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Abstract: Three-dimensional printing has advantages, such as an excellent flexibility in producing
parts from the digital model, enabling the fabrication of different geometries that are both simple
or complex, using low-cost materials and generating little residue. Many technologies have gained
space, highlighting the artificial intelligence (AI), which has several applications in different areas
of knowledge and can be defined as any technology that allows a system to demonstrate human
intelligence. In this context, machine learning uses artificial intelligence to develop computational
techniques, aiming to build knowledge automatically. This system is responsible for making decisions
based on experiences accumulated through successful solutions. Thus, this work aims to develop
a neuroevolutionary model using artificial intelligence techniques, specifically neural networks
and genetic algorithms, to predict the tensile strength in materials manufactured by fused filament
fabrication (FFF)-type 3D printing. We consider the collection and construction of a database on
three-dimensional instances to reach our objective. To train our model, we adopted some parameters.
The model algorithm was developed in the Python programming language. After analyzing the data
and graphics generated by the execution of the tests, we present that the model outperformed, with a
determination coefficient superior to 90%, resulting in a high rate of assertiveness.

Keywords: fused deposition modeling; 3D printing; artificial intelligence

1. Introduction

Humanity has undergone several technological advances, and is currently experienc-
ing the fourth industrial revolution, with effects in several areas. New technologies are
constantly being developed, always requiring new knowledge. One of them is 3D printing,
which still undergoes constant evolution [1]. Three-dimensional printing is a manufactur-
ing area that builds parts, starting from a virtual model, by the automatic layer-by-layer
deposition method [2].

In the late 1980s, 3D printing had a high cost and detailed coverage. In the 2000s,
mainly due to the fall in patents, this process became less expensive, allowing for appli-
cations in other areas, such as education and medicine. In addition to having become a
technology with several applications, 3D printing has gained strength by using low-cost
products and generating little waste [1].

There are a few 3D printing methods, the most common being fused filament fabrica-
tion (FFF). This method consists of the hot deposition of a filament through the extrusion
of a specific material [3].
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Despite being a widely used process, 3D printing is a very elaborate technology. This
high complexity is due to the many parameters influencing the process and the final effect.
Geometry, speed, temperature, raw material and other factors influence the final properties
of the product, such as mechanical strength and dimensional accuracy. Several works have
already been developed to define how each 3D printing parameter influences the outcome.
However, even with this large amount of studies, there are some difficulties in developing
mathematical models that describe the final properties of the products [2].

Some works applied a computational strategy known as an artificial neural network
(ANN) to control and optimize the parameters of the 3D printing process in the best possible
way. Neural networks can present a supervised, unsupervised and reinforcement learning
application methodology, being part of an even broader branch that is known as artificial
intelligence (AI) [4].

The ANN represents an information processing system that simulates the functions of
the human brain computationally. Neural networks, as well as other supervised learning
methods, start from a data set, with input values associated with their respective output,
so, after executing an algorithm, known as a learning algorithm, the network will have the
ability to classify or predict the outcome of cases where the inputs do not have a known
output [5]. The aforementioned concept can be beneficial for several applications, but
these types of methods have several parameters that can be considered. Several tests
can be carried out to define the best configuration for the ANN; however, performing
this task can take a long time. Several methods can be used to mitigate the situation
above. This paper applies a genetic algorithm (GA), commonly used to tackle optimization
problems and grounded on Darwin’s theory of evolution, addressing steps such as natural
selection, reproduction and mutation [6]. Combining ANN with the GA is called the
neuroevolutionary strategy [7].

In this context, our paper aims to develop a model that combines artificial neural
networks and genetic algorithms in a neuroevolutionary strategy, capable of predicting
the rupture stress of materials manufactured by the 3D printing method of the FFF type.
The main idea is to realize the training procedure of an ANN using the genetic algorithm
strategy and to validate the weights representation throughout as a feasible solution. We
highlight that models applying neural networks are commonly different in the configura-
tions and representation of weights, activation functions and learning methods. Therefore,
in this paper, we focus on presenting the choice composition of all of the above characteris-
tics to obtain our proposal in the 3D printing process.

The remaining part of this paper is organized as follows. Section 2 reviews the
literature and theoretical fundamentals considering 3D printing (Section 2.1), ANN and
essential aspects about training and test sets applied in models that use ANNs in their
conception (Section 2.2), GA (Section 2.3). Next, Section 3 details the implementation of a
neuroevolutionary model to estimate the tensile strength of manufactured parts made by
3D printing. Section 4 presents the used datasets and conferred results for this research.
Section 5 concludes by summarizing the results and limitations of the presented approach
and comments on future research directions.

