
Citation: Mijalkovic, J.; Spognardi, A.

Reducing the False Negative Rate in

Deep Learning Based Network

Intrusion Detection Systems.

Algorithms 2022, 15, 258. https://

doi.org/10.3390/a15080258

Academic Editors: Francesco

Bergadano and Giorgio Giacinto

Received: 30 June 2022

Accepted: 22 July 2022

Published: 26 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Reducing the False Negative Rate in Deep Learning Based
Network Intrusion Detection Systems
Jovana Mijalkovic † and Angelo Spognardi *,†

Department of Computer Science, Sapienza University, 00198 Rome, Italy;
mijalkovic.1908929@studenti.uniroma1.it
* Correspondence: spognardi@di.uniroma1.it
† These authors contributed equally to this work.

Abstract: Network Intrusion Detection Systems (NIDS) represent a crucial component in the security
of a system, and their role is to continuously monitor the network and alert the user of any suspicious
activity or event. In recent years, the complexity of networks has been rapidly increasing and network
intrusions have become more frequent and less detectable. The increase in complexity pushed
researchers to boost NIDS effectiveness by introducing machine learning (ML) and deep learning (DL)
techniques. However, even with the addition of ML and DL, some issues still need to be addressed:
high false negative rates and low attack predictability for minority classes. Aim of the study was to
address these problems that have not been adequately addressed in the literature. Firstly, we have
built a deep learning model for network intrusion detection that would be able to perform both
binary and multiclass classification of network traffic. The goal of this base model was to achieve at
least the same, if not better, performance than the models observed in the state-of-the-art research.
Then, we proposed an effective refinement strategy and generated several models for lowering the
FNR and increasing the predictability for the minority classes. The obtained results proved that
using the proper parameters is possible to achieve a satisfying trade-off between FNR, accuracy, and
detection of the minority classes.

Keywords: NIDS; deep learning; false negative rate; machine learning; artificial neural network

1. Introduction

Since the introduction of the first Intrusion Detection Systems, one of the biggest
challenges they faced was a high False Positive Rate (FPR) which means that they generate
many alerts for non-threatening situations. Security analysts have a massive amount of
threats to analyze, which can result in some severe attacks being ignored or overlooked [1].
Another challenge was the False Negative Rate (FNR), which was still not low enough.
A high FNR presents an even bigger problem than a high FPR because it is more dan-
gerous to falsely classify an attack as regular network traffic than vice versa. Because of
the constant technological improvements and network changes, new and more sophisti-
cated types of attacks emerge, creating the need for continuous improvement of Intrusion
Detection Systems.

One way of improving IDSs, on which the researchers have been working in the last
years, is using machine learning techniques to reduce the FPR and FNR and improve
general detection capabilities [2]. A good example can be found in [3], where the authors
developed a prototype IDS which aimed to detect data anomalies by using the k-means
algorithm implemented in Sparks MLib. The reason behind using ML algorithms is that
they can analyze massive amounts of data and gather any information which can then be
used to enhance the capabilities of IDSs [1]. Another reason for using ML algorithms is that
they are not domain-dependent and are very flexible- functional for multiple problems [4].

Researchers identified two primary issues in the literature regarding the already-
existing deep learning models used for IDS [5]. The first issue is that some have low

Algorithms 2022, 15, 258. https://doi.org/10.3390/a15080258 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15080258
https://doi.org/10.3390/a15080258
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1418-3613
https://orcid.org/0000-0001-6935-0701
https://doi.org/10.3390/a15080258
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15080258?type=check_update&version=2

Algorithms 2022, 15, 258 2 of 28

detection accuracy, especially when dealing with unbalanced data [6]. Most of the research
that focuses on the problem of machine learning and deep learning intrusion detection
systems uses the same publicly available datasets. After analyzing the extensive work
available on this topic, it emerges that some classes had meager detection rates when it
comes to multiclass classification, as will be presented in Section 3. The second issue is that
some models have somewhat high accuracy but also high False Positive and False Negative
Rates, which can lead to lower detection efficiency and weaken the network security [7,8].
Aside from these problems, the datasets used in some research are very aged and might not
reflect the modern-day network traffic, so the question arises: can these Intrusion Detection
Systems detect modern-day attacks? Moreover, how much can NIDS based on Deep Neural
Networks reduce the quite dangerous false negatives?

The objective of this research is tackle the above mentioned problems, and propose a
robust solution to improve the detection quality of Network Intrusion Detection Systems
using deep learning techniques, namely artificial neural networks. More specifically,
the idea is to lower the FNR and FPR and increase the attack predictability of the less
represented attack types. We state that, from a security perspective, we could tolerate
a slight increase in the FPR if this is a price for nullifying the FNR because it is more
dangerous to wrongly classify an attack as benign traffic than the other way around.

We start building a deep neural network for network intrusion detection purposes.
The deep neural network will be fed using two different datasets for binary and multiclass
network traffic classification. The models will be able to differentiate between regular
network traffic and attacks, as well as between different categories of attacks. We then
propose a strategy to lower the False Negative Rate of the models by doing various
experiments with different methods to reduce the FNR while keeping the False Positive
Rate low and the other metrics such as accuracy, precision, and recall high. The strategy
we use can be summarized in three steps: modifying the distribution of the training and
testing datasets, reducing the number of dataset features, and using class weights. For our
purposes, we used two different datasets, NSL-KDD [9] and UNSW-NB15 [10]. The idea
was to train the neural network models using an older and a more recent dataset and, in
that way, include a more extensive range of network attacks that the network will be able
to detect.

The rest of the paper is structured as follows: the next section provides the theoretical
background, with the introduction of the building blocks of our research. Section 3 describes
the used dataset and surveys the literature’s main results related to the deep learning
approach for NIDS. This section will show the reduced concern of the related work about
lowering false positives and false negatives. Section 4 provides the details of our approach,
while Sections 5 and 6 report the descriptions and the results of the experimental campaign.
Finally, Section 7 concludes the paper with some overall observations and some future
investigation directions.

2. Theoretical Background

In this section we present the fundamental elements to have a reference background,
namely Intrusion Detection Systems and artificial neural networks for deep learning.

2.1. Intrusion Detection Systems

An Intrusion Detection System is a software application or a device that monitors
network traffic and computer usage intending to detect any suspicious actions that go
against regular or expected use of the system, for example, a harmful activity or a policy
breach, in order to allow for system security to be maintained. Once the system detects
such actions, it alerts the user and collects information on the suspicious activity [11].

Network Intrusion Detection Systems are designed to protect the whole network,
not just a single host. NIDS are placed in strategic positions, for example, at the edge of
the network, where a network is most vulnerable to attacks [12]. NIDS analyze inbound
and outbound traffic to see if it fits the expected average behavior or matches known

Algorithms 2022, 15, 258 3 of 28

attack patterns. One positive aspect of this type of IDS is that it can be tough to detect
its presence in a system, which means that, usually, an attacker will not even realize that
NIDS is scrutinizing his actions. On the other hand, one negative aspect is that this type of
IDS analyzes enormous amounts of traffic, which leaves space for making mistakes and
generating an excess of false positives, or even some false negatives [13]. To avoid this, they
need more fine-tuning done by the administrator to ensure that they are working correctly
and not missing anything that might be crucial to the network’s security.

IDS need to know how to differentiate between suspicious and regular behavior.
For this purpose, there are different methods that they can use. The two main detec-
tion approaches are called signature-based detection and anomaly-based detection [11]. The
signature-based approach, also known as knowledge-based or definition-based, uses a database
of known vulnerabilities, signatures (byte combinations), or attack patterns. It identifies
attacks by comparing them to this database [12]. The underlying idea is to have a database
of anomalies recognized as attacks so that IDS can detect, promptly alert, and possibly
avoid the same (or similar) events in that database.

The anomaly-based approach, also known as the behavior-based, focuses on identify-
ing instances of malicious behavior, or in other words, system or network activity that does
not fit the expected behavior. These instances are called outliers, and once the IDS detects
an outlier, it is supposed to warn the administrator about it. Unlike signature-based IDS,
anomaly-based IDS can detect and alert the administrator when they discover a suspicious
behavior unknown to them. Instead of searching through a database of known attacks,
anomaly-based IDS use machine learning to train their detection system to recognize a
normalized baseline, which typically represents how the system behaves. Once the baseline
is determined, all the activity is compared to this baseline to see what stands out from the
typical network behavior [14].

2.2. Artificial Neural Networks for Deep Learning

Machine Learning (ML) is a specific branch of computer science and artificial intelli-
gence (AI) that focuses on using existing data and algorithms to mimic how people think,
learn and make decisions while gradually improving the accuracy of the decision-making
process and its results [15]. ML algorithms build a mathematical model using sample
data, also known as training data, aiming to make decisions that they are not explicitly
programmed to make [16].

Artificial neural networks (ANN), usually only called neural networks (NN), are
computing systems that contain a group of artificial neurons used to process data and
information. The architecture of the ANNs, and the idea behind building them, is based on
the biological neural networks found in human brains. The artificial neurons (nodes) are a
collection of connected units loosely modeled on the human brain’s neurons. The idea is
that these neurons should replicate how the human brain works. At its core, the neuron is
a mathematical function, which takes an input, does a calculation and transformation on it,
and gives an output.

Deep learning is essentially a subfield of machine learning, and it represents a particu-
lar case of an artificial neural network having more than one hidden layer. As previously
mentioned, these types of neural networks aim to simulate the human brain and learn
from large amounts of data [17]. The idea behind adding additional hidden layers is to
increase accuracy and optimize the model. The difference between deep learning and
machine learning is in the type of data they use and the methods they use to learn. Machine
learning usually uses structured, labeled data to make predictions. Even if the data are not
structured, they usually go through the data preparation phase to be organized in a way
that the learning model can use. On the other hand, deep learning can use data that are not
structured, such as images and text, which means that these algorithms can shorten the
processing phase or even remove it altogether [18].

In recent years, machine learning methods have been extensively used to build effi-
cient network intrusion detection systems [1]. The use of machine learning methods has

Algorithms 2022, 15, 258 4 of 28

significantly impacted and improved the detection accuracy of these intrusion detection
systems. However, there are still some downsides and limitations to using shallow machine
learning methods. In particular, they still require a high level of human interaction and a
significant amount of expert knowledge to process data and identify patterns [19], making
them expensive, time-consuming, and unsuitable for high-dimensional learning with a
large amount of data. Another negative side of using shallow machine learning techniques
is that their learning efficiency decreases as the network complexity increases. When there
are many multi-type variables, logistic regression can underfit with low accuracy, decision
trees can overfit, and Support Vector Machines are inefficient, mainly when dealing with
large amounts of data [20].

To address these limitations, researchers have identified Deep Learning as a valid
alternative to shallow learning techniques in the above mentioned situations. Advantages
of DL over ML are, for example, automatic feature learning and flexible adaptation to novel
problems, making it easier to work with big data [20].

