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Abstract: The work in this paper is motivated by a recently published article in which the authors
developed an efficient two-stage genetic algorithm for a comprehensive model of a flexible job-shop
scheduling problem (FJSP). In this paper, we extend the application of the algorithm to solve a lot
streaming problem in FJSP while at the same time expanding the model to incorporate multiple
objectives. The objective function terms included in our current work are the minimization of the
(1) makespan, (2) maximum sublot flowtime, (3) total sublot flow time, (4) maximum job flowtime,
(5) total job flow time, (6) maximum sublot finish-time separation, (7) total sublot finish-time separa-
tion, (8) maximum machine load, (9) total machine load, and (10) maximum machine load difference.
Numerical examples are presented to illustrate the greater need for multi-objective optimization
in larger problems, the interaction of the various objective function terms, and their relevance in
providing better solution quality. The ability of the two-stage genetic algorithm to jointly optimize all
the objective function terms is also investigated. The results show that the algorithm can generate
initial solutions that are highly improved in all of the objective function terms. It also outperforms
the regular genetic algorithm in convergence speed and final solution quality in solving the multi-
objective FJSP lot streaming. We also demonstrate that high-performance parallel computation can
further improve the performance of the two-stage genetic algorithm. Nevertheless, the sequential
two-stage genetic algorithm with a single CPU outperforms the parallel regular genetic algorithm
that uses many CPUs, asserting the superiority of the two-stage genetic algorithm in solving the
proposed multi-objective FJSP lot streaming.

Keywords: flexible job shop scheduling; lot streaming; multi-objective optimization; two-stage
genetic algorithm; parallel computation

1. Introduction

Defersha and Rooyani [1] developed an efficient two-stage genetic algorithm for a
comprehensive flexible job shop scheduling problem (FJSP) that incorporates (1) sequence-
dependent setup time, (2) attached and detached nature of setup, (3) machine release date,
and (4) lag-time. The high performance of the two-stage algorithm was achieved by a
systematically designed solution representation and a greedy decoding mechanism of the
first stage. The approach enabled the algorithm to find highly improved solutions from
the start and rapidly converge to promising regions of the search space. The second stage
removes the greedy nature of the first stage by following the regular approach of a genetic
algorithm for FJSP and attempts to improve the solutions found in the first stage. The
authors demonstrated the superiority of the developed two-stage genetic algorithm in
solving large-size problems with up to 80 machines and 140 jobs.

In this paper, we extend the application of the algorithm in [1] to solve a lot streaming
problem in FJSP that appeared in [2] while, at the same time, expanding the problem to
incorporate multiple objective functions. The objective function terms included are the
minimization of the (1) makespan, (2) maximum sublot flowtime, (3) total sublot flow
time, (4) maximum job flowtime, (5) total job flow time, (6) maximum sublot finish-time
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separation, (7) total sublot finish-time separation, (8) maximum machine load, (9) total
machine load, and (10) maximum machine load difference.

In addition to expanding the single objective FJSP lot streaming to a multi-objective
one and customizing the two-stage genetic algorithm to solve it, an added contribution of
this paper is its provision of many numerical studies. At the outset of the numerical studies,
all the ten objective function terms are illustrated using a small prototype problem. The
importance of multi-objective optimization in small versus large size problems is examined
and contrasted. The capability of the two-stage genetic algorithm to jointly optimize all the
objective function terms is evaluated. The need to optimize both the maximum and the
total of a performance measure (such as flowtime) is examined.

The relevance of two newly proposed objective function terms (sublot finish-time
separation and maximum workload difference) in providing better solution quality is
assessed. The quality of the initial population and the convergence behavior of the two-
stage genetic algorithm is contrasted against the regular genetic algorithm with respect
to each of the objective function terms. Further algorithm enhancement through high-
performance parallel computation is considered. Algorithm components and parameters
are empirically studied. In particular, three different selection operators are examined, and
an Analysis of Variance (ANOVA) on mutation and crossover probabilities is conducted.

The remainder of this article is organized as follows. In Section 2, recent articles in
lot streaming are reviewed. The proposed multi-objective FJSP lot streaming model is
presented in Section 3. The adaptation of the two-stage genetic algorithm to solve the
multi-objective lot streaming model is detailed in Section 4. Section 5 provides extensive
numerical studies. Our conclusions, discussion, and future research are in Section 6.