2. Fundamental Concepts

This section presents the fundamental concepts of our neuroevolutionary model
definition. The main objective is to estimate the tensile strength of manufactured parts
made by 3D printing. Then, we introduce this technology in Section 2.1. In addition,
aspects related to the ANNs and notions about models data analysis (Section 2.2) and GA
(Section 2.3) are presented.

2.1. Three-Dimensional Printing

The world is constantly witnessing several technological advances. These advances
always require acquiring new knowledge so that they are better understood. A technology
that has evolved significantly in recent decades is 3D printing [1].
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One of the significant advantages of this technology is the flexibility in producing
3D-modeled parts by computer-aided design (CAD), which, together with computer-
aided manufacturing (CAM), allows for the fabrication of different geometries, complex or
straightforward [8]. Additive manufacturing technology can be divided into seven families:
vat photopolymerization; powder bed fusion (PBF); binder jetting (BJ); material jetting (MJ);
sheet lamination (SL); material extrusion (ME); directed energy deposition (DED) [9]. In
the material extrusion (ME) family, the FFF process is the most common and easily used
nowadays. They are the printers that generally anyone can have at home due to their low
cost and operational simplicity [10].

In the FFF process, the raw material, in the form of a filament, is hot extruded through
a nozzle on a heated table following the coordinates defined by the digital file, where the
material is deposited layer by layer until the piece is obtained [2]; see Figure 1. The most
common materials in this type of process are plastic filaments, such as PLA, which is a rigid
material, which allows fir greater detail in the parts produced with it, and acrylonitrile
butadiene styrene (ABS), which is a thermoplastic with great flexibility and has more
excellent resistance to impacts. Other materials also used in this process are polyester,
polypropylene (PP), polycarbonate (PC), polyamide (PA), elastomers and waxes [3,11].

Figure 1. Three-dimensional printing process.

In the 3D printing process, several parameters influence the manufactured product [12].
Therefore, to have greater control over the final part, each of these factors must be carefully
analyzed. Some of these parameters are [2,13]:

• Construction orientation: orientation with which the part is constructed relative to the
base, along the X, Y and Z axes.

• Layer thickness: height of the layer deposited by the extruder nozzle. Varies with
nozzle diameter and material.

• Fill density: space between adjacent filaments in the fill region of the part.
• Fill angle: angle between the filler filament deposition and the X axis.
• Filler filament width: width of the filament used for filling. It depends on the diameter

of the extruder nozzle.
• Number of contours: number of perimeters built along the part, internal and external.
• Contour filament width: width of the filament used in the contour of the part.
• Space between contour filaments: space between each of the filaments used in

the contour.
• Space between contour and fill: space between the contour and the effective fill of

the part.
• Extrusion speed: speed at which extruded filaments are deposited.
• Extrusion temperature: temperature at which the filament is deposited.
• Platform temperature or bed temperature: temperature of the surface of the table/bed

where the printing is carried out.
• Environmental conditions: temperature and humidity of the printing environment.
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Due to this large number of factors that can influence the manufacture of parts pro-
duced by 3D printing, physical and mathematical formulations become challenging to
develop [14].

2.2. Artificial Neural Networks

Artificial neural networks are a computational representation of an information pro-
cessing system with characteristics similar to biological neural networks, inspired by the
functioning of the human brain [15].

The artificial neuron is the basic processing unit of an ANN, its first model being
proposed by McCulloch and Pitts in 1943 . In the model in question, the dendrites are
represented by n inputs x1, x2,. . . xn. The axon is characterized by the y output. The
synapses (connections between neurons) are responsible for defining the intensity of each
input signal, being represented by the synaptic weights w1, w2,. . . wn, each one associated
with its respective input. The nucleus and the cell body are responsible for handling the
inputs and calculating the weighted sum u of the inputs, in addition to verifying if this
sum exceeds the threshold θ; if it exceeds, the neuron fires a y signal. Otherwise, no signal
is fired. Some methods based on the McCulloch and Pitts model allow for different output
signals. For this result, different activation functions were defined, such as linear, sigmoid,
hyperbolic tangent, inverse tangent and ReLU, among others [16].

There are some types of networks, the most common being perceptron, Kohonen,
Hopfield and ART [17]. In this paper, we applied the perceptron type ANN. The basic unit
of this type of network is the simple perceptron, which works by receiving a set of input
data and a bias, weighted by their respective synaptic weights. Then, the sum of these data
is calculated, and then the activation function is triggered; the result sorts the input set
between two different groups.

However, the simple perceptron has some limitations. This type of network has
problems classifying sets that are not linearly separable, or even when this separation is
not well defined. For this type of situation, it is more appropriate to use the multilayer
perceptron (MLP) network.

