two other factors of NSGA-II are also evaluated in the domain and
for both Pcross Pmute factors the second levels are chosen. These real values are presented
in Table 5.

Algorithms 2022, 15, x FOR PEER REVIEW 14 of 21 
 

Table 5. Controllable parameters and their levels. 

Algorith

m 
Parameters Description 

First 

Level 

Second 

Level 

Third 

Level 

Fourth 

Level 

Fifth 

Level 

MOWFA 

Pop size The number of first flows 10 20 30 40 50 

M0 The initial mass 50 60 70 80 90 

V0 The initial speed 20 30 40 50 60 

MOSA 

Inner loop The number of iterations in the inner loop 10 20 30 40 50 

alpha Temperature reduction rate 0.95 0.96 0.97 0.98 0.99 

Pop size Population size 10 15 20 30 40 

NSGA-II 

Pop size The initial population size 60 80 100 120 140 

Pc Crossover rate 0.75 0.80 0.85 0.90 0.95 

Pm Mutation rate 0.05 0.07 0.09 0.12 0.15 

The number of required experiments for the factors above equals  3� = 243. How-

ever, regarding time and cost, this kind of experiment is not affordable. Accordingly, we 

get help from fractional iteration plans. In this problem, the freedom degree is set to 1 for 

the total average and 4 for each five level factors. Therefore, the total of freedom degrees 

equals 1 + (4 × 3) = 13. Thus, we have to select an array with at least 13 rows, and the 

L25 orthogonal array meets this requirement. The designed array structure and experi-

ment results for NSGA-II,  MOSA,  and  MOWFA are presented in Table 5. MID is consid-

ered a response variable. Each experiment is repeated three times and MID values are 

considered a basis for experimental results. Figure 2 demonstrates how the S/N criterion 

values are changed for different algorithm levels. The levels in which the S/N criterion has 

reached its maximum are optimum levels. It represents the MOWFA algorithm, and the 

best level of population size is its third level. Therefore, the appropriate population size 

for MOWFA is 30. The optimum levels of two other factors of MOWFA are also evaluated 

in the domain and for the M0 factor, the third, and for V0 the fourth levels are chosen. 

Figure 3 demonstrates the related results to the MOSA algorithm. The best level of popu-

lation size is placed within the evaluated domain and is its third level. Therefore, the ap-

propriate population size for MOWFA is 30. Thus, the appropriate population size for 

MOSA is 20. The optimum level of two other factors is also evaluated in the domain and 

for both factors i.e., for the inner loop and alpha, the third level is chosen. Figure 4 shows 

the related results to the NSGA-II algorithm. The best level of population size is placed 

within the evaluated domain and is its third level. Therefore, the appropriate population 

size for NSGA-II is 100. The optimum levels of two other factors of NSGA-II are also eval-

uated in the domain and for both Pcross Pmute factors the second levels are chosen. These 

real values are presented in Table 5. 

 

54321

-129.7

-129.8

-129.9

-130.0

-130.1

-130.2

-130.3

-130.4

-130.5

-130.6

54321 54321

Popsize

M
e
a
n

 o
f 

S
N

 r
at

io
s

M0 V0

Main Effects Plot for SN ratios

MOWFA

Signal-to-noise: Smaller is better

Figure 2. S/N changes for MOWFA factors.



Algorithms 2022, 15, 265 14 of 20

Algorithms 2022, 15, x FOR PEER REVIEW 15 of 21 
 

Figure 2. S/N changes for MOWFA factors. 

 

Figure 3. S/N changes for MOSA factors. 

 

Figure 4. S/N changes for NSGA-II factors. 

Now, we use small problems to evaluate algorithm efficiency to find a globally opti-

mum solution. All of the examples are optimized using GAMS software and the obtained 

solutions from GAMS are compared with the obtained solutions of the proposed algo-

rithms. 

To do that, at first we produce 10 random samples with 2 suppliers, 3 factories, and 

3 vehicles and compare the obtained MID from GAMS and the obtained MID from the 

mentioned algorithms. All of the obtained results from GAMS are limited to 2000 s. If we 

don’t reach the global optimum solution in the proposed time, the software stops, and the 

local optimum solution with its related GAP is presented. Regarding the obtained results, 

it can be seen that NSGAII’s distance from the globally optimum solution is 2.174928, 

MOSA’s, 2.254297, and MOWFA’s, 2.805116 percent. 

The confidence interval of 95% for algorithms is also illustrated in Figure 5. Accord-

ing to the fact that intervals cross each other, we can statistically conclude that the ob-

tained results from metaheuristic algorithms are equal to the obtained results from GAMS. 