2. Literature Review

Lot streaming is a technique that splits a production lot of a job into several indepen-
dent sublots and allows a sublot to be transferred from one machine to the next without
waiting for the other sublots. In doing so, it enables the simultaneous processing of the
sublots of a given job on multiple machines, thereby, reducing the completion time of the
job. The approach has been used as a strategy for a time-based competition in today’s
global market [3]. Since its formal introduction in [4], it has been an active topic of research,
and many articles have been published in its application to scheduling in a variety of
shop configurations. The following subsections briefly review recent articles on lot stream-
ing based on those shop configurations. Comprehensive reviews of publications on lot
streaming can be found in [3,5].

2.1. Pure Flow Shop Lot Streaming (PFS-LS)

The majority of early publications on lot streaming are for pure flow shops. However,
recent literature indicates that PFS-LS still continues to attract the attention of the research
community. A tabu-search based three-stage algorithm for PFS-LS was developed in [6].
The three stages of the algorithm involve (i) predetermining sublot sizes, (ii) developing a
schedule based on the predetermined sublot sizes, and (iii) varying the sizes of the sublots
to improve the solution quality. Defersha and Chen [7] developed a linear programming
hybridized genetic algorithm with variable sublots to minimize the makespan. The authors
demonstrated that, in the presence of setup time, variable sublot could bring substantial
improvement in makespan compared to consistent or equal-sized sublots.

A genetic algorithm for PFS-LS with limited buffer capacities and equal-sized sublots
was developed in [8] to minimize earliness and tardiness. Han et al. [9] developed a multi-
objective genetic algorithm (given the number and size sublots) to minimize the makespan,
total flow time, machine idle time, and earliness time. Meng et al. [10] developed an
improved migrant birds optimization for minimizing the makespan with equal sublots and
sequence-dependent setup time. A bee colony algorithm was proposed in [11] to minimize
the makespan and earliness in a blocking PFS-LS with no intermediate buffer between
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adjacent stages. The author combined setup time with processing time and assumed that
the number and size of sublots are determined before scheduling.

An exact heuristic based on dynamic programming and Lagrangian relaxation was
developed in [12] for a two-machine PFS-LS to minimize total flowtime. A convex program-
ming technique for a single-job two-machine PFS-LS was developed in [13] with due date
criterion and minimization of the total energy consumption. The energy consumption was
optimized by varying the processing speed of the sublots. Wang et al. [14] developed an
algorithm for PFS-LS with intermingling and variable sublots having detached setups. The
authors demonstrated that the assumption of a detached setup could reduce the makespan.

2.2. Hybrid Flow Shop Lot Streaming (HFS-LS)

Early and some recent publications in HFS-LS (e.g., [15–20]) are limited to a special
case where there are only two stages. To the best of our knowledge, the first major research
effort in lot streaming in the general hybrid flexible flow shop with more than two stages
was reported in [21]. The authors developed a parallel genetic algorithm with makespan
criterion, sequence-dependent setup time, and machine release date. The authors also
demonstrated that lot streaming could bring greater makespan reduction in hybrid flows
shop than in pure flow shop as the former allows the overlapping of operations not only
across stages but also within the parallel machines of a given stage. Nejati et al. [22]
developed a genetic algorithm for HFS-LS in the presence of work-shift constraint. The
authors assumed that the processing of a sublot cannot be started if the remaining time of
the work-shift does not allow the sublot to be completed, in which case, the sublot has to
wait for the next work-shift.

Techniques based on migrant birds optimization were developed in [23,24] to minimize
the total flow time and makespan, respectively. Chen et al. [25] proposed a genetic algorithm
to minimize the makespan and energy utilization. The minimization of energy utilization
is achieved via machine selection, where each stage may have unrelated parallel machines
with different power consumption and processing speed. Energy-aware multi-objective
HFS-LS was presented in [26] to minimize the average sojourn time, energy consumption,
earliness, and tardiness. Zhang et al. [27] developed an evolutionary algorithm (with
consistent sublots) to minimize the makespan and number of sublots in the presence of
setup and transportation.

2.3. Classical Job Shop Lot Streaming (CJS-LS)

The first paper in lot streaming (i.e., [4]) was for a classical job shop scheduling
problem. However, research in CJS-LS is minimal. Hereunder, we reviewed relatively
recent articles in the area. Chan et al. [28] and Wong et al. [29] considered CJS-LS with due
date criterion, where the authors assumed that all the sublots and the jobs from the same
product (with a due date) will be assembled at the end of the line. Methodologies based on
a generic algorithm were developed to minimize the total cost of earliness, lateness, and
setup in [30,31].