MLP consists of an input layer, an output layer and one or more hidden layers between
these two layers. Layers are intended to increase the network’s ability to model complex
functions. Each layer in a network contains a sufficient number of neurons depending
on the application. The input layer is passive and works by just receiving the data. The
hidden and output layers actively process the data, the output layer being responsible for
producing the results of the neural network [18]. The MLP model has supervised learning
by error correction, has more than one layer and is acyclic. The output of a neuron cannot
serve as an input for any last neuron that is connected. Therefore, all neurons process each
input. A propagation rule is given by the inner product of the inputs weighted by the
weights with the addition of the bias term, and the output of the previous layer is the input
of the current layer. It is important to note that, in this type of network, there may be more
than one hidden layer, in addition to different numbers of neurons in each layer [5].

Only a training set and arbitrary synaptic weights are not enough for a neural network
to classify or predict values closest to an actual situation. For this, it is necessary to carry
out training. The weights are adjusted, better describing the condition addressed. The
training of an MLP network is usually divided into a few steps, called the feedforward step
(forward phase) and the backpropagation with the adjustment of the weights (backward
phase) [19].

The backpropagation algorithm is one of the most used tools for ANN training. How-
ever, in some practical applications, it may be too slow.

Suppose, for example, that there are t training samples, f features and h hidden layers,
each containing n neurons and o output neurons. The time complexity of backpropagation
is O(t ∗ f ∗ nh ∗ o ∗ i), where i is the number of iterations. Since backpropagation has a high
time complexity, it is advisable to start with a smaller number of hidden neurons and a few
hidden layers for training. Note that Big-O quota is a mathematical notation that describes
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the limiting behavior of a function when the argument tends towards a particular value
or infinity.

Even with a finalized optimization, ANNs can run into other problems, such as
underfitting and overfitting. These two errors are more commonly seen in the construction
of neural networks. They are the trend error and the variance error. The bias error arises
because the network tries to describe a generalized behavior for its data, which does not
suit the noise sufficiently and dictates a simplified trend.

The network is tied to noise in the variance error and generates an excessively complex
model. Combining a high trend error with a low variance error generates underfitting,
where the developed model is straightforward, not fitting the points and, consequently, not
correctly describing the natural phenomenon. When the opposite happens—that is, the
model has a low tendency and high variance—overfitting is generated, where the network
adapts excessively to the training data and loses the ability to generalize to points outside
of the training set [17].

The neural network can be evaluated by its ability to fit the training data and predict
data outside this set. The available data are generally divided into training, validation and
testing to improve the model results. During the training stage, the outcomes calculated
by the network are compared with the target (supervised learning); then, the weights
are adjusted to approximate them. Then, in the validation step, the model undergoes a
fine adjustment in the parameters, avoiding rigidity to the training data, thus reducing
the chances of overfitting. Finally, the prediction is performed with the data that were
separated for the test step, and then the result is compared with the absolute values [20].

Underfitting represents when the model performs poorly on training and test data.
In contrast, overfitting indicates that the model acted well on the training data but then
struggled on the unrecognized inputs; this should not be the case, as both data groups
came from the identical distribution. One of the ways to evaluate the model’s performance
is the study of the learning curves. An analysis of the model with the training and test data
can diagnose the possibilities of overfitting and underfitting [21].

Many techniques have been explored to accelerate its performance, considering that it
may fall into local minima. One of the potential treatments to escape from local minima is
by operating a minimum learning rate, which slows down the learning process. In [22], the
authors present a new strategy based on the use of the bi-hyperbolic function, which offers
greater flexibility and a faster evaluation time. On the other hand, we applied the genetic
algorithm to the training of our neural networks.

2.3. Genetic Algorithm

The genetic algorithm (GA) is widely used in optimization, which simulates Darwin’s
theory of evolution. GA differs from other methods in three main points:

• This method works from a population of solutions to the problem.
• This method does not depend on differential equations.
• This method uses probabilistic and non-deterministic rules.

The GA starts from a set of possible solutions to the problem addressed. This set
is known as the population. Each individual in this population is characterized by the
chromosome, the set of values that solve the problem. Each of these values is known as
a gene. Each gene can be encoded in different ways, such as in binary, integer, double
precision or other ways [23,24]. Figure 2 presents the GA process flowchart.

The zero-step process is the generation of a population with an amount N of indi-
viduals, where each one of them has i genes. The value of each gene must be generated
randomly, and its encoding depends on the problem at hand [24].
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Figure 2. The standard workflow of Genetic Algorithm metaheuristic.