3. Related Work

Deep Learning for NIDS is an emerging topic that has generated a new research
branch. There have been many novel approaches proposed by authors, such as in [21],
where the authors have proposed a modified bio-inspired algorithm, which is the Grey
Wolf Optimization algorithm (GWO), that enhances the efficacy of the IDS in detecting
both normal and anomalous traffic in the network. Another example is [22], where the
researchers analyzed the evolutionary sparse convolution network (ESCNN) intrusion and
threat activities in the Internet of things (IoT) with the goal to improve the overall attack
detection accuracy with a minimum false alarm rate. In this section, we report our analysis
of the main proposals found in the literature. The discussion will include an analysis of
the deep learning methods and the datasets used, the models produced, and the results
obtained for each research paper. We separated the different research proposals according
to the dataset they adopted to build their deep neural network models, namely the NSL-
KDD [9] and NSW-NB15 [10] datasets. The selection process of the related literature was
based on the following criteria:

1. Usage of the NSL-KDD and UNSW-NB15 datasets
2. Being relevant to Network Intrusion Detection Systems
3. Usage of deep learning algorithms

3.1. Datasets for Training Deep Learning Based NIDS

Training machine learning algorithms requires huge amounts of data, and the quality
of these data is crucial. Since most problems are very dependent on the type and the
quality of data, high quality datasets need to be used. Both NSL-KDD and UNSW-NB15
datasets have been used in many previous IDS researches, as described in the following
Sections 3.2 and 3.3.

The original researchers produced the NSL-KDD dataset to try to solve the shortcom-
ings and problems of the KDD Cup 99 dataset, once the most widely used dataset for the
evaluation of anomaly detection methods, prepared by Stolfo et al. [23]. The KDD Cup
99 dataset’s biggest problem was biased results due to redundant and duplicate records.
The NSL-KDD dataset consists of selected records from the complete KDD Cup 99 dataset.
This new dataset removes the identical records, resulting in around 78% of the training
dataset records and around 75% of the test dataset records [24]. Moreover, the number of
selected records from each difficulty level group is inversely proportional to the percentage
of the records in the original KDD Cup 99 dataset [25]. The NSL-KDD dataset contains
both regular traffic and traffic representing network attacks, so all the data in the dataset
are labeled as either normal or attack.

The NSL-KDD dataset is divided into four datasets: KDDTest+, KDDTrain+, KDDTest-
21, and KDDTrain+20%, where the latter are subsets of the former two, respectively. The
KDDTest-21 is a subset of the KDDTest+ and excludes the most challenging records. Simi-

Algorithms 2022, 15, 258 5 of 28

larly, the KDDTrain+20% is a subset of the KDDTrain+ and contains 20% of the records in
the entire training dataset [26].

The training dataset consists of 21 different attack types, while the testing dataset has
39 different types of attacks. The attack types in the training dataset are considered known
attacks, while the testing dataset consists of the known attacks, plus the additional, novel
attacks. The attacks are grouped into DoS, Probe attacks, U2R, and R2L. More than half of
the records are regular traffic, while the distribution of the R2L and U2R attacks is low. On
the other hand, a lower distribution corresponds to real-life internet traffic attacks, where
these types of traffic are very rarely seen [26]. The dataset includes a total of 43 features. The
first 41 are related to the traffic input and are categorized into three types: basic features,
content-based features, and traffic-based features.

The distribution of the above mentioned attack types is skewed and the breakdown of
the data distribution can be seen in Table 1. More than half of the records are normal traffic,
while the distribution of the R2L and U2R attacks is low.

Table 1. NSL-KDD record distribution.

Total Normal DoS Probe U2R R2L

KDDTrain+ 125,973 67,343
(53%)

45,927
(37%)

11,656
(9.11%)

52 (0.04%) 995
(0.85%)

KDDTest+ 22,544 9711
(43%)

7458
(33%)

2421 (11%) 200 (0.9%) 2654
(12.1%)

The UNSW-NB15 dataset is a relatively new network dataset, released in 2015 and
used in developing NIDS models [10]. The authors reported several main reasons for
making this new dataset. They wrote, in fact, that available datasets were too old, did not
reflect modern network traffic, and did not include some essential modern-day attacks.
The original dataset consists of 2,540,044 records, which can be classified as regular traffic
and network attacks. The authors have also made two smaller subsets, the training, and
testing subsets, consisting of 175,341 and 82,332 records, respectively. The original dataset
distinguishes a total of 49 features, and the authors arranged 35 in four categories: flow,
basic, content, and time features. These 35 features hold the integrated gathered information
about the network traffic. The following 12 features are additional and grouped into
two groups based on their nature and purpose. The first group contains features 36–40,
considered general-purpose features, while the remaining 41–47 are considered connection
features [10]. Each of the general-purpose features has its purpose from the defense point
of view, while the connection features give information in different connection scenarios.
The remaining two features, 48 and 49, are the label features, and they represent the attack
category and the traffic label, which shows whether the record is regular traffic or an attack,
respectively.

Similarly to the NSL-KDD dataset, the UNSW-NB15 dataset is also very unbalanced.
The breakdown of the data distribution can be seen in Table 2.

Table 2. UNSW-NB15 record distribution. Normal traffic accounts for 87% of the total, while some
attacks are <0.00005% (i.e., Shellcode and Worms).

Normal Fuzzers Analysis Backdoors DoS
2,218,761 24,262 2677 2329 16,353

Exploits Generic Reconnaissance Shellcode Worms
44,525 215,481 13,987 1511 174

Total
2,540,044

Algorithms 2022, 15, 258 6 of 28

3.2. Related Research Using the NSL-KDD Dataset

This section surveys the research papers which used the NSL-KDD dataset for training
and testing of the model.

Jia et al. [27] considered the two datasets, KDD Cup 99 and NSL-KDD, and proposed
a network intrusion detection system based on a deep neural network with four hidden
layers. Each hidden layer has 100 neurons and uses the ReLU activation function. The
output layer is fully connected and uses the softmax activation function. The authors have
built a multiclass classifier with the final aim to increase the model’s accuracy. In the end,
they have obtained an accuracy of >98% on all the classes except the U2R and R2L attacks.
The authors claimed that the main reason is the severely unbalanced nature of the datasets,
since there are too few records for these classes. We can observe two main downsides of
this research: it uses a very old dataset (KDD Cup 99), and the two used datasets are very
similar. This last point could mean that, even though this model performs well on these
datasets, it might not perform as well when detecting in a real network environment.

Vinayakumar et al. [28] proposed an intrusion detection system based on a hybrid
scalable deep neural network. They tested their model using six different datasets: KDD
Cup 99, NSL-KDD, Kyoto, UNSW-NB15, WSN-DS, and CICIDS 2017. The proposed
model consists of an artificial neural network with five hidden layers using the ReLU
activation function. Each hidden layer has a different number of neurons ranging from
1024 in the first hidden layer to 128 in the last. The authors evaluated both binary and
multiclass classification, obtaining broadly varied results. Depending on the dataset used,
the proposed models obtained the best accuracy for the KDD Cup 99 and the WSN-DS, and
the worst for the NSL-KDD and the UNSW-NB15. The authors’ main goal was to develop
a flexible model that can detect and classify different kinds of attacks, which is why they
used multiple datasets. The downsides of the proposed approach are that the obtained
model is very complex and has a lower detection rate for some of the classes.

Another research on this topic was done by Yin et al. [29]. Their study proposed a
network intrusion detection system based on a Recurrent Neural Network (RNN) model.
The dataset used in this research is the NSL-KDD dataset, and the authors have trained
an RNN model to do both binary and multiclass classification. The idea behind the study
was to build a model that will achieve higher performance in attack classification than the
models using the more traditional machine learning algorithms, such as Random Forest,
Support Vector Machine, etc. After the data preparation phase, the dataset used to train the
model consisted of 122 features, while the final model consisted of 80 hidden nodes. The
accuracy results obtained when testing the model were: 83.28% for binary classification
and 81.29% for multiclass classification. The authors state that these results are better than
those of other machine learning algorithms. Some downsides of this approach are that the
detection rates for the R2L and U2R classes are still low, and the model’s performance is
lower than other deep learning IDS models.

Potluri et al. [30] propose a DNN architecture of a feed-forward network where each
hidden layer is an auto-encoder, trained with the NSL-KDD dataset. Using auto-encoders
as hidden layers allows the training process to be done one layer at a time. The network has
three hidden layers: the first two are auto-encoders, with 20 and 10 neurons, respectively;
the third layer uses the softmax activation function and has five neurons. The first two
layers are used in the pre-training process: they perform a feature extraction phase and
reduce the number of features used by the DNN first to 20 and in the end to 10. The
third hidden layer selects five features out of 10 as a fine-tuning phase. The experiments
considered binary and multiclass classification: the detection accuracy for the binary
classification is high (>96%). In contrast, the detection accuracy for multiclass classification
varied considerably: it was satisfactory (>89%) for DoS, Probe, and regular traffic and low
for U2R and R2L. Similar to other research papers mentioned, the low detection accuracy
for some classes is a downside of this model.

Kasongo et al. [31] also proposed a network intrusion detection system based on a
feed-forward deep neural network using the NSL-KDD dataset. The goal of the research

Algorithms 2022, 15, 258 7 of 28

was to build a model that would perform better, meaning it would have a higher detection
accuracy than the existing machine learning models used for intrusion detection. The
authors divided the original training dataset into two subsets: one for training and one
for the evaluation after the training process. The initial test dataset was used to test the
performance of the model. The experiment included binary and multiclass classification in
two scenarios: the first used all 41 features of the dataset, and the second used a reduced
number of features (21 features) extracted during the feature selection phase. The model
with all the features showed a detection accuracy of 86.76% for binary and 86.62% for
multiclass classification. On the other hand, when using the reduced number of features,
the detection accuracy was 87.74% for binary and 86.19% for multiclass classification.
Among the downsides of this model were lower detection rates for R2L and U2R classes
and lower accuracy compared to other deep learning models used for intrusion detection.

The research paper by Shone et al. [19] also focuses on building a network intrusion
detection system based on a deep learning model using the KDD Cup 99 and the NSL-KDD
datasets. The proposed model is constructed by stacking non-symmetric deep auto-encoders
and combining them with the Random Forest classification algorithm. One of the research
purposes is to develop a technique for unsupervised feature learning, and the authors have
done this by using another non-symmetric deep auto-encoder. The authors proposed two
classifications: a 5-class classification for both datasets and a 13-class classification for the
NSL-KDD dataset. The average detection accuracy for the 5-class classification was 97.85%
with the KDD Cup 99 dataset, and 85.42% for the NSL-KDD dataset, while achieving 89.22%
for the 13-class classification with the NSL-KDD dataset. The downside of this model is that it
has low detection accuracy for classes with a lower number of records.