The authors stated that excessive lot splitting could increase the setup cost. A CJS-LS
problem, where a customer order contains several jobs and shipment can happen only
when all the sublots of the jobs of a given order are completed, was considered in [32].
The authors developed a genetic algorithm to solve the considered problem to minimize
the makespan, lateness, and flowtime of the finished goods. Liu et al. [33] developed
methodologies to maximize the total values of the jobs. The authors assumed that the value
of a job deteriorates exponentially over time, and the sooner the job completes, the higher
its value is. Lei and Guo [34] developed a bee colony algorithm with makespan criterion in
the presence of a single transporter that could transfer one sublot at a time.

2.4. Flexible Job Shop Lot Streaming (FJS-LS)

Early research in job shop lot streaming was for the classical job shop. However, in
recent years, the research focus on job shop lot streaming has been in FJS-LS. Defersha
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and Chen [2] developed a parallel genetic algorithm for FJS-LS with makespan criterion
considering sequence-dependent setup time, attached and detached nature of setups, ma-
chine release date, and lag-time (a delay for cooling, drying, inspection, or other ancillary
operations). Demir and Işleyen [35] and Meng et al. [36] implemented FJS-LS through a
successive partial transfer of a job from one machine to the next to allow operation overlap-
ping when sublots are not scheduled independently. Bożek and Werner [37] considered
FJS-LS with variable sublots in a two-stage approach.

In the first stage, the makespan is minimized with the minimum sizes of the sublots
defined for the problem (the larger number of sublots). In the second stage, the number
of the sublots is reduced without affecting the makespan to minimize the transportation
cost. Defersha and Bayat Movahed [38] developed a linear programming hybridized
genetic algorithm where the linear programming is periodically used to enhance promising
solutions during the search process. Novas [39] developed a method based on constraint
programming to solve flexible job shop lot streaming with makespan criterion.

Daneshamooz et al. [40] proposed an algorithm based on a variable neighborhood
search to minimize the makespan for a lot streaming problem in a flexible job shop followed
by a parallel assembly station. An FJS-LS problem in an Engineer to order environment
was presented in [41]. The authors developed a mathematical model with variable sublot
and makespan criterion and then proposed a genetic-algorithm-based heuristic to solve the
model effectively. Though the above review indicates momentum in FJS-LS research, the
total number of publications is minimal, and further research needs to be conducted.

3. Mathematical Modeling
3.1. The Basic Problem

The main objective of this paper is to expand the single objective FJSP lot streaming
model presented in [2] to a multi-objective one and develop a two-stage genetic-algorithm-
based on the work in [1]. However, for better comprehension of this paper, we first present
the basic single-objective problem and its mathematical model as presented in [2].

3.1.1. Problem Description and Notations

Consider a job shop consisting of M machines where machines with common func-
tionalities are grouped into a department (e.g., turning machines in a turning department).
Assume that the system is currently processing jobs from the previous schedule, and each
machine m (where m = 1, . . . , M) has a release date Dm—at which time, it will be available
for the next scheduling. Consider also a total of J independent jobs to be scheduled next in
the system where a job is a batch of identical parts. The number of parts in a batch of job j
(where j = 1, . . . , J) is given by Bj, and this batch is to be split into Sj number of unequal
sublots (transfer batches).

A decision variable bs,j is used to denote the size of sublot s (where s = 1, . . . , Sj) of job
j. Each sublot of job j is to undergo Oj number of operations in a fixed sequence such that
each operation o (where o = 1, . . . , Oj) can be processed by one of several eligible machines.
To,j,m is unit-processing-time for operation o of job j on machine m. The operation o of
a sublot of job j can be started on an eligible machine m after lag time Lo,j and after the
setup is performed. The lag time Lo,j is a waiting time that may be required either for
cooling, drying, or for some other purpose. The setup time for an operation o of job type
j on machine m depends on the preceding operations and is denoted by So,j,m,o′ ,j′ , where
operation o′ of a sublot of job j′ is the preceding operation on machine m.

If operation o of sublot s of job j is the first operation to be processed on machine m,
the setup time is represented as S∗o,j,m. The setup time So,j,m,o′ ,j′ (or S∗o,j,m) for operation o of
a sublot of job j can be overlapped with the processing time of operation o− 1 of the same
sublot if the setup is a detached setup and machine m is available for setup. The problem
is to determine the size of each sublot, assign the operation of each sublot to one of the
eligible machines and determine the sequence and starting time of the assigned operations
on each machine. The objective is to minimize the makespan of the schedule. We next
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introduce some additional notations and then present a mixed-integer linear programming
(MILP) formulation for FJSP-LS.