After the initial population is generated, the evolutionary process begins. The first
step is the aptitude assessment or calculation. At this point, the adaptation degree of each
individual is calculated. As each solution set improves, it tends to the desired response,
thus offering the GA an aptitude measure of each individual in the population. Together
with the chromosome coding, this step is the most dependent on the problem addressed,
varying for each case. The choice of the fitness function is critical to the success of the
algorithm [6].

Then comes the crossing or reproduction step (crossover). This process creates more
fit populations, with better solutions, from the individuals selected in the previous step.
In this method, the individual’s temporary sets are separated into pairs, and if a specific
number (crossover rate), randomly generated between 0 and 1 for each pair, is greater than
the probability of mating, then the pair, known as parents, goes through the process of
reproduction, giving rise to two new individuals, the children, who will make up the new
population [24].

Behind the crossover step, the mutation process takes place. The mutation operator is
necessary for introducing and maintaining the population’s genetic diversity, arbitrarily
altering one or more components of a chosen structure, thus providing means for introduc-
ing new elements into the population. In this way, mutation ensures that the probability of
reaching any point in the search space will never be zero, in addition to circumventing the
problem of local minimums [6].

In most GA applications, all individuals in a population are replaced by new ones,
but some of the previous population is propagated to the next generation. That is, not the
entire set is renewed. There are also cases where the population size varies according to the
generation. At the end of each generation, a population is generated with individuals that
are, for the most part, more fit than the individuals of the previous generation [25].

There are some stopping criteria for the genetic algorithm. The main ones are the
number of generations or the degree of convergence of the current population. After each
generation, the population passes an evaluation, and if the pre-established criterion is
fulfilled, the algorithm stops. At the end of the algorithm’s execution, the population will
contain the individuals that best fit as a solution to the problem studied, thus optimizing
the practical case, be it maximization or minimization.

3. The Neuroevolutinary Model

The model applied in this paper followed sequential steps. Initially, data related to
3D printing were collected, and both parameters of the printing process and properties of
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products manufactured by the studied process were considered. It is crucial to analyze the
data to establish a consistent basis. Then, a genetic algorithm was elaborated on, defining a
configuration to optimize the parameters of the ANN, with the ANN being the target of
the next step. The neural network was designed to adapt to the data collected in the first
step. The next step consisted of several executions of the combined algorithms to generate
enough data to follow the workflow of the process adopted.

The first step consisted of collecting experimental data from works that measured
the mechanical properties of 3D-printed products made from polylactic acid (PLA). The
extracted data were printing speed, extrusion temperature, fill density, extruded filament
thickness, extrusion orientation and tensile strength. Data from seven works were selected,
totalling 149 input–output sets, which were named as an instance; these works are listed
in Table 1. The complete database used is shown in Table A1. Table 2 presents a range of
values for the properties used, showing a good range for each parameter.

Table 1. Works used.

Work Author(s)

Effect of print speed and extrusion temperature on properties of 3D printed PLA
using fused deposition modeling process [26]

Effect of process parameters on mechanical properties of 3D printed PLA lattice
structures [27]

Effects of fused deposition modeling process parameters on tensile, dynamic
mechanical properties of 3D printed polylactic acid materials [28]

Mechanical Properties on ABS/PLA Materials for Geospatial Imaging Printed
Product using 3D Printer Technology [29]

Tensile failure strength and separation angle of FDM 3D printing PLA material:
Experimental and theoretical analyses [30]

Estudo da Influência de Parâmetros de Impressão 3D nas Propriedades Mecâni-
cas do PLA [31]

Influência dos parâmetros de impressão 3D na resistência à tração de corpos de
prova impressos em PLA utilizando modelagem por fusão e deposição [32]

To prepare the genetic algorithm, he computational structure of the individual was
defined. A configuration with 118 genes was chosen, which is necessary to represent all of
the parameters adopted in the neural network; see Figure 3. The chosen representation was
binary, as it adequately met the need for this proposal. Of the individual’s 118 positions,
the first 25 represent the value of the training rate (γ). The genes at positions 26 to 50, 51 to
75 and 76 to 100 are the values of the hyperparameters (β1 and β2) and numerical stability
(ε), respectively. The genes at positions 101 to 106, 107 to 112, and 113 to 118 represent the
values of neurons in each of the three hidden layers. A representation of the individual
used in the genetic algorithm is shown in Figure 3. To evaluate the training quality of each
one of the networks, the determination coefficient R2 was chosen. This metric is operated to
examine how a difference in a second variable can describe disparities in one variable. The
benefit of R2 is its power to find the possibility of future events falling within the predicted
outcomes [33].
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Table 2. Range of values of the properties used.

Property Minimum Maximum

Print speed (mm/s) 30 80

Extrusion temperature (°C) 185 240

Fill density (%) 10 100

Thickness (mm) 0.05 0.3

Orientation (°) 0 90

Tensile strength (MPA) 17.67 59.84

We adopted uniform random initialization to generate the initial population and
considered 100, 500 and 1000 as possible values in our execution tests to verify how the
population size influences the model quality and complexity.