Therefore, the proposed algorithms are capable of finding globally optimum solutions 

and are also an appropriate case for large-scale problems. 

54321

-130.8

-131.0

-131.2

-131.4

-131.6

-131.8

-132.0

54321 54321

Inner_loop

M
e
an

 o
f 

S
N

 r
at

io
s

algha Popsize

Main Effects Plot for SN ratios

MOSA

Signal-to-noise: Smaller is better

54321

-129.6

-129.7

-129.8

-129.9

-130.0

-130.1

-130.2

-130.3

-130.4

-130.5

54321 54321

Popsize

M
e
a
n
 o

f 
S

N
 r

at
io

s

Pcross Pmute

Main Effects Plot for SN ratios

NSGA-II 

Signal-to-noise: Smaller is better

Figure 3. S/N changes for MOSA factors.

Algorithms 2022, 15, x FOR PEER REVIEW 15 of 21 
 

Figure 2. S/N changes for MOWFA factors. 

 

Figure 3. S/N changes for MOSA factors. 

 

Figure 4. S/N changes for NSGA-II factors. 

Now, we use small problems to evaluate algorithm efficiency to find a globally opti-

mum solution. All of the examples are optimized using GAMS software and the obtained 

solutions from GAMS are compared with the obtained solutions of the proposed algo-

rithms. 

To do that, at first we produce 10 random samples with 2 suppliers, 3 factories, and 

3 vehicles and compare the obtained MID from GAMS and the obtained MID from the 

mentioned algorithms. All of the obtained results from GAMS are limited to 2000 s. If we 

don’t reach the global optimum solution in the proposed time, the software stops, and the 

local optimum solution with its related GAP is presented. Regarding the obtained results, 

it can be seen that NSGAII’s distance from the globally optimum solution is 2.174928, 

MOSA’s, 2.254297, and MOWFA’s, 2.805116 percent. 

The confidence interval of 95% for algorithms is also illustrated in Figure 5. Accord-

ing to the fact that intervals cross each other, we can statistically conclude that the ob-

tained results from metaheuristic algorithms are equal to the obtained results from GAMS. 

Therefore, the proposed algorithms are capable of finding globally optimum solutions 

and are also an appropriate case for large-scale problems. 

54321

-130.8

-131.0

-131.2

-131.4

-131.6

-131.8

-132.0

54321 54321

Inner_loop

M
e
an

 o
f 

S
N

 r
at

io
s

algha Popsize

Main Effects Plot for SN ratios

MOSA

Signal-to-noise: Smaller is better

54321

-129.6

-129.7

-129.8

-129.9

-130.0

-130.1

-130.2

-130.3

-130.4

-130.5

54321 54321

Popsize

M
e
a
n
 o

f 
S

N
 r

at
io

s

Pcross Pmute

Main Effects Plot for SN ratios

NSGA-II 

Signal-to-noise: Smaller is better

Figure 4. S/N changes for NSGA-II factors.

Now, we use small problems to evaluate algorithm efficiency to find a globally opti-
mum solution. All of the examples are optimized using GAMS software and the obtained
solutions from GAMS are compared with the obtained solutions of the proposed algorithms.

To do that, at first we produce 10 random samples with 2 suppliers, 3 factories, and
3 vehicles and compare the obtained MID from GAMS and the obtained MID from the
mentioned algorithms. All of the obtained results from GAMS are limited to 2000 s. If we
don’t reach the global optimum solution in the proposed time, the software stops, and the
local optimum solution with its related GAP is presented. Regarding the obtained results,
it can be seen that NSGAII’s distance from the globally optimum solution is 2.174928,
MOSA’s, 2.254297, and MOWFA’s, 2.805116 percent.

The confidence interval of 95% for algorithms is also illustrated in Figure 5. According
to the fact that intervals cross each other, we can statistically conclude that the obtained
results from metaheuristic algorithms are equal to the obtained results from GAMS. There-
fore, the proposed algorithms are capable of finding globally optimum solutions and are
also an appropriate case for large-scale problems.
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After proving algorithm efficiency, large-scale problems are applied to evaluate algorithm
performance in finding near-optimum solutions for large-scale problems. To analyze the
results, we selected 32 samples which are placed in four categories regarding the number
of suppliers, cross-docks, factories, and transportation vehicles. The first group includes
problems with 3 suppliers, 4 cross-docks, 5 factories, and 7 transportation vehicles. The second
group includes problems with 6 suppliers, 5 cross-docks, 7 factories, and 9 transportation
vehicles. The third group includes problems with 8 suppliers, 7 cross-docks, 9 factories,
and 11 transportation vehicles, and the fourth group includes problems with 10 suppliers,
9 cross-docks, 11 factories, and 13 transportation vehicles. Eight random samples are
generated for each group. Then, the performance of the proposed algorithms is evaluated
based on comparison criteria. In Figure 6, the proposed criteria are calculated and illustrated
for all of the generated random problems. Additionally, Figure 6 represents algorithm
efficiency in the SNS criterion. Since the less the SNS, the better it is, NSGA-II has the best
performance among all the other algorithms. Furthermore, in smaller size problems, all of
the algorithm’s efficiencies are similar to each other.