Additional Parameters:

Rm The maximum number of production runs of machine m where production runs
are indexed by r = 1, 2, . . . , Rm. Each of these production runs can be assigned to,
at most, one operation of one sublot. Thus, the assignment of the operations to
production runs of a given machine determines the sequence of the operations on
that machine.

Po,j,m A binary data point equal to 1 if operation o of job j can be processed on machine
m, and 0 otherwise.

Ao,j A binary data point equal to 1 if the setup of operation o of of job j is attached
(non-anticipatory), or 0 if this setup is detached (anticipatory).

Ω Large positive number.

Variables:

Continuous Variables:

cmax Makespan of the schedule.

co,s,j Completion time of operation o of sublot s of job j.

ĉr,m Completion time of the rth run of machine m.

bs,j Size of sublot s of job j.

Binary Integer Variables:

xr,m,o,s,j A binary variable that takes the value 1 if the rth run on machine m is for operation
o of sublot s of job j, and 0 otherwise.

yr,m,o,j A binary variable that takes the value 1 if the rth run on machine m is for operation
o of any one of the sublots of job j, and 0 otherwise.

γs,j A binary variable that takes the value 1 if sublot s of job j is non-zero (bs,j ≥ 1), and
0 otherwise.

zr,m A binary variable that takes the value 1 if the rth potential run of machine m has
been assigned to an operation, and 0 otherwise.

3.1.2. MILP Model for FJSP-LS

Following the problem description and using the notations given above, the MILP
mathematical model for the FJSP-LS is presented below.

Minimize:

Objective = cmax (1)

Subject to:

cmax ≥ co,s,j ; ∀(o, s, j) (2)

ĉr,m ≥ co,s,j + Ω · xr,m,o,s,j −Ω ; ∀(r, m, o, s, j) (3)

ĉr,m ≤ co,s,j −Ω · xr,m,o,s,j + Ω ; ∀(r, m, o, s, j) (4)



Algorithms 2022, 15, 246 6 of 42

ĉ1,m − bs,j · To,j,m − S∗o,j,m −Ω · x1,m,o,s,j + Ω ≥ Dm ; ∀(m, o, s, j) (5)

ĉr,m − bs,j · To,j,m − So,j,m,o′ ,j′ −Ω · (yr−1,m,o′ ,j′ + xr,m,o,s,j) + 2Ω ≥ ĉr−1,m ;

∀(r, m, o, s, j, o′, j′)|(r > 1) (6)

ĉ1,m − bs,j · To,j,m − S∗o,j,m · Ao,j −Ω · (x1,m,o,s,j + xr′ ,m′ ,o−1,s,j) + 2Ω ≥ ĉr′ ,m′ + Lo,j;

∀(m, r′, m′, o, s, j)|{
(
(1, m) 6= (r′, m′)

)
∧ (o > 1)} (7)

ĉr,m − bs,j · To,j,m − So,j,m,o′ ,j′ · Ao,j −Ω · (yr−1,m,o′ ,j′ + xr,m,o,s,j + xr′ ,m′ ,o−1,s,j) + 3Ω

≥ ĉr′ ,m′ + Lo,j ; ∀(r, m, r′, m′, o, s, j, o′, j′)|
{(r > 1) ∧ (o > 1) ∧ (r, m) 6= (r′, m′) ∧ (o, j) 6= (o′, j′)} (8)

yr,m,o,j ≤ Po,j,m ; ∀(r, m, o, j) (9)

yr,m,o,j =

Sj

∑
s=1

xr,m,o,s,j ; ∀(r, m, o, j) (10)

M

∑
m=1

Rm

∑
r=1

xr,m,o,s,j = γs,j ; ∀(o, s, j) (11)

bs,j ≤ Bj · γs,j ; ∀(s, j) (12)

γs,j ≤ bs,j ; ∀(s, j) (13)

Sj

∑
s=1

bs,j = Bj ; ∀(j) (14)

J

∑
j=1

Sj

∑
s=1

Oj

∑
o=1

xr,m,o,s,j = zr,m ; ∀(r, m) (15)

zr+1,m ≤ zr,m ; ∀(r, m) (16)

xr′ ,m,o′ ,s,j ≤ 1− xr,m,o,s,j; ∀(r, r′, m, o, o′, s, j)|{(o′ > o) ∧ (r′ < r)} (17)

xr′ ,m,o′ ,s,j ≤ 1− xr,m,o,s,j; ∀(r, r′, m, o, o′, s, j)|{(o′ < o) ∧ (r′ > r)} (18)

xr,m,o,s,j, yr,m,o,j, γs,j and zr,m are binary (19)

The complete description and the meanings of the objective function in Equation (1)
and the constraints in Equations (2)–(19) can be found in [2].The expansion of this single
objective FJSP lot streaming model into a multi-objective one is presented in the follow-
ing section.
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3.2. Multi-Objective Model for FJSP-LS

As it was stated previously, one of the objectives of this paper is to expand the single
objective FJSP lot streaming presented in [2] to a multi objective approach. In this section,
we present notations of additional continuous variables and the MILP formulation of the
proposed multi-objective FJSP scheduling with lot streaming.