For the selection method, the tournament with a number of individuals equal to three
was defined [34]. In the crossing step, the multipoint method with two cut-off points was
selected. In the mutation step, the flip method was chosen, with crossover and mutation
probability values of 90% and 5%, respectively. The maximum number of generations
adopted was 1000, but the algorithm must stop its execution whenever the best individual
of each generation remains the same for ten consecutive generations. A time limit of three
hours was established for each run.

Figure 3. Illustration of the individual representation used in genetic algorithm proposed.

The type of neural network adopted was the multilayer perceptron with the application
of the Adam method. The maximum number of 100 iterations in the network proved to
be satisfactory. The deactivation function chosen was ReLU. For the number of hidden
layers, the amount of three proved to be interesting, as it converged to good results in
reasonable time intervals. To define a data distribution between the training, validation and
test groups, the algorithm was executed several times with different values [21]. Table 3
shows the adopted distributions. Note that we divided the sets into three. The objective is
to mitigate the possible effects of underfitting or overfitting and obtain good results even
when applied to new untested instances.
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Table 3. Data distribution between training, validation and testing.

Distribution Training Validation Testing

1 60% 10% 30%

2 70% 10% 20%

3 80% 10% 10%

4. Results and Discussion

The algorithms were developed in the Python programming language using the
following libraries: Pandas for reading data from comma separated values (CSV) files,
which are file types used to organize data, Numpy for manipulating the data, Matplotlib
for generating graphs, Scikit-learn for implementing the ANN and Pygad for implementing
the genetic algorithm.

At each run, variations were performed in the population size of the genetic algorithm
and the sizes of the training, validation and testing sets of the neural network. In addition,
each of the variations were performed ten times to acquire more data for further analysis.
The variations adopted can be seen in Table 4.

Table 4. Variations in the developed algorithms.

Variation Training Validation Testing Population

V1.1 60% 10% 30% 100

V1.2 60% 10% 30% 500

V1.3 60% 10% 30% 1000

V2.1 70% 10% 20% 100

V2.2 70% 10% 20% 500

V2.3 70% 10% 20% 10,000

V3.1 80% 10% 10% 100

V3.2 80% 10% 10% 500

V3.3 80% 10% 10% 1000

The different configurations generated by the algorithm’s execution underwent a
detailed analysis. Observing the R2 coefficients and the learning curves, the configuration
that best applies to the situation studied was then defined. The coefficient of determination,
also called R2, is a measure of fit of a generalized linear statistical model to the observed
values of a random variable. R2 varies between 0 and 1, and is sometimes expressed in
percentage terms. This case expresses the amount of data variance that the linear model
explains. Thus, the higher the R2, the more explanatory the linear model is, and the better
it fits the sample. This decision is made grounded on the best coefficients, not overfitting or
underfitting. The algorithm itself calculated the R2 values. Table 5 shows the determination
coefficient value for each run performed, along with the mean, standard deviation and
average time of the computing performance. Note that v3.2 presented the best average
among all during the execution of the selected variations. These data are graphically
represented in Figure 4, considering the x-axis to analyze the variations in the dataset
division parameters to generate the model, and the y-axis to expose the average (points)
and the deviations (vertical lines in the same point).
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Table 5. Determination coefficient R2.

Execution V1.1 V1.2 V1.3 V2.1 V2.2 V2.3 V3.1 V3.2 V3.3

1 0.8427 0.8644 0.8981 0.9392 0.9439 0.9572 0.9435 0.9799 0.9705

2 0.8593 0.9180 0.9000 0.9461 0.9542 0.9522 0.9693 0.9508 0.9815

3 0.8894 0.8801 0.9080 0.9442 0.9544 0.9469 0.9571 0.9833 0.9831

4 0.8935 0.8994 0.9132 0.9490 0.9521 0.9551 0.9724 0.9840 0.9860

5 0.8444 0.9057 0.8736 0.9362 0.9558 0.9526 0.9671 0.9836 0.9612

6 0.8508 0.9111 0.9164 0.9389 0.9531 0.9560 0.9444 0.9791 0.9767

7 0.8343 0.9073 0.9241 0.9412 0.9585 0.9600 0.9520 0.9803 0.9508

8 0.8364 0.8983 0.9142 0.9496 0.9600 0.9559 0.9762 0.9682 0.9776

9 0.8933 0.8873 0.8945 0.9523 0.9433 0.9573 0.9458 0.9785 0.9713

10 0.8955 0.9018 0.8928 0.9333 0.9531 0.9463 0.9480 0.9821 0.9864

Mean 0.8551 0.9006 0.9034 0.9427 0.9537 0.9555 0.9545 0.9801 0.9766

Deviation 0.0259 0.0159 0.0147 0.0063 0.0055 0.0045 0.0126 0.0103 0.0114

Time(s) 1357 5322 12,050 841 5097 12,135 726 5811 9223

Even with the calculated R2 coefficient, it is still necessary to verify the occurrence of
overfitting and underfitting. The graphs in Figures A1–A9 represent the loss curves for
variations v1.1, v1.2, v1.3, v2.1 , v2.2, v2.3 , v.3.1 , v3.2 and v.3.3, respectively.