The research paper by Fu et al. [32] proposes a deep learning model for network
intrusion detection with the goal to address the issue of low detection accuracy in imbal-
anced datasets. The authors have used the NSL-KDD dataset for the training and testing
of the model. The model combines an attention mechanism and the bidirectional long
short-term memory (Bi-LSTM) network, by first extracting sequence features of data traffic
through a convolutional neural network (CNN) network, then reassigning the weights
of each channel through the attention mechanism, and finally using Bi-LSTM to learn
the network of sequence features. This paper employs the method of adaptive synthetic
sampling (ADASYN) for sample expansion of minority class samples, in order to address
data imbalance issues. The experiments included both binary and multiclass classification
and the accuracy and F1 score of the proposed network model reached 90.73% and 89.65%
on the KDDTest+ test set, respectively.

3.3. Related Research Using the UNSW-NB15 Dataset

This section discusses the research papers which used the UNSW-NB15 dataset for
training and testing of the model.

In the research by Kanimozhi et al. [33], the authors proposed a network intrusion
detection system based on an artificial neural network, trained and tested on the UNSW-
NB15 dataset. The authors used deep learning in combination with other machine learning
algorithms to extract the most relevant features of the dataset and use them for training
the model. The goal was to increase the detection accuracy and decrease the False Alarm
Rate. During the feature extraction phase, the authors used a combination of the Random
Forest and the Decision Tree algorithms for feature extraction. In the end, they selected
four features out of 45 in the original dataset. The authors have decided to do only binary
classification, meaning that the model will only classify a record as an attack or regular
traffic. The accuracy obtained in the testing phase was 89%, which is still lower than the
accuracy of other proposals with deep learning approaches.

Mahalakshmi et al. [34] have implemented an intrusion detection system based on a
convolutional neural network (CNN). The goal was to make a model that would overtake the
existing machine learning models used for intrusion detection concerning detection accuracy.
The proposed algorithm is a CNN used for binary classification, with an accuracy of 93.5%.

Algorithms 2022, 15, 258 8 of 28

The research done by Al-Zewairi et al. [35] uses the whole dataset, with all 2,540,044 records,
instead of the separate training and testing datasets prepared by the authors of the UNSW-
NB15 dataset. The proposed model is a deep artificial neural network consisting of five
hidden layers and a total of 50 neurons. The neural network is feed-forward and uses
backpropagation and stochastic gradient descent. The research aimed to find the optimal
network hyperparameters to achieve the best performance for binary classification. The
authors conducted experiments to find the best activation function for their model and the
optimal features to be used for training. The activation function that proved optimal for this
research was the rectifier function without the dropout method. The second experiment
regarding the optimal features showed that using the top 20% features, which were selected
during feature extraction, gave the best results. After testing the proposed model, the
evaluation showed high accuracy (98.99%) and a low false alarm rate (0.56%).

We can note that few researchers, from the ones mentioned in this section, included
the FPR and FNR as an evaluation metric in their research. However, most of them focused
on calculating the accuracy. The main problem with this approach is that the datasets used
are significantly unbalanced. Therefore the accuracy is not a good metric because it does
not distinguish between the records of different classes that were correctly classified. With
this concern in mind, in this paper we propose to focus on lowering the FNR and increasing
the predictability for the minority classes.

3.4. Summary and Comparison of the Related Research

A summary and comparison of all of the surveyed research papers are in Table 3. We
can observe that only half of the authors included the FPR and FNR as an evaluation metric
in their research since most of them focused on improving the accuracy. Moreover, only
two of the authors that considered the False Rates also proposed a multiclass classification.

The main problem of focusing on the accuracy metric is that the datasets used are
significantly unbalanced. Therefore the accuracy is not a good metric because it does not
distinguish between the records of different classes that were correctly classified. Thus,
in the next we focus on a strategy to improve the FNR and FPR, while improving the
detection of the less represented attack classes. In order to provide a better overview and
the possibility to compare the related work with the results which were achieved by the
model proposed in this research, we have included a brief summary of the proposed model
as the last row in Table 3.

Table 3. Summary and comparison of related works.

Researchers Year Dataset(s) Algorithm(s) Classification
Type

Accuracy FPR and FNR

Jia et al. [27] 2019 KDD Cup 99 and
NSL-KDD

Deep neural network Multiclass >98% on all classes
except U2R and R2L

FNR = 0.5%,
FPR = 0.3%

Vinayakumar
et al. [28]

2019 KDDp Cup 99,
NSL-KDD, Kyoto,

UNSW-NB15,
WSN-DS and
CICIDS 2017

Deep neural network Binary and
multiclass

Big variations
between datasets

Big variations
between datasets

Yin et al. [29] 2017 NSL-KDD Recurrent neural
network

Binary and
multiclass

83.28% for binary
and 81.29% for

multiclass

N/A

Potluri
et al. [30]

2016 NSL-KDD Deep neural network
with auto-encoders as

hidden layers

Binary and
multiclass

>96% for binary;
>89% for multiclass

N/A

Kasongo
et al. [31]

2019 NSL-KDD Deep neural network Binary and
multiclass

All features: 86.76%
(binary), 86.62%
(multiclass); 21
features: 87.74%

(binary) and 86.19%
(multiclass)

N/A

Algorithms 2022, 15, 258 9 of 28

Table 3. Cont.

Researchers Year Dataset(s) Algorithm(s) Classification
Type

Accuracy FPR and FNR

Kanimozhi
et al. [33]

2019 UNSW-NB15 Deep neural network Binary 89% FNR = 15%

Mahalakshmi
et al. [34]

2021 UNSW-NB15 Convolutional neural
network

Binary 93.5% N/A

Shone et al. [19] 2018 KDD Cup 99 and
NSL-KDD

Stacked non-symmetric
deep auto-encoder

network with Random
Forest classification

algorithm

Multiclass (5
and 13 classes)

97.85% (5-class
KDD Cup 99);
85.42% (5-class
NSL-KDD) and
89.22% (13-class

NSL-KDD)

Only FPR
considered, big

variations between
experiments (from
2.15% to 14.58%)

Al-Zewairi
et al. [35]

2017 UNSW-NB15 Deep neural network Binary 98.99% FPR = 0.56%

Fu et al. [32] 2022 NSL-KDD Deep neural network Binary and
multiclass

90.73% Lowest FPR for U2R
class (1.73%),

highest for Normal
class (13.44%)

Mijalkovic J.,
Spognardi A.

(proposed
model)

2022 NSL-KDD and
UNSW-NB15

Deep neural network Binary and
multiclass

>99% for NSL-KDD
and >97% for
UNSW-NB15

Lowest
FNR = 0.049%;

lowest FPR = 0.33%

4. Materials and Methods

In this section, we present the strategy we propose to achieve our research goals, while
in the next Section 5, we report the experimental campaign that confirms our approach.

Our strategy to reduce FNR and FPR and increase the detection of low-represented
attack categories consists of three points, as depicted in Figure 1. The first point, distribution
alteration, refers to the idea of altering the distribution of the original datasets. The rationale
is that the split proposed by the original dataset’s authors is sub-optimal, limiting the final
accuracy of the trained model. Our idea is that by reshuffling the datasets, it is possible to
improve the detection rate of most of the attack categories.

The second point, feature reduction, is the canonical approach of reducing the number
of features [36], selecting the more suitable for the primary goal.

The final point, class weight, refers to the idea of altering the importance of the different
categories of the data samples used in the network. The rationale is that we can reduce
the number of false negatives and improve the detection of the less common attacks at the
price of a low increase in the number of false positives.

Distribution
alteration

Feature

reduction Class weight

1 2 3

Figure 1. An overview of the proposed strategy.

In the Experiment section (Section 5), we reported and evaluated all the intermediate
results to show the improvement introduced by each of the points of our strategy.

4.1. Strategy Implementation

Figure 2 shows the details of the phases we took to construct and evaluate the gener-
ated models. In the following, we give an overall description of each phase, and the details
of the data preparation and model architecture in Sections 4.3 and 4.2, respectively.

The first step was to collect the data. As mentioned in Section 3.1, we selected NSL-
KDD and UNSW-NB15 to have two different datasets considered among the most suitable

Algorithms 2022, 15, 258 10 of 28

for our research. Since both datasets are divided into smaller datasets, the following were
chosen for our research: KDDTrain+, KDDTest+, and the full UNSW-NB15 dataset, which
we split into 4 CSV files.

Figure 2. An overview of the steps taken to build and evaluate the Deep Learning model.

The next step is to prepare the datasets so they can be ready to be used for training
our model. In this phase, we processed the datasets by removing missing and redundant
values, normalizing the numerical data, and encoding the categorical data into numerical.
Section 4.2 gives a detailed explanation of this step.

The third phase is constructing the deep neural network used in the research and
setting all of its parameters. A detailed explanation of the architecture and the parameters
chosen for the model is given in Section 4.3.

The fourth step is essential in deep learning and consists of training the neural network
since the dataset is used to train the model and enhance its ability to make predictions.

After the training of the model, the fifth step is to evaluate the model to see how it
performs. The testing datasets are used in this step, in order to see how well the model will
perform on the data that it has never seen before.

After the evaluation process, the next step is to tune the hyperparameters to see
if it would be possible to improve the learning process and achieve better results. The
hyperparameters are the parameters used to control the learning process, as opposed to
other parameters, such as node weights, whose values come from training. Some of the
parameters modified in this phase to obtain better results are, for example, the number of
epochs and the learning rate. We detail all the values and the obtained results of this step
in Section 4.3.

The final step is the prediction step, in which we achieve the final results of the
model. In this step, we conclude how well the model performed and if it reached the
experiment’s goal. The predictions of each experiment and the evaluation of their results
are in Sections 5 and 6, respectively.

4.2. Data Preparation

Preparing the data is a crucial step and can significantly impact the model’s learning
process. If we do not give appropriate input to the model, it might not give us the result
that we want to obtain. As mentioned earlier, we have two datasets used in this research,
the NSL-KDD and the UNSW-NB15 datasets. Both of these datasets need to be processed,
and since they have a similar structure, we used the same preparation process.

4.2.1. Preparation of the NSL-KDD Dataset

As a starting point in the data preparation of the NSL-KDD dataset, we have two
subsets of data already divided by the authors, the KDDTrain+ and the KDDTest+. These
subsets have 43 features, while the KDDTrain+ subset has 125,793 records and the KDDTest+
subset 22,544. We processed and verified that both subsets do not contain any missing
values. Therefore, we could proceed with doing the rest of the data preparation on the
subsets as they are.

The goal of multiclass classification is to correctly classify records that represent a
network attack as the attack category they belong to. Therefore, it is necessary to change
the label for every record from the attack type to the class to which that attack type belongs.
This step is repeated for both subsets. For the model to learn from this data, we need
to transform it into numerical values. For this transformation, we employed one-hot
encoding. One-hot encoding is a technique used for categorical features where no ordinal

Algorithms 2022, 15, 258 11 of 28

relationship exists. Therefore it is not enough to just do integer encoding (assign each
category an integer). One-hot encoding creates new binary columns for each possible
unique categorical feature value. In other words, it converts the categorical data into a
binary vector representation. We applied one-hot encoding to training and test subsets
specifically for the following features: protocol_type, service, and flag. Ultimately, we
removed the original categorical columns and obtained a dataset with 124 columns.