3.2.1. Additional Continuous Variables

The definitions of the additional continuous variables is given below. Further explana-
tions for some of the variable definitions are also given as we discus the equations that use
those variables.

es,j Entry time of sublot s of job j.

êj Entry time of job j (minimum of es,j for all s of job j).

ds,j Departure time of sublot s of job j.

d̂j Departure time of job j (maximum of ds,j for all s of job j).

fs,j Flowtime of sublot s of job j.

f̂ j Flowtime of job j.

fmax Maximum sublot flowtime.

f̂max Maximum job flowtime.

ftotal Total sublot flowtime.

f̂total Total job flowtime.

ĝj Minimum sublot departure time of job j.

ĥj Sublot finish separation time of job j.

ĥmax Maximum sublot finish separation time.

ĥtotal Total sublot finish separation time.

lm,o,s,j Workload on machine m because of the setup and processing of operation o of
sublot s of job j.

l̂m Workload on machine m.

l̂min Minimum machine workload.

l̂max Maximum machine workload.

l̂total Total machine workload.

l̂di f f Maximum machine workload difference.

3.2.2. Objective Functions and Additional Constraints

The objective of the proposed multi-objective model is to minimize the function given
in Equation (20) subject to the constraints in the original model in Equations (2)–(19) and
newly added constraints in Equations (21)–(56). The objective function terms and the
additional constraints are discussed in the following sections.

Minimize: Zi ∀i ∈ {1, 2, · · · , 10}. (20)
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3.2.3. Makespan (Z1)

The makespan is defined as the maximum completion time of a given schedule. Its
minimization is a widely used objective function in scheduling research. The essence of
minimizing the makespan is to finish production as soon as possible to expedite the delivery
of products to customers and/or to quickly free up resources for the upcoming production
and other tasks, such as development and maintenance. The first objective function (Z1) of
the proposed multi-objective model is makespan (cmax) as shown in Equation (21).

Z1 = cmax (21)

3.2.4. Maximum and Total Sublot Flowtime (Z2 and Z3)

The entry time (es,j) to the shop floor of a sublot of a job is the time the setup of its
first operation begins if the setup is attached. If the setup of the first operation is detached,
es,j is the time at which the actual processing of the first operation begins as setup can
be completed before the raw material is admitted to the shop floor. The constraints in
Equations (22)–(25) are used to set the value of this variable. The departure time of the
sublot (ds,j) is simply the completion time of the last operation of the sublot as enforced by
the constraint in Equation (26).

The flowtime of sublot s of job j, denoted as fs,j, is the interval between the time
the sublot enters the shop floor to the time its last operation is finished. Its value is set
by the constraint in Equation (27). The constraint in Equation (28) along with the ob-
jective function will enforce fmax to assume the maximum flowtime of all the sublots
(max∀(s,j) fs,j). The total flowtime of all the sublots is calculated by the constraint in
Equation (29). The objective function terms Z2 and Z3 are the values of fmax and ftotal
as shown in Equations (30) and (31), respectively. The minimization of flowtime can lead
to stable or uniform utilization of resources and a rapid turn-around of jobs, and it is
particularly important in real-life situations where reducing inventory or holding cost is of
primary concern [42].

es,j ≥ c1,s,j − bs,j · T1,j,m − S∗1,j,m · A1,j −Ω · (1− x1,m,1,s,j); ∀(s, j, m) (22)

es,j ≤ c1,s,j − bs,j · T1,j,m − S∗1,j,m · A1,j + Ω · (1− x1,m,1,s,j); ∀(s, j, m) (23)

es,j ≥ c1,s,j − bs,j · T1,j,m − S1,j,m,o′ ,j′ · A1,j − 2Ω · (1− xr,m,1,s,j − yr−1,m,o′ ,j′);

∀(s, j, r, m)|r > 1 (24)

es,j ≤ c1,s,j − bs,j · T1,j,m − S1,j,m,o′ ,j′ · A1,j + 2Ω · (1− xr,m,1,s,j − yr−1,m,o′ ,j′);