Table 6. Values of selected parameters.

Variable Value

Training rate (γ) 0.0039

Hyperparameter 1 (β1) 0.7892

Hyperparameter 2 (β2) 0.5625

Numerical stability (ε) 2 × 10−6

Hidden neurons in layer 1 35

Hidden neurons in layer 2 63

Hidden neurons in layer 3 56

The graphs were used to check for anomalies such as overfitting or underfitting. As can
be seen in Figures A4 and A6, the curves for variations 2.1 and 2.3 showed many oscillations,
which may indicate the presence of anomalies. The rest of the graphs, Figures A1–A3,
A5 and A7–A9, showed curves with a satisfactory behavior. Based on these graphs, on
the assertiveness of each model and on the time spent for optimization, the configuration
adopted is presented by variation 2.3, and the parameters are presented in Table 6.
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Figure 4. Comparison chart of the performance of variations.

Finally, a new algorithm was developed to predict the breakdown voltage in cases
other than those existing in our database. The algorithm receives data from user-defined
inputs and calculates the output value based on the defined neural network configuration.
The graphics of Figures A10–A14 were generated using the algorithm that allows for the
visualization of the relationship of the properties used with the tensile strength.

The graphs generated by the algorithm showed an acceptable behavior. The extremities
presented a certain variation, which was something predicted, due to the amount of data
being more centralized, causing uncertainties in the points with less data.

Grounded on the graphs, the parameter with the most decisive influence on increasing
the tensile strength is the filling density, presenting an almost linear and increasing behavior
with an increasing density since a more significant amount of material would be sharing
the load supported by the piece.

The second parameter that most affects the attraction resistance is the filling orientation.
This fact is linked to the mechanics of the material. A combination of components of
everyday stresses with shear stresses between the layers of material justifies this behavior.

Compared with other parameters, the thickness did not affect the tensile strength,
presenting an almost constant behavior throughout the analyzed thickness range.

5. Conclusions and Future Perspectives

Artificial intelligence can be helpful in several areas of activity. We presented a model
that uses ANNs and a genetic algorithm (neuroevolutionary approach) to estimate the
tensile strength of manufactured parts made by 3D printing. Therefore, for this paper, we
also generated a database from experimental literature that investigated the effect of process
parameters and the result obtained for the tensile strength property of the material. Then,
an ANN model was developed for the own database, which predicts the tensile strength
as a function of the printing process parameters. The developed model can be helpful in
structural and economic optimizations of parts that perform an engineering function.

The execution plan of the neuroevolutionary model showed a difference between the
values of R2, which happens due to the random processes of the genetic algorithm, such as
the generation of the initial population, selection, crossover and mutation. We verified that
applying a population metaheuristic with genetic algorithms leads to potential gains in
learning a neural network and confers an outstanding speed in the training mechanism.
The idea of feedforward and backpropagation can be pretty compelling, assuming that
they minimize the quadratic error. However, performing the training function for specific
applications takes a long time.



Algorithms 2022, 15, 263 12 of 21

In future research, we intend to replace the evolutionary aspect of our learning model
with one that tends to converge more quickly. In our planning, we will apply the training
method using a variety of genetic algorithms known as biased random-key genetic algo-
rithms [35,36]. The primary purpose is to consider larger populations to achieve higher
learning rates, assuming that the convergence time of the solutions tends to be smaller.
Thus, we can further diversify the execution parameters of the evolutionary algorithm by
establishing similar execution time limits to define the model.

Author Contributions: Conceptualization, R.R.B.M.; data curation, M.A.d.S. and R.R.B.M.; method-
ology, B.A.J. and P.R.P.; software, M.A.d.S.; validation, B.A.J.; writing—original draft, B.A.J. and P.R.P.;
writing—review and editing, B.A.J. and M.A.d.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. These data
can be found here: https://github.com/matheusalencar23/tcc, accessed on 17 May 2022. The
README.md file talks a little about the repository. The “data.csv” file contains the data used for
training. The “main.py” file contains the algorithm responsible for the neural network optimization
tests based on the genetic algorithm. The “test.py” file contains the algorithm used to generate
the loss curve graphs. The “af.py” file is responsible for the final implementation of the optimized
network. The “helpers.py” file contains functions used in different situations. The “images” folder
and the files “tests.txt”, “times.txt” and “data_table.csv” contain the results of the optimizations. The
results are separated into “v1”, “v2” and “v3” folders based on the run settings.