The next step was the encoding of the label. For binary classification, the ’normal’
value was represented by a 0, while all the others ’abnormal’ were given the value 1. For
multiclass classification, again, the ’normal’ value was given the value 0, and the rest of the
values were integer encoded. The multiclass values range from 0 to 4. This was done for
both subsets.

The next step was to strip the label and attack category columns from the train and
test datasets, building the effective subsets used to generate the model. The combination of
the original subset with the label column is used for the binary classification, while the com-
bination with the attack category column is used for the multiclass classification.Thus, we
divided the training and the testing subsets into 6 subsets: train f , train`, trainc, test f , test`,
and testc. The subsets train f and test f contain all the columns with the features of the
original training and testing datasets except for label and attack category columns: they
will be given to the model as the input. The label column for training and testing for binary
classification went in train` and test`, respectively, while the attack category column went
in trainc and testc.

The last preparation step was to normalize the data in the train f and test f subsets
using the min-max method. For every feature, the minimum value is changed to 0, the
maximum value is changed to 1, and every other value is transformed into a decimal value
between 0 and 1 using the following formula value−min

max−min . The final subsets used, train f and
test f , now contain 123 columns each, and all the data is encoded into numerical values
and normalized.

4.2.2. Preparation of the UNSW-NB15 Dataset

Unlike the NSL-KDD dataset, we opted to use the original full UNSW-NB15 dataset,
which contains 2,540,044 records, instead of using the two subsets pre-divided by the
authors. The authors have provided four separate CSV files which contain the records of
this dataset. The first step was to load all four CSV files and merge them into one dataset.

The next step was to check if there were any duplicate records and remove them. The
removal of the duplicates is essential to avoid having the same records in the training and
testing subsets because the testing subset should contain only the records that were not
previously seen by the neural network. During this phase, we removed 480,625 dupli-
cate records.

The next step was to check if the dataset contains any missing values. Three features
contained missing values: ‘ct_flw_http_mthd’, ‘is_ftp_login’ and ‘ct_ftp_cmd’. The missing
values were then replaced with ‘0’. It has been noted that the dataset contains the value ’–’
for the feature ‘service’ in a significant number of records, so this value was renamed as
‘undefined’ to give more meaning to it. Then, we removed the columns ‘srcip’ and ‘dstip’.
We also fixed some white-space inconsistencies among records with the same values and
other minor typos (i.e., ‘Backdoors’ instead of ’Backdoor’ in the ’attack_cat’ field).

We repeated the one-hot encoding for the whole dataset, changing the categorical
features ‘proto’, ‘service’, and ‘state’. At the end of this process, the dataset contained
202 columns.

While the column ‘label’ used for binary classification already contained 0 for regular
traffic and 1 for abnormal, the ‘attack category’ required an encoding for the multiclass
classification. Thus, in the next step, we encoded with a 0, the ‘normal’ (no-attack) value,
and assigned values from 1 to 9 to the other attack categories.

Algorithms 2022, 15, 258 12 of 28

The next step was to split the dataset into training and testing subsets. The training
subset was a random sample with 80% of the original records, while the testing subset
contained a random sample with 20%.

As for the NSL-KDD dataset, we separated the feature data columns (train f and test f)
from the label (train` and test`) and attack category (trainc and testc) columns.

As for the NSL-KDD dataset, the final step was the normalization of the numerical
variables of the train f and test f subsets of the features with the min-max normalization
method. In the end, these subsets contain 200 columns.

4.3. Model Architecture

After the data preparation phase, we started training the deep neural network. We
adopted the same model architecture for both datasets to evaluate which would perform
better. Different activation functions are used for different layers of the neural network. We
differentiated the model for the binary classification and the one for multiclass classification,
changing the number of nodes in the output layer and the activation function for the output
layer. The hyperparameters related to the training algorithm are:

• Batch size. This is a training parameter that indicates the number of records passed
and processed by the algorithm before updating the model.

• Number of epochs. This is also a training parameter which indicates the number of
passes done through the complete training dataset.

• Optimizer. Optimizer is an algorithm, or a method, which is used to change the
attributes of the network such as weights and learning rate in order to reduce the loss.
The most used optimizers, among the others, are gradient descent, stochastic gradient
descent, adagrad, and adaptive moment estimation (Adam) [37]. The optimizer used
for the model is stochastic gradient descent (SGD) with Nesterov momentum.

• Momentum. This parameter is used to help predict the direction of the next step,
based on the previous steps. It is used to prevent oscillations. The usual choice is a
number between 0.5 and 0.9.

• Learning rate. The learning rate is a parameter which controls the speed at which the
neural network learns. It is usually a small positive value in range between 0.0 and 1.0.
This parameter controls how much we should change the model in order to respond
to the estimated error each time the weights of the model are updated [38].

• Loss function. The loss function in a neural network is used to calculate the difference
between the expected output and the output that was generated by the model. This
function allows acquiring the gradients that the algorithm will use to update the neural
network’s weights. The loss function used for this model for binary classification is the
binary cross-entropy loss function. On the other hand, we used a sparse categorical
cross-entropy loss function for multiclass classification.

At the end of our experiments, the final values chosen for the training are provided
in Table 4. These final values were reached after a process of manual hyperparameter
tuning which included a series of trials with different values. The number of epochs shown
in Table 4 indicates the maximum number of epochs, but Early Stopping is used in the
experiments in order to prevent overfitting.

The neural network used for the experiment is a feed-forward neural network, which
means that the connections between the nodes do not form any cycles and the data in
the network moves only forward from the input nodes, going through the hidden nodes,
and in the end reaching the output nodes. The algorithm used to train the network is the
backpropagation algorithm. As mentioned earlier, backpropagation is short for “backward
propagation of errors”. Given an error function and an artificial neural network, the
backpropagation algorithm calculates the gradient of the error function with respect to the
weights of the neural network [39].

Algorithms 2022, 15, 258 13 of 28

Table 4. Final values chosen for the training phase.

Hyperparameter Value

Batch Size 64

Epochs 100

Optimizer Stochastic Gradient Descent (SGD) with Nesterov momentum

Momentum 0.9

Learning rate 0.01

Regularization 1 × 10−6

Moreover, the number of layers in the network is six: one input layer, one output layer
and four hidden layers. The input layer takes the input dimension which is equal to the
number of features used in the training dataset. The first hidden layer uses the Parametric
Rectified Linear Unit (PReLU) activation function and it has 496 neurons. The PReLU
activation function generalizes the traditional rectified unit with a slope for negative values
and it is formally defined as [40]:

f (yi) =

{
yi if yi > 0
aiyi if yi ≤ 0

(1)

The other hidden layers use the Rectified Linear Unit (ReLU) activation function. This
function was designed to overcome the vanishing gradient problem and it works in the
way that it returns 0 for any negative input, but for a positive input, it returns the value of
the input back. It can be defined as:

f (x) = max(0, x) (2)

The second, third and fourth hidden layers have 248, 124 and 62 nodes, respectively.
The output layer has a different activation function and a different number of neurons
based on the type of classification which is being done. For binary classification, the output
layer uses the sigmoid activation function and has only one neuron. The sigmoid function
takes a value as the input, and outputs another value between 0 and 1. It can be defined as:

f (x) =
1

1 + e−x (3)

On the other hand, for the multiclass classification, the output layer has the number
of neurons which is equal to the number of the attack categories in the dataset, and the
activation function which is used is the softmax function. This function converts a vector of
K real values into a vector of K real values that sum to 1 [41]. It can be defined as:

fi(~x) =
exi

∑J
j=1 exj

for i = 1, ..., J (4)

Additionally, to prevent overfitting during the training phase, we implemented the
dropout on all the hidden layers. Dropout is a regularization method that causes some of
the neurons of a layer to be randomly dropped out (ignored) during the training of the
network. Dropping out the neurons means that they will not be considered during the
specific forward or backward passing through the neural network. The dropout rate chosen
for this network, for each hidden layer, was equal to 0.1. This means that 10% of the units
will be dropped (set to 0) at each step. The units that are not dropped are scaled up by

1
(1−rate) so that the sum of all the units remains unchanged. A graphical representation of
the architecture of the neural network can be seen in Figure 3.

Algorithms 2022, 15, 258 14 of 28

Figure 3. A graphical representation of the DNN architecture.

4.4. Development Tools

The data preparation, model implementation, training, testing, and evaluation were
all done in Python using the following libraries:

• NumPy.This is a Python library which provides support for working with large multi-
dimensional arrays. It allows the user to perform different mathematical operations
on such arrays and it guarantees efficient calculations [42].

• Pandas. Pandas is a Python library used for data analysis and manipulation. It
provides support for manipulating numerical tables and time series [43].

• Matplotlib. This is a Python library that provides support for data visualization. It is
used to create static, animated and interactive graphs and other visualizations [44].

• Scikit-learn. This is a machine learning Python library used for predictive analysis. It
is built on NumPy, SciPy and Matplotlib and it can provide features for classification,
regression, model selection, clustering, preprocessing and so on. Another name for it
is sklearn [45].

• Tensorflow. This is a Python library for machine learning. It provides features for
building and training machine learning models and it allows users to create large scale
neural networks with many layers [46].

• Keras. This is a Python library which provides an interface for artificial neural net-
works. It is built on top of Tensorflow and it acts as a frontend for it [47].

• Jupyter notebook. This is an interactive computational environment which allows
the user to edit the code live, create equations, visualizations, and much more. It
is practical for research because it allows the researcher to combine code, output,
explanations, and multimedia resources in one document [48].

• PyCaret. This is an open-source Python library used for automation of the machine
learning processes. It gives the user many options which include automatic data
preparation, automatic model construction, training of the models, and evaluation and
comparison of the models [49]. For this experiment, PyCaret was used to automate
the data preparation and feature selection process.

Algorithms 2022, 15, 258 15 of 28

All the experiments were conducted on a HP Pavilion Power laptop with the Intel(R)
Core(TM) i7-7700HQ CPU @ 2.80 GHz processor. The rest of the hardware specifications of
the laptop used for the experiment can be seen in Table 5.

Table 5. Hardware specifications of the computer used for training.

Hardware Specification

GPU NVIDIA GeForce GTX 1050

Memory 16 GB system memory

Storage 256 GB SSD

GPU Memory 4 GB GPU memory

5. Experiments

Our experimental campaign aimed to achieve the lowest False Negative Rate (FNR)
while keeping the False Positive Rate (FPR) low. When it comes to multiclass classifications,
an additional goal was to improve the accuracy of some of the classes which have a smaller
number of records. The purpose of the experiments has been to find which architecture
and hyperparameters give us the lowest FNR. Additionally, other performance metrics
mentioned in Section 1 were compared for each experiment. A total of 14 experiments were
conducted: 4 for binary classification on the NSL-KDD dataset, 4 for multiclass classification
on the NSL-KDD dataset, three for binary classification on the UNSW-NB15 dataset, and
three experiments for multiclass classification on the UNSW-NB15 dataset.