∀(s, j, r, m)|r > 1 (25)

ds,j = cOj ,s,j; ∀(s, j) (26)

fs,j = ds,j − es,j; ∀(s, j) (27)

fmax ≥ fs,j; ∀(s, j) (28)

ftotal =
J

∑
j=1

Sj

∑
s=1

fs,j (29)

Z2 = fmax (30)
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Z3 = ftotal (31)

3.2.5. Maximum and Total Job Flowtime (Z4 and Z5)

In the presence of lot streaming, the entrance time êj and the departure time d̂j of a
job are the smallest and the largest entrance times of all its sublots, min∀s|γs,j=0{es,j} and
max∀s|γs,j=0{ds,j} , respectively. The values of these variables are set by the constraints in

Equations (32) and (33), and the objective function. The flowtime of a job, f̂ j, is the differ-
ence d̂j − êj as enforced by the constraint in Equation (34). The constraint in Equation (35)
along the objective function enforces f̂max to assume the maximum flowtime of all the jobs,
max∀j{ f̂ j}. The total job flowtime ( f̂total) is evaluated by the constraint in Equation (36).
The values f̂max and f̂total correspond to the fourth and fifth terms, Z4 and Z5, of the ob-
jective function and their values are enforced by the constraints in Equations (37) and (38),
respectively.

êj ≤ es,j + Ω(1− γs,j); ∀(s, j) (32)

d̂j ≥ ds,j −Ω(1− γs,j); ∀(s, j) (33)

f̂ j = d̂j − êj; ∀j (34)

f̂max ≥ f̂ j; ∀j (35)

f̂total =
J

∑
j=1

f̂ j (36)

Z4 = f̂max (37)

Z5 = f̂total (38)

3.2.6. Maximum and Total Sublot Finish-Time Separation (Z6 and Z7)

In lot streaming, sublots are treated independently. As a result, one sublot of a job
may be finished much sooner than the other sublot of the same job. This may increase
work-in-process inventory as the entire job can not be made available for shipment or
assembly within a reasonable time window. Hence, in this research, we introduce an
objective function to minimize the gap between the earliest and the latest finish-times of
sublots of the same job. In doing so, first we defined a variable ĝj that assumes the earliest
finish-time among all the sublots of a job, min∀(s,j)|γs,j=1{ds,j}, as enforced by the constraint
in Equation (39) and the objective function.

The latest finish-time of the sublots of a job is its departure time d̂j, which was dis-
cussed previously. With these variables defined, the sublot finish separation time of a
job, ĥj, is the difference d̂j − ĝj, enforced by the constraint in Equation (40). The con-
straint in Equation (41) and the objective function will enforce ĥmax to assume the value
max∀j{ĥj}. The total sublot finish time separation ĥtotal is evaluated using the constraint
in Equation (42). The objective function terms Z6 and Z7 correspond to the values of ĥmax
and ĥtotal , respectively, as enforced by the constraints in Equations (43) and (44).

ĝj ≤ ds,j + Ω(1− γs,j); ∀(s, j) (39)

ĥj = d̂j − ĝj; ∀(j) (40)



Algorithms 2022, 15, 246 10 of 42

ĥmax ≥ ĥj; ∀(j) (41)

ĥtotal =
J

∑
j=1

ĥj (42)

Z6 = ĥmax (43)

Z7 = ĥtotal (44)

3.2.7. Maximum Workload, Total Workload and Maximum Workload-Difference (Z8, Z9
and Z10)

In addition to makespan and flowtime, two other objectives commonly considered
in FJSP scheduling are the minimization of maximum and total machine workload. They
represent the intention of protecting machines from overuse [43]. Moreover, in this re-
search, we noted that, in the presence of alternative routing and sequence-dependent setup
time, these objectives could result in a substantially reduced overall system workload
with a moderate increase in makespan. This can significantly free up machine operators
for other activities, such as quality improvement, development, and maintenance. The
necessary variables and constraints to impose these categories of objective functions are
discussed below.

The workload on machine m (i.e., lm,o,s,j) because of an assigned operation o of sublot
s of job j comprises the setup and the actual processing of the operation. The value of this
variable is assigned by the constraints in Equations (45)–(48). The overall workload on
machine m, (l̂m), comprises the workloads because of all the operations assigned to it from
the current schedule and its release date Dm as shown in Equation (49). The release date
may represent the amount of work that spills into the current planning and scheduling
period from the previous one.