Acknowledgments: Plácido Rogério Pinheiro is grateful to the University of Fortaleza/Edson
Queiroz Foundation and to the National Council for Scientific and Technological Development
(CNPq) for developing this project.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABS Acrylonitrile Butadiene Styrene
AI Artificial Intelligence
ANN Artificial Neural Network
FFF Fused Filament Fabrication
GA Genetic Algorithm
MLP Multilayer Perceptron
PA Polyamide
PC Polycarbonate
PLA Polylactic Acid
PP Polypropylene

https://github.com/matheusalencar23/tcc


Algorithms 2022, 15, 263 13 of 21

Appendix A

Figure A1. Variation 1.1 anomaly test.

Figure A2. Variation 1.2 anomaly test.

Figure A3. Variation 1.3 anomaly test.
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Figure A4. Variation 2.1 anomaly test.

Figure A5. Variation 2.2 anomaly test.

Figure A6. Variation 2.3 anomaly test.
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Figure A7. Variation 3.1 anomaly test.

Figure A8. Variation 3.2 anomaly test.

Figure A9. Variation 3.3 anomaly test.
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Table A1. Used database.

Work
Print

Speed
(mm/s)

Extrusion
Temperature

(°C)

Fill
Density

(%)

Thickness
(mm)

Orientation
(°)

Tensile
Strength

(MPa)

1 40 190 100 0.2 0 40.03
1 40 210 100 0.2 0 50
1 40 230 100 0.2 0 56.96
1 50 190 100 0.2 0 50.04
1 50 210 100 0.2 0 59.84
1 50 230 100 0.2 0 49.86
2 30 200 100 0.1 90 45.83
2 30 200 100 0.1 90 50.35
2 30 200 100 0.1 90 47.83
2 30 210 100 0.1 90 47.52
2 30 210 100 0.1 90 50.72
2 30 210 100 0.1 90 50.08
2 30 220 100 0.1 90 48.34
2 30 220 100 0.1 90 51.38
2 30 220 100 0.1 90 49.21
2 30 230 100 0.1 90 49.35
2 30 230 100 0.1 90 50.68
2 30 230 100 0.1 90 50.46
2 30 240 100 0.1 90 49.32
2 30 240 100 0.1 90 50.13
2 30 240 100 0.1 90 49.52
2 40 200 100 0.1 90 50.26
2 40 200 100 0.1 90 49.62
2 40 200 100 0.1 90 49.05
2 50 200 100 0.1 90 50.54
2 50 200 100 0.1 90 50.23
2 50 200 100 0.1 90 49.41
2 60 200 100 0.1 90 52.15
2 60 200 100 0.1 90 51.73
2 60 200 100 0.1 90 50.51
3 60 210 100 0.1 0 27.48
3 60 210 100 0.1 15 30.69
3 60 210 100 0.1 30 32.35
3 60 210 100 0.1 45 37.42
3 60 210 100 0.1 60 43.93
3 60 210 100 0.1 75 49.85
3 60 210 100 0.1 90 53.66
3 60 210 100 0.05 90 53.7
3 60 210 100 0.15 90 51.75
3 60 210 100 0.2 90 50.52
3 60 210 20 0.1 90 20.04
3 60 210 40 0.1 90 21.08
3 60 210 60 0.1 90 23.81
3 60 210 80 0.1 90 28.5
3 60 195 100 0.1 90 46.97
3 60 200 100 0.1 90 47.3
3 60 205 100 0.1 90 49.18
3 60 215 100 0.1 90 54.39
3 60 220 100 0.1 90 54.17
3 60 225 100 0.1 90 54.27
3 60 230 100 0.1 90 53.03
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Table A1. Cont.