5.1. Experiments on the NSL-KDD Dataset

Since both binary and multiclass classification were done on this dataset, the first part
of the experiments which will be explained were conducted for binary classification, and
the second part for the multiclass classification.

5.1.1. NSL-KDD Binary—Full Features

The first binary classification experiment considered the training of the model with all
the features extracted during the data preparation phase (Section 4.2). Since the NSL-KDD
subsets used for training and testing (train f and test f) had a total of 123 columns each, the
neural network’s input layer has 123 nodes.

The first step is to train the neural network on this version of the training subset and
assess the results achieved. We used the Keras library to build the model and fine-tune
the hyperparameters, as mentioned in Section 4.3. We used Early Stopping (ES) to prevent
overfitting the network. One problem which can lead to overfitting is using too many
epochs to train the network. Hence, ES allows the user to set many training epochs, but it
stops the process once the model performance reaches the best possible result and before it
drops. The confusion matrix for this model can be seen in Table 6. The confusion matrix
makes it easier to see which classes are easily confused by the model, and from this matrix
it can be seen that the number of False Negatives (FN) is 3296, which is very high. This
means that the model wrongly classified 3296 attack records as normal traffic. The number
of false positives is equal to 662, which means that the model wrongly classified 662 records
as attacks.

Table 6. Confusion matrix for NSL-KDD “full features” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 9049 662

Attack 3296 9537

Algorithms 2022, 15, 258 16 of 28

5.1.2. NSL-KDD Binary—Modified Distribution

The second binary classification experiment considered using the same 123 features of
the data preparation stage but slightly changing the training and testing subsets distribution.
The idea behind this was that, maybe, the neural network could not learn from the training
subset prepared by the authors. This experiment aims to see if a different distribution of
records in the training and the testing subsets will give better results.

To obtain the new subsets, we combined the two subsets together into one dataset,
shuffling the data and then splitting them again so that 80% of the records are used for the
training of the network, and 20% of the records are used for testing. The training subset
contained 118,813 records and the testing subset 29,704 records. The architecture of the
neural network was the same as for the first experiment, and again, Early Stopping was
used. The confusion matrix for this experiment can be seen in Table 7. It can be seen that
the number of false negatives in this experiment is equal to 32, which is significantly lower
than in the “NSL-KDD binary—full features” experiment. The number of false positives is
is 52, which is also lower when compared to the previous experiment.

Table 7. Confusion matrix for NSL-KDD “modified distribution” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 15,371 52

Attack 32 14,249

5.1.3. NSL-KDD Binary—Reduced Features

For the third binary classification experiment, we used feature selection to reduce
the False Positive and the False Negative Rates. The testing and training subsets used
for this experiment were the same ones which were used for the second experiment. The
feature selection process was automatized by using the Python library PyCaret. This library
makes feature selection on a dataset by combining several supervised feature selection
methods to select a subset of features that contribute the most to the prediction of the target
variable [50].

After the feature selection process, the total number of features selected as the most
important was 41 out of 123. This means that the model for this experiment had 41 neurons
in the input layer. The rest of the architecture remained unchanged, including the use of the
Early Stopping method. The confusion matrix for this experiment can be seen in Table 8.
The number of false negatives in this experiment is 147, which is slightly higher than in
the previous experiment, but still significantly lower than in the first NSL-KDD binary
experiment. The number of false positives is 215, which is higher than in the previous
experiment, but again, lower than in the first experiment.

Table 8. Confusion matrix for NSL-KDD “reduced features” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 15,185 215

Attack 147 14,157

5.1.4. NSL-KDD Binary—Class Weights

The fourth binary classification experiment included the use of class weights. When
dealing with an imbalanced dataset, assigning weights to different classes can help the
model make more accurate predictions. For our research, we consider the false negatives

Algorithms 2022, 15, 258 17 of 28

more dangerous than false positives. Hence, we needed a way to make the model penalize
the false negatives by assigning different class weights. We assigned a weight of 1 for the
normal class (which has the label 0) and 2 for the attack class (which has the label 1). Aside
from assigning weights to the classes, this experiment uses the same hyperparameters as
the first and the second. The input dimension is equal to the second experiment since we
considered the same 41 features of the feature selection phase. We used early Stopping in
this experiment as well. The confusion matrix for this experiment can be seen in Table 9.
From the confusion matrix it can be seen that the number of false negatives is 115, which
is slightly lower than in the previous experiment, but still higher than in the “NSL-KDD
binary—modified distribution” experiment. The number of false positives is higher than in
the previous experiment.

Table 9. Confusion matrix for NSL-KDD “class weights” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 15,024 376

Attack 115 14,189

5.1.5. NSL-KDD Multiclass—Full Features

The first multiclass classification experiment included the usage as an input in the
neural network of all 123 features produced in the data preparation phase. The initial
training and testing subsets provided by the authors were used. After the division of
the subsets into input and output subsets during the data preparation phase, train f and
test f contain the 123 features and will be used as inputs in the training and testing of the
network. As described in Section 4.2, trainc and testc subsets, which contain the attack
category, will be used as the output in the training and the testing phase. Hence, the
neural network’s input layer has 123 nodes, like the “NSL-KDD binary—full features”
experiment. The output layer has five nodes, one for each of the four attack categories and
an additional one for the records which represent regular traffic. As mentioned earlier, the
loss function used for the multiclass classification is the sparse categorical cross-entropy
function. We opted for this function since it is recommended when the output is made of
integers. The other hyperparameters are the same as explained in Section 4.3. As for binary
classification, we used Early Stopping to prevent the model from over-fitting. Table 10
shows the confusion matrix for this example. To calculate the False Negative Rate, the class
‘Normal’ will be considered as the negative class, and the others as the positive classes.
By taking a look at the confusion matrix, it can be concluded that the last column of the
matrix shows the classes which were predicted as the ’Normal’ (negative) class, so in the
intersection of the last column and the last row, we have the number of True Negatives
(TN). The TN in this case are the records which actually belong to the ’Normal’ class and
were correctly classified as the ‘Normal’ class. The other elements of the last column are
false negatives (FN), meaning that they are records which actually belong to other classes
and were wrongly classified as the ‘Normal’ class. Furthermore, the other elements in the
last row are false positives (FP) since they actually belong to the ‘Normal’ class but were
wrongly classified as attacks. All the other elements can be considered as true positives
(TP) in this case. Taking this into account, the False Negative Rate can be calculated using
these values and it is equal to 31.17%, which is a very unsatisfactory value.

Algorithms 2022, 15, 258 18 of 28

Table 10. Confusion matrix for NSL-KDD “full features” multiclass classification experiment.

Predicted

DoS Probe R2L U2R Normal

A
ct

ua
l

DoS 5836 223 71 0 1330
Probe 266 1835 1 0 319
R2L 105 289 148 2 2341
U2R 2 25 22 8 10

Normal 387 243 3 0 9078

5.1.6. NSL-KDD Multiclass—Modified Distribution

The second multiclass classification experiment was conducted using the same logic
as for the second binary classification experiment. Again, all 123 features were used as
the input in the neural network, therefore the input layer has 123 nodes. The two original
subsets provided by the authors are mixed into one, shuffled, and split, to obtain a different
distribution of the testing and training subsets. After the split, the training subset contains
80% of the records, while the testing subset contains 20%. After the split, the training
subset contains 118.813 records and the testing subset contains 29.704 records. Again, the
Early Stopping method was used. The confusion matrix for this experiment can be seen
in Table 11. Using the same logic as in the previous experiment, for calculating the False
Negative Rate, the “Normal” class will be considered as the negative class. The FNR in
this experiment is equal to 0.17%. By looking at the confusion matrices in Tables 10 and 11,
it can be seen that the classes R2L and U2R have less records in the testing subset than in
the previous experiment. By having more records in the training subset, and less in the
testing one, the network learned to better classify records belonging to these classes. In fact,
the testing subset used for this experiment contains 716 records belonging to the R2L class,
and 20 belonging to the U2R class, and in case of the “full features” experiment, the testing
subset contained 2885 R2L and 64 U2R records.

Table 11. Confusion matrix for NSL-KDD “modified distribution” multiclass classification
experiment.

Predicted

DoS Probe R2L U2R Normal

A
ct

ua
l

DoS 10,666 2 1 0 7

Probe 4 2806 1 0 9

R2L 0 2 706 5 6

U2R 0 1 5 12 2

Normal 3 4 25 0 15,437

5.1.7. NSL-KDD Multiclass—Reduced Features

This experiment considered the use of the same subsets generated in the previous
experiment, preforming feature selection with PyCaret and then training the network by
using only the selected features. Out of 123 features, only 35 features were selected for this
model. The next step was to train the neural network by using these 35 selected features,
which means that the input layer of the neural network in this case had 35 nodes, one
for every feature used for training. The confusion matrix for this experiment is shown in
Table 12. The FNR for this experiment was equal to 0.133%. By looking at Tables 11 and 12
it can be concluded that the “NSL-KDD multiclass—modified distribution” model achieves
better performance for the minority classes. On the other hand, the “NSL-KDD multiclass—
reduced features” model achieves a lower FNR.

Algorithms 2022, 15, 258 19 of 28

Table 12. Confusion matrix for NSL-KDD “reduced features” multiclass classification experiment.

Predicted

DoS Probe R2L U2R Normal

A
ct

ua
l

DoS 10,666 3 1 0 6

Probe 1 2803 8 1 7

R2L 1 10 702 2 4

U2R 0 0 9 9 2

Normal 8 26 62 0 15,373

5.1.8. NSL-KDD Multiclass—Class Weights

For this experiment, we used the training and testing subsets of the previous experi-
ment and the 35 features selected using feature selection. In addition, we introduced the
class weights. The goal of setting specific class weights, in this case, is to make the neural
network learn to better differentiate between the classes with a smaller number of records
(U2R and R2L), and that is done by giving those classes a higher weight. Moreover, by
correctly classifying records that belong to those classes, the FNR should also be lowered.
We resolved to use the Scikit-learn method compute_class_weight for computing the class
weights. Because very few records belong to the U2R class, the weights returned by this
function needed to be slightly altered to avoid overfitting and falsely classifying many
records belonging to the U2R class. The final class weights used were: 0.55 for the DoS
class, 2.11 for the Probe class, 7.51 for the R2L class, 24.03 for the U2R class, and 0.38 for the
Normal class. Again, the network’s input layer had 35 nodes for the 35 selected features.
The confusion matrix is shown in Table 13. The FNR for this experiment was the lowest,
and it was equal to 0.049%.

Table 13. Confusion matrix for NSL-KDD “class weights” multiclass classification experiment.

Predicted

DoS Probe R2L U2R Normal

A
ct

ua
l

DoS 10,629 19 23 0 5

Probe 1 2799 13 6 1

R2L 0 5 706 7 1

U2R 0 0 6 14 0

Normal 27 76 88 0 15,278

5.2. Experiments on the UNSW-NB15 Dataset

As for the NSL-KDD dataset, for this dataset we built binary and multiclass classifica-
tion models.