The objective function along with the constraints in Equations (50) and (51) set the
values of l̂max = max∀m{lm} and l̂min = min∀m{lm}, respectively. The workload difference
between the maximally and the least loaded machines (maximum workload difference,
l̂di f f ) is calculated using the constraint in Equation (52). The total workload on the system
l̂total is evaluated by the constraint in Equation (53). The objective function terms Z8,
Z9, and Z10 represent the values of l̂max, l̂total , and l̂di f f as enforced by the constraints in
Equations (54)–(56), respectively.

lm,o,s,j ≥ S∗o,j,m + bs,j · To,j,m −Ω · (1− x1,m,o,s,j); ∀(m, o, s, j) (45)

lm,o,s,j ≤ S∗o,j,m + bs,j · To,j,m + Ω · (1− x1,m,o,s,j); ∀(m, o, s, j) (46)

lm,o,s,j ≥ So,j,m,o′ ,j′ + bs,j · To,j,m − 2Ω · (1− xr,m,o,s,j − yr−1,m,o′ ,j′); ∀(r, m, o, s, j)|r > 1 (47)

lm,o,s,j ≤ So,j,m,o′ ,j′ + bs,j · To,j,m + 2Ω · (1− xr,m,o,s,j − yr−1,m,o′ ,j′); ∀(r, m, o, s, j)|r > 1 (48)

l̂m = Dm +
J

∑
j=1

Sj

∑
s=1

Oj

∑
o=1

lm,o,s,j; ∀(m) (49)

l̂max ≥ lm; ∀(m) (50)

l̂min ≤ lm; ∀(m) (51)
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l̂di f f = lmax − lmin; ∀(m) (52)

l̂total =
M

∑
m=1

lm; (53)

Z8 = l̂max (54)

Z9 = l̂total (55)

Z10 = l̂di f f (56)

4. Genetic Algorithm
4.1. Prototype Problem

To illustrate the solution representation and the various genetic operators, a prototype
problem that consists of the processing of four jobs using five machines is considered. The
complete data sets for this small problem are given in Tables 1 and 2. Data related to
batch size (Bj), the nature of setup being attached or detached (Ao,j), lag-time (Lo,j) and
alternative routing (m, To,j,m) for each operation are in Table 1. Sequence-dependent setup
time data is provided in Table 2. This problem is also used in the numerical example to
illustrate the various objective function terms of the proposed model.

Table 1. Data for jobs for Problem-1.

(Eligible Machine, Processing Time) = (m, To,j,m)

j Bj Sj o Ao,j Lo,j i ii iii iv

1 100 2 1 0 0 (1, 6.75) (4, 6.50) (5, 6.50)
2 1 120 (1, 3.00) (2, 2.25) (4, 2.75)
3 0 120 (1, 3.50) (2, 3.25) (4, 3.75) (5, 3.50)

2 250 3 1 0 0 (1, 1.75) (2, 2.00) (5, 1.25)
2 1 0 (2, 5.00) (3, 4.25) (4, 5.00) (5, 4.75)
3 1 40 (1, 7.00) (2, 7.00) (3, 6.50) (5, 6.50)
4 0 40 (1, 2.50) (2, 2.50) (3, 2.75) (4, 2.75)

3 200 3 1 0 0 (1, 5.25) (5, 5.75)
2 1 0 (1, 4.50) (3, 4.25) (5, 4.25)
3 1 0 (1, 3.50) (2, 3.50)

4 100 2 1 0 0 (4, 6.00) (5, 6.00)
2 0 0 (1, 4.25) (3, 4.75) (4, 4.75) (5, 4.75)
3 1 0 (2, 2.00) (4, 1.25) (5, 1.25)

Machine release dates in minutes: D1 = 840, D2 = D3 = 0, D4 = 120.

Table 2. Sequence-dependent setup time data for problem-1.

Setup Time S∗o,j,m and So,j,m,o′ ,j′

j o m (S∗o,j,m) · · · (j′, o′, So,j,m,o′ ,j′ ) · · ·

1 1 1 (120) (1,1,20)(1,2,100)(1,3,120)(2,1,210)(2,3,210)(2,4,240)(3,1,240)(3,2,210)(3,3,240)(4,2,210)
4 (140) (1,1,15)(1,2,80)(1,3,120)(2,2,180)(2,4,240)(4,1,210)(4,2,210)(4,3,240)
5 (100) (1,1,20)(1,3,80)(2,1,210)(2,2,180)(2,3,240)(3,1,180)(3,2,240)(4,1,180)(4,2,180)(4,3,180)

2 1 (140) (1,1,100)(1,2,20)(1,3,80)(2,1,240)(2,3,210)(2,4,180)(3,1,240)(3,2,210)(3,3,240)(4,2,210)
2 (100) (1,2,15)(1,3,100)(2,1,180)(2,2,210)(2,3,180)(2,4,180)(3,3,180)(4,3,210)
4 (140) (1,1,80)(1,2,10)(1,3,80)(2,2,240)(2,4,180)(4,1,240)(4,2,210)(4,3,240)
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Table 2. Cont.