Figure 7 illustrates the proposed algorithm performance for the MID criterion. Ap-
proximately, in all of the sample problems, NSGA-II performs better and reaches high-
quality solutions.

Figure 8 shows algorithm efficiency for the Diversity criterion. NSGA-II still stands on
the first stage for this criterion.
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Figure 8. Comparison of the proposed algorithms efficiency in Diversity.

Figure 9 illustrates the superiority of the proposed NSGA-II to MOSA and MOWFA
when running speed is considered. According to this Figure 9, the MOSA algorithm has a
similar performance to NSGA-II in small-size problems. However, when the size of the
problem increases, the performance of NSGA-II is far better than the two other algorithms,
especially MOWFA.
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In order to evaluate and compare more precisely, statistical analyses are used. At first,
we normalize all the obtained results using relative percentage division (RPD). The RDP
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value shows the gap between each algorithm solution and the best-obtained solutions. We
can calculate RPD as Equation (24):

RPDij = (solij − solj,min)/solj,min (24)

where i is the algorithm number and j is the example number. To determine algorithm
efficiency, we use the confidence interval of 95%. The obtained results are illustrated in
Figure 10. The results show that in the SNS criterion, the NSGA-II algorithm performs
significantly better than the two other algorithms. Although the MOSA and MOWFA
algorithms are similar to each other in terms of results, the MOSA and NSGA-II algorithms
are also similar in terms of MID. In this criterion, MOWFA has the worst performance. In
the Diversity criterion, NSGA-II performs far better than MOFA and MOWFA. MOSA and
MOFA are also similar to each other in terms of statistics. However, MOSA performs better
than MOWFA. In the computational time criterion, MOWFA performs worse than the other
two algorithms. In this criterion, NSGA-II has the best performance.
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4. Conclusions and Suggestions for Future Work

Modeling and optimizing the supply chain in order to locate an optimum material
transferring system has attracted many researchers’ attention. In this paper, the supply
chain has three levels including suppliers, cross-docks, and factories. Raw materials are
transferred to several cross-docks via several suppliers. Each channel is inclusively for
a special product in a cross-dock. Goods entrance rate from supplier to cross-docks is
stochastic and follows a general probability distribution. On the other hand, we assume
that startup and delivery time in cross-docks are stochastic and follow a general probability
distribution. Service time in each cross-dock depends on the number of existing doors;
therefore, we can consider each cross-dock as the G/G/m queue system in which m is the
number of doors. The mathematical model is expanded by considering variables and their
relations. Our main aim is to present an analytical model using the cross-docks and queue
theory technique. Thus, the minimization of two main objectives is evaluated; the former is
to minimize materials transferring whereas the latter is to minimize customer waiting time.

Regarding the fact that the proposed model is NP-hard, three metaheuristics including
multi-objective water flow, non-dominated sorting genetic, and multi-objective simulated
annealing algorithm are used to optimize the proposed model. After tuning the algorithm
parameters via the Taguchi method, the obtained results from the algorithms are analyzed
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by statistical test and the algorithm efficiencies are evaluated. The results vividly demon-
strate that in terms of SNS, MID, and Diversity criteria, NSGA-II has higher efficiency than
the other two algorithms. Furthermore, the MOSA algorithm performs better than MOWFA
in the NOEF criterion. Regarding the resulted tables obtained from algorithms solutions,
we can surely conclude that NSGA-II performs highly better than MOSA and MOWFA and
reaches better solutions. Examining and analyzing the obtained results from analysis and
variance tests prove this claim.

In this paper, we evaluated fundamental costs which are related to transportation and
cross-docks. As a result, the most important impact of this research is to identify factors that
have high costs. This can help organizations reduce their costs. The special suggestions that
this research has for future researchers are derived from the current needs in today’s world.
If transportation paths are of high significance, routing problems can be added as a scope
for future research. Some other assumptions can be added to the model such as operational
storage expenses for products and considering time limitations and distance for each route.
Designing another model which is able to plan all of the events in a cross-dock can be
considered another practical scope for future research. Replacing metaheuristic algorithms
with simulation methods and neural networks and also evaluating other metaheuristic
algorithms is another way to enlarge our knowledge in this scope.
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