5.2.1. UNSW-NB15 Binary—Full Features

The first binary classification experiment included using all 200 features obtained
during the data preparation phase by splitting the original dataset. The neural network
architecture, and the training hyperparameters, are explained in Section 4.3. The neural
network’s input layer has 200 nodes, one for each feature used. As for the NSL-KDD
experiments, we used Early Stopping for the UNSW-NB15 experiments, to prevent the
neural network from overfitting. The confusion matrix is shown in Table 14. The number
of false negatives is equal to 1662 and the number of false positives is 2965.

Algorithms 2022, 15, 258 20 of 28

Table 14. Confusion matrix for UNSW-NB15 “full features” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 389,003 2965

Attack 1662 18,254

5.2.2. UNSW-NB15 Binary—Reduced Features

The second binary classification experiment considered using a minimized set of
features obtained using a combination of several feature selection methods implemented by
PyCaret. The feature selection picked 53 features out of 200, which were labeled as the most
relevant for the classification process. Hence, the neural network’s input layer consisted of
53 nodes, while the training hyperparameters were the same as in the other experiments.
The rest of the network architecture was the same as the one presented in Section 4.3. The
whole process included, again, the Early Stopping mechanism. The confusion matrix is
shown in Table 15. The number of false negatives is equal to 1431 and the number of false
positives is 3257. The number of FN is slightly lower than in the previous experiment,
while the number of FP slightly increased.

Table 15. Confusion matrix for UNSW-NB15 “reduced features” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 388,177 3257

Attack 1431 18,485

5.2.3. UNSW-NB15 Binary—Class Weights

In this experiment, we incorporated the class weights into the network of the previous
experiment. We used the same subsets for training and testing and the 53 features selected
during the feature selection process. The training hyperparameters and the rest of the
network architecture are the same as in the previous experiment. The class weights were
assigned in the following manner: 1 for the normal class (labeled with 0) and 3 for the
attack class (labeled with 1). The confusion matrix is shown in Table 16. The number of
false negatives is equal to 56, which is the lowest value in all three binary experiments.
The number of false positives increased, and is equal to 5536. The increase was expected,
because there is a trade-off between the false positives and false negatives.

Table 16. Confusion matrix for UNSW-NB15 “class weights” binary classification experiment.

Predicted

Normal Attack

A
ct

ua
l Normal 386,432 5536

Attack 56 19,860

5.2.4. UNSW-NB15 Multiclass—Full Features

The first multiclass classification experiment included the usage of all 200 features
obtained during the data preparation process, as well as the subsets generated by splitting
the main dataset. The input layer has 200 nodes, one for each feature, and the output layer
has ten nodes, one for each possible class representing normal traffic and the other nine for
each attack category. The loss function used for this model is the sparse categorical cross-
entropy function, and the activation function in the output layer is the softmax function.

Algorithms 2022, 15, 258 21 of 28

Early Stopping was used. The confusion matrix can be seen in Table 17. The confusion
matrix shows that the model was not able to correctly predict any of the attacks that belong
to the class ‘Worms’. The reason for this is the fact that the dataset is very unbalanced,
and there were only 38 records belonging to this class in the testing dataset. Other classes,
besides the class ‘Worms’ which have a low number of records are: Shellcode, Backdoor,
and Analysis. Considering the ‘Normal’ class as the negative class, looking at the Table 17,
the number of true negatives can be found in the intersection of the 7th row and the 7th
column, and it is equal to 390,912. The false positives are all the records that belong to the
‘Normal’ class, but were wrongly classified as an attack, and they can be seen in the 7th row.
The false negatives are the records that represent an attack, but were wrongly classified as
belonging to the ‘Normal’ class, and they can be seen in the 7th column. Based on this, the
FNR can be calculated, and it is equal to 16.48%.

Table 17. Confusion matrix for UNSW-NB15 “full features” multiclass classification experiment.

Predicted

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Recconnaissanse Shellcode Worms

A
ct

ua
l

Analysis 7 20 4 25 310 0 89 0 0 0
Backdoor 8 11 10 49 261 3 11 41 0 0

DoS 9 8 28 496 359 53 62 62 15 0
Exploits 9 21 21 4232 459 70 345 427 12 0
Fuzzers 11 20 2 127 1560 20 2536 123 12 0
Generic 0 0 6 406 356 4175 52 38 5 0
Normal 0 0 0 190 540 11 390,912 180 13 0

Recconnaissanse 0 0 1 102 309 4 172 2122 0 0
Shellcode 0 0 0 22 20 4 34 140 84 0

Worms 0 0 0 27 3 5 2 1 0 0

5.2.5. UNSW-NB15 Multiclass—Reduced Features

For this experiment, we used the same data subsets as the previous one and included
a feature selection process to use only the most relevant features for the classification of the
records in each of the ten categories. By using the feature selection method from PyCaret,
44 features were selected as the most important. The input layer has 44 nodes, one for
each of the selected features. Early Stopping was used. The confusion matrix is shown
in Table 18. In comparison to the results obtained in the previous experiment, in this
experiment, the model had worse performance when it comes to correctly classifying the
minority classes. None of the records belonging to the ‘Analysis’, ‘Backdoor’ and ‘Worms’
classes were correctly classified. However, the FNR for this experiment was equal to 12.69%,
which was a bit lower than in the “UNSW-NB15 multiclass—full features” experiment.

Algorithms 2022, 15, 258 22 of 28

Table 18. Confusion matrix for UNSW-NB15 “reduced features” multiclass classification experiment.

Predicted

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Recconnaissanse Shellcode Worms

A
ct

ua
l

Analysis 0 0 15 167 131 0 82 60 0 0
Backdoor 0 0 19 138 116 6 16 99 0 0

DoS 0 0 28 625 144 62 42 173 18 0
Exploits 0 0 28 4218 212 111 163 849 15 0
Fuzzers 0 0 14 413 1346 63 2101 456 18 0
Generic 0 0 8 518 164 4186 31 125 6 0
Normal 0 0 3 393 582 47 390,217 586 18 0

Recconnaissanse 0 0 5 149 129 8 91 2328 0 0
Shellcode 0 0 0 13 17 5 17 178 74 0

Worms 0 0 0 25 0 7 0 5 1 0

5.2.6. UNSW-NB15 Multiclass—Class Weights

This experiment included the usage of the same subsets as for the previous experiment
(44 selected features) but with the addition of the class weights. The weights were calculated
using the function compute_class_weight from the Python library Scikit-learn. We further
refined the obtained weights to avoid over-fitting. The final weights used for training were
the following: 9 for class 0 (no-attack), 10 for class 1, 5 for class 2, 3 for class 3, 3 for class 4,
3 for class 5, 1 for class 6, 4 for class 7, 15 for class 8 and 20 for class 9. The neural network
architecture was the same as in the second experiment, and Early Stopping was used. The
confusion matrix can be seen in Table 19. When compared to the first two experiments,
the “UNSW-NB15 multiclass—class weights” experiment has seen an improvement in the
performance metrics for these classes. The FNR is equal to 0.77%, which is the lowest of all
three experiments.

Table 19. Confusion matrix for UNSW-NB15 “class weights” multiclass classification experiment.

Predicted

Analysis Backdoor DoS Exploits Fuzzers Generic Normal Recconnaissanse Shellcode Worms

A
ct

ua
l

Analysis 14 349 0 23 0 0 69 0 0 0
Backdoor 0 322 0 11 9 0 3 46 0 3

DoS 0 376 30 456 45 52 12 92 28 1
Exploits 8 442 13 3964 209 73 53 682 142 10
Fuzzers 0 387 2 202 3076 103 8 443 190 0
Generic 1 339 1 390 41 4154 6 59 32 15
Normal 38 11 6 382 3886 78 386,630 684 131 0

Recconnaissanse 0 323 2 12 101 6 4 2237 25 0
Shellcode 0 0 0 1 21 4 0 142 136 0

Worms 0 0 0 26 0 1 0 5 1 5

6. Results

This Section provides a detailed explanation of the results which were obtained from
the experimental campaign, with a comparison of the results.

6.1. Results of the NSL-KDD Experiments

The results which were obtained in the 4 binary experiments done on the NSL-KDD
dataset can be seen in Table 20.

Algorithms 2022, 15, 258 23 of 28

Table 20. Comparison of the results achieved in the NSL-KDD binary classification experiments.

Experiment Training
Accuracy

Prediction
Accuracy

Precision Recall F1 Score ROC AUC
Score

FPR FNR

Full features 99.77% 82.44% 93.51% 74.32% 82.82% 83.75% 6.82% 25.68%

Modified
distribution

99.76% 99.72% 99.64% 99.78% 99.71% 99.72% 0.33% 0.22%

Reduced
features

98.94% 98.78% 98.5% 98.97% 98.74% 98.79% 1.4% 1.03%

Class weights 98.32% 98.35% 97.42% 99.2% 98.3% 98.38% 2.44% 0.8%

Observing the table, we can see that the “NSL-KDD binary—modified distribution”
experiment achieved the best results, with the lowest FPR and FNR. The “NSL-KDD binary—
full features” experiment achieved the lowest results, which could mean that the initial
training and testing subsets distribution was not appropriate. The “NSL-KDD binary—
reduced features” and the “NSL-KDD binary—class weights” experiments achieved more
or less similar results, with the fourth one having a slightly lower FNR, which was the
goal. On the other hand, the FPR in the “NSL-KDD binary—class weights” experiment was
higher than in the “NSL-KDD binary—reduced features” one, which was expected because
there is a trade-off between the false positives and false negatives.

Table 21 reports the results obtained in the 4 multiclass experiments with the NSL-
KDD dataset.

Table 21. Comparison of the results achieved in the NSL-KDD multiclass classification experiments.

Experiment Training
Accuracy

Prediction
Accuracy

Precision Recall F1 Score ROC AUC
Score

FNR

Full features 99.82% 74.99% 74.68% 74.99% 70.89% 93.55% 31.17%

Modified
distribution

99.82% 99.74% 99.74% 99.74% 99.74% 99.9% 0.17%

Reduced features 99.59% 99.49% 99.51% 99.49% 99.49% 99.99% 0.133%

Class weights 99.09% 99.06% 99.14% 99.06% 99.09% 99.97% 0.049%

Observing the results in Table 21, we can see that the lowest FNR was reached in
the “NSL-KDD multiclass—class weights” experiment and the highest in the “NSL-KDD
multiclass—full features” experiment. In fact, all the evaluation metrics from the “NSL-
KDD multiclass—full features” experiment show very poor performance, which again
might mean that the datasets which were pre-made by the authors need a feature selec-
tion when facing the FNR minimization problem. The “NSL-KDD multiclass—modified
distribution” experiment has slightly higher precision, recall, and F1 score than the “NSL-
KDD multiclass—reduced features” and the “NSL-KDD multiclass—class weights” experi-
ments. Overall, the “NSL-KDD multiclass—modified distribution”, “NSL-KDD multiclass—
reduced features”, and “NSL-KDD multiclass—class weights” experiments all have per-
formance metrics that are >99%, and that can be considered a satisfactory result. When
it comes to the specific performance of the classes with a lower number of records, the
U2R and R2L classes, the best performance for them was achieved in the “NSL-KDD
multiclass—modified distribution” experiment.