Work
Print

Speed
(mm/s)

Extrusion
Temperature

(°C)

Fill
Density

(%)

Thickness
(mm)

Orientation
(°)

Tensile
Strength

(MPa)

4 80 200 100 0.2 90 38.43
4 80 200 100 0.2 90 37.69
4 80 200 100 0.2 90 35.78
4 80 200 100 0.2 90 37.61
4 80 200 100 0.2 90 37.71
4 80 200 100 0.2 90 36.5
4 80 200 100 0.2 90 36.41
4 80 200 100 0.2 90 38.12
4 80 200 100 0.2 90 37.33
4 80 200 100 0.2 90 35.58
4 80 200 100 0.2 90 36.53
4 80 200 100 0.2 90 36.69
4 80 200 100 0.2 90 39.06
4 80 200 100 0.2 90 39.15
4 80 200 100 0.2 90 39.15
5 60 215 100 0.1 0 28.67
5 60 215 100 0.1 0 25.07
5 60 215 100 0.1 0 26.21
5 60 215 100 0.1 0 27.66
5 60 215 100 0.1 45 30.84
5 60 215 100 0.1 45 32.97
5 60 215 100 0.1 45 32.94
5 60 215 100 0.1 45 28.56
5 60 215 100 0.1 90 54.37
5 60 215 100 0.1 90 55.97
5 60 215 100 0.1 90 57.24
5 60 215 100 0.2 0 25.53
5 60 215 100 0.2 0 24.95
5 60 215 100 0.2 0 26.2
5 60 215 100 0.2 0 23.05
5 60 215 100 0.2 45 31.47
5 60 215 100 0.2 45 30.56
5 60 215 100 0.2 45 30.02
5 60 215 100 0.2 90 51.18
5 60 215 100 0.2 90 53.53
5 60 215 100 0.2 90 54.53
5 60 215 100 0.2 90 57.65
5 60 215 100 0.3 0 23.56
5 60 215 100 0.3 0 24.14
5 60 215 100 0.3 0 23.63
5 60 215 100 0.3 45 29.32
5 60 215 100 0.3 45 29.19
5 60 215 100 0.3 45 28.98
5 60 215 100 0.3 90 44.94
5 60 215 100 0.3 90 45.62
5 60 215 100 0.3 90 45.24
5 60 215 100 0.3 90 48.71
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Table A1. Cont.

Work
Print

Speed
(mm/s)

Extrusion
Temperature

(°C)

Fill
Density

(%)

Thickness
(mm)

Orientation
(°)

Tensile
Strength

(MPa)

6 80 200 20 0.1 90 20.71
6 80 200 20 0.2 90 19.09
6 80 200 20 0.1 45 20.2
6 80 200 20 0.2 45 17.67
6 80 220 20 0.1 90 22.63
6 80 220 20 0.2 90 19.79
6 80 220 20 0.1 45 21.36
6 80 220 20 0.2 45 18.2
6 80 200 40 0.1 90 24.18
6 80 200 40 0.2 90 22.35
6 80 200 40 0.1 45 19.91
6 80 200 40 0.2 45 22.24
6 80 220 40 0.1 90 24.97
6 80 220 40 0.2 90 26.14
6 80 220 40 0.1 45 25.31
6 80 220 40 0.2 45 24.32
6 80 200 60 0.1 90 26.23
6 80 200 60 0.2 90 26.55
6 80 200 60 0.1 45 29.43
6 80 200 60 0.2 45 25.22
6 80 220 60 0.1 90 30.22
6 80 220 60 0.2 90 28.67
6 80 220 60 0.1 45 29.43
6 80 220 60 0.2 45 26.71
7 30 185 10 0.15 90 18.6
7 30 185 10 0.19 90 22.79
7 30 185 10 0.25 90 25.16
7 30 185 10 0.15 90 21.4
7 30 185 10 0.19 90 23.63
7 30 185 10 0.25 90 29.15
7 30 185 10 0.15 90 25.76
7 30 185 10 0.19 90 24.6
7 30 185 10 0.25 90 30.38
7 30 185 25 0.15 90 22.04
7 30 185 25 0.19 90 26.24
7 30 185 25 0.25 90 30.71
7 30 185 25 0.15 90 26.53
7 30 185 25 0.19 90 28.8
7 30 185 25 0.25 90 32.38
7 30 185 25 0.15 90 30.33
7 30 185 25 0.19 90 34.16
7 30 185 25 0.25 90 36.37
7 30 185 50 0.15 90 30.93
7 30 185 50 0.19 90 35.47
7 30 185 50 0.25 90 35.54
7 30 185 50 0.15 90 30.79
7 30 185 50 0.19 90 34.05
7 30 185 50 0.25 90 36.96
7 30 185 50 0.15 90 30.26
7 30 185 50 0.19 90 35.78
7 30 185 50 0.25 90 37.7
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Figure A10. Graphs tensile strength vs. print speed generated from the algorithm.

Figure A11. Graphs tensile strength vs. extrusion temperature generated from the algorithm.

Figure A12. Graphs tensile strength vs. fill density generated from the algorithm.
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Figure A13. Graphs tensile strength vs. thickness generated from the algorithm.

Figure A14. Graphs tensile strength vs. orientation generated from the algorithm.
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