As mentioned earlier, another one of the goals of this research is to increase the
detection rates of some specific classes which were shown to have low detection rates in
previous works by other authors, as shown in Section 3. For this dataset, the classes that
had the lowest detection rates were R2L and U2R, so we report the following performance

Algorithms 2022, 15, 258 24 of 28

metrics specifically for these two classes: precision, recall, and F1 score. For the NSL-
KDD multiclass experiments, the detailed results of those metrics are in Table 22. The
column “No. of records” refers to the number of records belonging to those classes in the
testing dataset.

Table 22. Performance metrics for U2R and R2L classes in NSL-KDD multiclass experiments.

Experiment Class Precision Recall F1 Score No. of Records

Full features
R2L 60% 5% 9% 2885

U2R 80% 12% 21% 67

Modified distribution
R2L 96% 98% 97% 719

U2R 71% 60% 65% 20

Reduced features
R2L 90% 98% 94% 719

U2R 75% 45% 56% 20

Class weights
R2L 84% 98% 91% 719

U2R 52% 70% 60% 20

When it comes to the specific performance of the classes with a lower number of
records, the U2R and R2L class, the best performance for them was achieved in the “NSL-
KDD multiclass—modified distribution” experiment. Since Early Stopping was used in
order to prevent the model from overfitting, the average number of epochs needed to
reach the optimal result while training the model on the NSL-KDD dataset was 25. The
average time needed to train the network for this dataset was approximately 3 min for each
experiment.

6.2. Results of the UNSW-NB15 Experiments

The results achieved in the three binary classification experiments with the UNSW-
NB15 dataset are in Table 23. We can observe that the prediction accuracy is very similar in
all three experiments. However, there is a considerable variation between the precision and
recall, especially between the “UNSW-NB15 binary—full features” and the “UNSW-NB15
binary—class weights” experiments. The observed reduction is likely because the “UNSW-
NB15 binary—class weights” experiment produced more false positives and fewer false
negatives. After all, there is a trade-off between those two when using class weights. The
goal was to lower the FNR as much as possible, and the model used in the “UNSW-NB15
binary—class weights” experiment was the most successful.

Table 23. Comparison of the results achieved in the UNSW-NB15 binary classification experiments.

Experiment Training
Accuracy

Prediction
Accuracy

Precision Recall F1 Score ROC AUC
Score

FPR FNR

Full features 98.87% 98.88% 86.03% 91.65% 88.75% 95.45% 0.76% 8.34%

Reduced features 98.86% 98.86% 85.02% 92.81% 88.75% 96% 0.83% 7.18%

Class weights 98.63% 98.64% 78.2% 99.72% 87.66% 99.15% 1.41% 0.28%

Three multiclass classification experiment results for the UNSW-NB15 dataset are
in Table 24. We can observe that the lowest FNR was achieved in the “UNSW-NB15
multiclass—class weights” experiment, jointly with the best performance for minority
classes. The same experiment also reached the highest precision. However, it is noticeable
as there was not a significant variation between the other metrics among all the performed
experiments. Since the dataset has a minimal number of records representing attacks

Algorithms 2022, 15, 258 25 of 28

compared to records representing regular traffic, even introducing the class weights, it is
hard for the network to learn how to distinguish between the different classes since there
are too few samples.

Table 24. Comparison of the results achieved in the UNSW-NB15 multiclass classification
experiments.

Exp. Name Training
Accuracy

Prediction
Accuracy

Precision Recall F1 Score ROC AUC
Score

FNR

Full features 97.91% 97.87% 97.55% 97.87% 97.65% 99.87% 16.48%

Reduced features 97.91% 97.7% 97.44% 97.7% 97.48% 99.85% 12.69%

Class weights 97.25% 97.25% 98.2% 97.25% 97.55% 99.83% 0.77%

The dataset’s lowest number of records classes are Worms, Shellcode, Backdoor, and
Analysis. The goal is to try to increase the prediction capability for these classes, so we
report in Table 25 the class-specific precision, recall, and F1 score for these four classes. As
for the other dataset, the column “No. of records” refers to the number of records belonging
to those classes in the testing dataset.

Table 25. Performance metrics for minority classes in UNSW-NB15 multiclass experiments.

Experiment Class Precision Recall F1 Score No. of Records

Full features

Analysis 16% 2% 3% 455

Backdoor 14% 3% 5% 394

Shellcode 60% 28% 38% 304

Worms 0% 0% 0% 38

Reduced features

Analysis 0% 0% 0% 455

Backdoor 0% 0% 0% 394

Shellcode 49% 24% 33% 304

Worms 0% 0% 0% 38

Class weights

Analysis 23% 3% 5% 455

Backdoor 13% 82% 22% 394

Shellcode 20% 45% 28% 304

Worms 15% 13% 14% 38

When compared to the first two experiments, the “UNSW-NB15 multiclass—class
weights” experiment has seen an improvement in the performance metrics for all these
classes. Since Early Stopping was used in order to prevent the model from overfitting, the
average number of epochs needed to reach the optimal result while training the model on
the UNSW-NB15 dataset was 20. The average time needed to train the network for this
dataset was approximately 30 min for each UNSW-NB15 experiment.

7. Conclusions

This research focused on building a deep neural network and training it on two modern
datasets for binary and multiclass classification. Despite other works in the literature, the
primary goals of our research were to lower the False Negative Rate as much as possible
while still keeping the False Positive Rate low and increasing the detection rate of minority
classes (classes with a low number of records). We proposed a strategy made of three points:
correction of the training and testing subset distribution, feature selection, and usage of

Algorithms 2022, 15, 258 26 of 28

class weights. We ran an experimental campaign for two well-established datasets to verify
the effectiveness of our strategy in lowering the FNR and increasing the performance of
minority classes. In almost all of the experiments, a combination of feature selection and the
assignment of correct class weights during the training phase of the neural network gave
the best results in lowering the FNR. We observed that the assignment of the class weights
needs to be used with caution since it can easily lead to over-fitting and an increase in the
FPR. Even when used correctly, it will still give a slight increase in the FPR, as seen from
the experiments in this research, but the number is still considered low enough. Only in the
case of binary classification for the NSL-KDD dataset the usage of class weights was not
the best method for achieving the lowest FNR. A more effective correction was modifying
the distribution of the train and test subsets. Regarding multiclass classification, feature
selection with class weights proved to be the best method to increase the performance of
the minority classes.

Compared to the work surveyed in Section 3, the neural network models constructed
in our research incidentally outperform all of them in terms of accuracy, except [35]. This
comparison can be seen in the overview given in Table 3. In terms of accuracy, our model
reached accuracy values >99% for the NSL-KDD dataset, which is higher than the accuracy
achieved by other models on the same dataset, both for binary and multiclass classification.
When it comes to the results achieved for the UNSW-NB15 dataset, our proposed model
reached the accuracy of >98% for binary classification, and >97% for multiclass classification.
Once again, it has overcome most of the other models on the same dataset when it comes
to accuracy, with the exception of [35], in which the model has achieved the accuracy of
98.99% for binary classification and the FPR of 0.56%. However, because the datasets used
in this research are unbalanced, accuracy is not the best metric to evaluate the performance.
Therefore, this research also uses precision, recall, F1 score, and ROC AUC score to assess
the performance. The best results for the NSL-KDD dataset show that all of these metrics
were >99%, and for the UNSW-NB15, they were >98% for binary classification and >97% for
multiclass classification. When it comes to the FPR and FNR, when compared to the models
surveyed in Section 3 where the authors focused on calculating these values, the values
achieved by our proposed model, once again, outperform most of the surveyed models.
The exception is once again [35], when it comes to binary classification for UNSW-NB15
dataset specifically.

The main limitation of our work is that we have limited evidence of the generalization
of our strategy. This is because we used only two of the most established datasets to
validate our approach. A natural extension of our experiment to other datasets would
further confirm the validity of our approach.

We acknowledge that our results for the lowest-represented attack classes are not
optimal, and there is still space for increasing the performance. However, the major
problem remains: the number of their records is still too low for a deep neural network
to learn from it. One of the possible directions could be finding a way to improve these
datasets to fix the imbalance and therefore increase the detection rates for minority classes.
One idea is to generate and add more records to the minority classes. Another alternative
is to use oversampling techniques. Most of the hyperparameter tuning in this research
was done manually by doing different experiments. One possible alternative we should
consider in future research would be using automatic parameter tuning methods to achieve
better performance. Another direction for future work would be to test these models in a
live system with actual attacks to see how well they would perform in the real world.

Author Contributions: Conceptualization, J.M. and A.S.; methodology, J.M.; software, J.M.; valida-
tion, J.M. and A.S.; formal analysis, J.M.; investigation, J.M.; resources, J.M. and A.S.; data curation,
J.M.; writing—original draft preparation, J.M. and A.S.; writing—review and editing, J.M. and A.S.;
visualization, J.M.; supervision, A.S.; project administration, J.M. and A.S. All authors have read and
agreed to the published version of the manuscript.

Algorithms 2022, 15, 258 27 of 28

Funding: This work was supported in part by the MIUR under grant “Dipartimenti di eccellenza
2018-2022” of the Department of Computer Science of Sapienza University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: https://www.unb.ca/cic/datasets/nsl.html and https://research.unsw.edu.au/
projects/unsw-nb15-dataset (accessed on 4 June 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019, 9,

4396. [CrossRef]
2. Goeschel, K. Reducing false positives in intrusion detection systems using data-mining techniques utilizing support vector

machines, decision trees, and naive Bayes for off-line analysis. In Proceedings of the SoutheastCon, Norfolk, VA, USA, 30 March–3
April 2016; pp. 1–6. [CrossRef]

3. Azeroual, O.; Nikiforova, A. Apache Spark and MLlib-Based Intrusion Detection System or How the Big Data Technologies Can
Secure the Data. Information 2022, 13, 58. [CrossRef]

4. Chahar, R.; Kaur, D. A systematic review of the machine learning algorithms for the computational analysis in different domains.
Int. J. Adv. Technol. Eng. Explor. (IJATEE) 2020, 7, 147–164. [CrossRef]

5. Ahmad, Z.; Shahid Khan, A.; Shiang, C.; Ahmad, F. Network intrusion detection system: A systematic study of machine learning
and deep learning approaches. TRansactions Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef]

6. Hodo, E.; Bellekens, X.; Hamilton, A.; Tachtatzis, C.; Atkinson, R. Shallow and deep networks intrusion detection system:
A taxonomy and survey. arXiv 2017, arXiv:1701.02145.

7. Al Jallad, K.; Aljnidi, M.; Desouki, M.S. Anomaly detection optimization using big data and deep learning to reduce false-positive.
J. Big Data 2020, 7, 68. [CrossRef]

8. Vijayakumar, D.; Ganapathy, S. Machine Learning Approach to Combat False Alarms in Wireless Intrusion Detection System.
Comput. Inf. Sci. 2018, 11, 67. [CrossRef]

9. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani A. A Detailed Analysis of the KDD CUP 99 Data Set. In Proceedings of the
Second IEEE Symposium on Computational Intelligence for Security and Defense Applications (CISDA), Ottawa, ON, Canada,
8–10 July 2009.

10. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network
data set). In proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; pp. 1–6.

11. Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J. Survey of intrusion detection systems: Techniques, datasets and challenges.
Cybersecurity 2019, 2, 1–22. [CrossRef]

12. Rao, U.H.; Nayak, U. Intrusion Detection and Prevention Systems. In The InfoSec Handbook; Apress: Berkeley, CA, USA, 2014;
ISBN 978-1-4302-6383-8. [CrossRef]

13. Liao, H.-J.; Lin, C.-H.R.; Lin, Y.-C.; Tung, K.-Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl. 2013,
36, 16–24. [CrossRef]

14. García-Teodoro, P.; Díaz-Verdejo, J.; Maciá-Fernández, G.; Vázquez, E. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Comput. Secur. 2009, 28, 18–28. [CrossRef]

15. What Is Machine Learning? Available online: https://www.ibm.com/cloud/learn/machine-learning (accessed on 12 June 2022).
16. Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; ISBN 978-1-4939-3843-8.
17. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Farhan, L. Review of deep learning: Concepts,

CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [CrossRef]
18. Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN

Comput. Sci. 2021, 2, 1–20. [CrossRef] [PubMed]
19. Shone, N.; Ngoc, T.N.; Phai, V.D.; Shi, Q. A Deep Learning Approach to Network Intrusion Detection. IEEE Trans. Emerg. Top.

Comput. Intell. 2018, 2, 41–50. [CrossRef]
20. Kocher, G.; Kumar, G. Machine learning and deep learning methods for intrusion detection systems: Recent developments and

challenges. Soft Comput. 2021, 25, 9731–9763. [CrossRef]
21. Alzaqebah, A.; Aljarah, I.; Al-Kadi, O.; Damaševičius, R. A Modified Grey Wolf Optimization Algorithm for an Intrusion

Detection System. Mathematics 2022, 10, 999. [CrossRef]
22. Ali, M.H.; Jaber, M.M.; Abd, S.K.; Rehman, A.; Awan, M.J.; Damaševičius, R.; Bahaj, S.A. Threat Analysis and Distributed Denial

of Service (DDoS) Attack Recognition in the Internet of Things (IoT). Electronics 2022, 11, 494. [CrossRef]
23. Stolfo, S.J.; Fan, W.; Lee, W.; Prodromidis A.; Chan, P. K. Cost-based modeling for fraud and intrusion detection: Results from the

jam project. DISCEX 2000 2, 1130.

https://www.unb.ca/cic/datasets/nsl.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://doi.org/10.3390/app9204396
http://doi.org/10.1109/SECON.2016.7506774
http://dx.doi.org/10.3390/info13020058
http://dx.doi.org/10.19101/IJATEE.2020.762057
http://dx.doi.org/10.1002/ett.4150
http://dx.doi.org/10.1186/s40537-020-00346-1
http://dx.doi.org/10.5539/cis.v11n3p67
http://dx.doi.org/10.1186/s42400-019-0038-7
http://dx.doi.org/10.1007/978-1-4302-6383-8_11
http://dx.doi.org/10.1016/j.jnca.2012.09.004
http://dx.doi.org/10.1016/j.cose.2008.08.003
https://www.ibm.com/cloud/learn/machine-learning
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.1007/s42979-021-00815-1
http://www.ncbi.nlm.nih.gov/pubmed/34426802
http://dx.doi.org/10.1109/TETCI.2017.2772792
http://dx.doi.org/10.1007/s00500-021-05893-0
http://dx.doi.org/10.3390/math10060999
http://dx.doi.org/10.3390/electronics11030494

Algorithms 2022, 15, 258 28 of 28

24. Revathi, S.; Malathi, A. A Detailed Analysis on NSL-KDD Dataset Using Various Machine Learning Techniques for Intrusion
Detection. Int. J. Eng. Res. Technol. 2013, 2, 1848–1853.

25. NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB. Available online: https://www.unb.ca/cic/
datasets/nsl.html (accessed on 4 June 2022).

26. Saporito, G. A Deeper Dive into the NSL-KDD Data Set. Available online: https://towardsdatascience.com/a-deeper-dive-into-
the-nsl-kdd-data-set-15c753364657 (accessed on 6 June 2022).

27. Jia, Y.; Wang, M.; Wang, Y. Network intrusion detection algorithm based on deep neural network. IET Inf. Secur. 2019, 13, 48–53.
[CrossRef]

28. Vinayakumar, R.; Alazab, M.; Soman, K.; Poornachandran, P.; Al-Nemrat, A.; Venkatraman, S. Deep Learning Approach for
Intelligent Intrusion Detection System. IEEE Access 2019, 7, 41525–41550. [CrossRef]

29. Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access
2017, 5, 21954–21961. [CrossRef]

30. Potluri, S.; Diedrich, C. Accelerated deep neural networks for enhanced Intrusion Detection System. In proceedings of the 2016
IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, Germany, 6–9 September
2016; pp. 1–8.

31. Kasongo, S.; Sun, Y. A Deep Learning Method With Filter Based Feature Engineering for Wireless Intrusion Detection System.
IEEE Access 2019, 7, 38597–38607. [CrossRef]

32. Fu, Y.; Du, Y.; Cao, Z.; Li, Q.; Xiang, W. A Deep Learning Model for Network Intrusion Detection with Imbalanced Data. Electronics
2022, 11, 898. [CrossRef]

33. Kanimozhi, V.; Jacob, P. UNSW-NB15 Dataset Feature Selection and Network Intrusion Detection using Deep Learning. Int. J.
Recent Technol. Eng. 2019, 7, 443–446.

34. Mahalakshmi, G.; Uma, E.; Aroosiya, M.; Vinitha, M. Intrusion Detection System Using Convolutional Neural Network on UNSW
NB15 Dataset. Adv. Parallel Comput. 2021, 40, 1–8. [CrossRef]

35. Al-Zewairi, M.; Almajali, S.; Awajan, A. Experimental Evaluation of a Multi-layer Feed-Forward Artificial Neural Network
Classifier for Network Intrusion Detection System. In Proceedings of the 2017 International Conference on New Trends in
Computing Sciences (ICTCS), Amman, Jordan, 11–13 October 2017; pp. 167–172.

36. Abdulhammed, R.; Musafer, H.; Alessa, A.; Faezipour, M.; Abuzneid, A. Features Dimensionality Reduction Approaches for
Machine Learning Based Network Intrusion Detection. Electronics 2019, 8, 322. [CrossRef]

37. Doshi, S. Various Optimization Algorithms For Training Neural Network. Available online: https://towardsdatascience.com/
optimizers-for-training-neural-network-59450d71caf6 (accessed on 8 December 2021).

38. Brownlee, J. Understand the Impact of Learning Rate on Neural Network Performance. Available online: https://
machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/ (accessed on 7
December 2021).

39. McGonagle, J.; Shaikouski, G.; Williams, C.; Hsu, A.; Khim, J.; Miller, A. Backpropagation. Available online: https://brilliant.org/
wiki/backpropagation/ (accessed on 16 December 2021).

40. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
arXiv 2015, arXiv:abs/1502.01852.

41. Wood, T. Softmax Function. Available online: https://deepai.org/machine-learning-glossary-and-terms/softmax-layer (accessed
on 18 December 2021).

42. NumPy. Available online: https://numpy.org/ (accessed on 25 June 2022).
43. Pandas. Available online: https://pandas.pydata.org/ (accessed on 25 June 2022).
44. Matplotlib. Available online: https://matplotlib.org/ (accessed on 25 June 2022).
45. Scikit-Learn. Available online: https://scikit-learn.org/ (accessed on 25 June 2022).
46. Tensorflow. Available online: https://www.tensorflow.org/ (accessed on 25 June 2022).
47. Keras. Available online: https://keras.io/ (accessed on 25 June 2022).
48. Jupyter. Available online: https://jupyter.org/ (accessed on 25 June 2022).
49. PyCaret. Available online: https://pycaret.org/ (accessed on 13 June 2022).
50. Feature Selection. Available online: https://pycaret.gitbook.io/docs/get-started/preprocessing/feature-selection (accessed on

16 June 2022).

https://www.unb.ca/cic/datasets/nsl.html
https://www.unb.ca/cic/datasets/nsl.html
https://towardsdatascience.com/a-deeper-dive-into-the-nsl-kdd-data-set-15c753364657
https://towardsdatascience.com/a-deeper-dive-into-the-nsl-kdd-data-set-15c753364657
http://dx.doi.org/10.1049/iet-ifs.2018.5258
http://dx.doi.org/10.1109/ACCESS.2019.2895334
http://dx.doi.org/10.1109/ACCESS.2017.2762418
http://dx.doi.org/10.1109/ACCESS.2019.2905633
http://dx.doi.org/10.3390/electronics11060898
http://dx.doi.org/10.3233/APC210116
http://dx.doi.org/10.3390/electronics8030322
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://brilliant.org/wiki/backpropagation/
https://brilliant.org/wiki/backpropagation/
https://deepai.org/machine-learning-glossary-and-terms/softmax-layer
https://numpy.org/
https://pandas.pydata.org/
https://matplotlib.org/
https://scikit-learn.org/
https://www.tensorflow.org/
https://keras.io/
https://jupyter.org/
https://pycaret.org/
https://pycaret.gitbook.io/docs/get-started/preprocessing/feature-selection

	Introduction
	Theoretical Background
	Intrusion Detection Systems
	Artificial Neural Networks for Deep Learning

	Related Work
	Datasets for Training Deep Learning Based NIDS
	Related Research Using the NSL-KDD Dataset
	Related Research Using the UNSW-NB15 Dataset
	Summary and Comparison of the Related Research

	Materials and Methods
	Strategy Implementation
	Data Preparation
	Preparation of the NSL-KDD Dataset
	Preparation of the UNSW-NB15 Dataset

	Model Architecture
	Development Tools

	Experiments
	Experiments on the NSL-KDD Dataset
	NSL-KDD Binary—Full Features
	NSL-KDD Binary—Modified Distribution
	NSL-KDD Binary—Reduced Features
	NSL-KDD Binary—Class Weights
	NSL-KDD Multiclass—Full Features
	NSL-KDD Multiclass—Modified Distribution
	NSL-KDD Multiclass—Reduced Features
	NSL-KDD Multiclass—Class Weights

	Experiments on the UNSW-NB15 Dataset
	UNSW-NB15 Binary—Full Features
	UNSW-NB15 Binary—Reduced Features
	UNSW-NB15 Binary—Class Weights
	UNSW-NB15 Multiclass—Full Features
	UNSW-NB15 Multiclass—Reduced Features
	UNSW-NB15 Multiclass—Class Weights

	Results
	Results of the NSL-KDD Experiments
	Results of the UNSW-NB15 Experiments

	Conclusions
	References