Setup Time S∗o,j,m and So,j,m,o′ ,j′

j o m (S∗o,j,m) · · · (j′, o′, So,j,m,o′ ,j′ ) · · ·

3 1 (80) (1,1,80)(1,2,120)(1,3,10)(2,1,180)(2,3,240)(2,4,180)(3,1,240)(3,2,180)(3,3,210)(4,2,180)
2 (160) (1,2,120)(1,3,20)(2,1,180)(2,2,210)(2,3,180)(2,4,180)(3,3,210)(4,3,210)
4 (80) (1,1,100)(1,2,100)(1,3,15)(2,2,240)(2,4,240)(4,1,240)(4,2,240)(4,3,210)
5 (120) (1,1,100)(1,3,20)(2,1,180)(2,2,180)(2,3,210)(3,1,180)(3,2,210)(4,1,180)(4,2,210)(4,3,240)

2 1 1 (80) (1,1,240)(1,2,240)(1,3,240)(2,1,20)(2,3,120)(2,4,120)(3,1,210)(3,2,210)(3,3,180)(4,2,240)
2 (120) (1,2,180)(1,3,180)(2,1,10)(2,2,100)(2,3,120)(2,4,120)(3,3,180)(4,3,180)
5 (160) (1,1,240)(1,3,180)(2,1,15)(2,2,100)(2,3,100)(3,1,180)(3,2,210)(4,1,180)(4,2,180)(4,3,240)

2 2 (120) (1,2,180)(1,3,210)(2,1,80)(2,2,15)(2,3,120)(2,4,100)(3,3,240)(4,3,210)
3 (100) (2,2,20)(2,3,80)(2,4,120)(3,2,240)(4,2,210)
4 (120) (1,1,210)(1,2,180)(1,3,240)(2,2,10)(2,4,80)(4,1,180)(4,2,240)(4,3,240)
5 (120) (1,1,180)(1,3,240)(2,1,120)(2,2,20)(2,3,80)(3,1,210)(3,2,240)(4,1,240)(4,2,210)(4,3,240)

3 1 (80) (1,1,210)(1,2,240)(1,3,240)(2,1,80)(2,3,10)(2,4,80)(3,1,240)(3,2,240)(3,3,240)(4,2,210)
2 (100) (1,2,210)(1,3,180)(2,1,120)(2,2,80)(2,3,15)(2,4,80)(3,3,210)(4,3,180)
3 (140) (2,2,80)(2,3,10)(2,4,100)(3,2,240)(4,2,180)
5 (160) (1,1,240)(1,3,210)(2,1,80)(2,2,120)(2,3,10)(3,1,240)(3,2,180)(4,1,180)(4,2,240)(4,3,210)

4 1 (160) (1,1,180)(1,2,210)(1,3,210)(2,1,80)(2,3,100)(2,4,10)(3,1,240)(3,2,180)(3,3,180)(4,2,210)
2 (140) (1,2,180)(1,3,180)(2,1,120)(2,2,80)(2,3,120)(2,4,10)(3,3,180)(4,3,210)
3 (160) (2,2,100)(2,3,100)(2,4,10)(3,2,240)(4,2,210)
4 (120) (1,1,240)(1,2,240)(1,3,180)(2,2,120)(2,4,10)(4,1,210)(4,2,180)(4,3,210)

3 1 1 (80) (1,1,240)(1,2,240)(1,3,240)(2,1,180)(2,3,180)(2,4,210)(3,1,15)(3,2,120)(3,3,100)(4,2,180)
5 (80) (1,1,210)(1,3,240)(2,1,240)(2,2,180)(2,3,240)(3,1,15)(3,2,100)(4,1,210)(4,2,180)(4,3,210)

2 1 (120) (1,1,240)(1,2,240)(1,3,180)(2,1,240)(2,3,240)(2,4,240)(3,1,80)(3,2,20)(3,3,100)(4,2,210)
3 (140) (2,2,240)(2,3,240)(2,4,240)(3,2,15)(4,2,180)
5 (160) (1,1,180)(1,3,210)(2,1,240)(2,2,180)(2,3,180)(3,1,100)(3,2,10)(4,1,240)(4,2,240)(4,3,240)

3 1 (120) (1,1,180)(1,2,240)(1,3,240)(2,1,210)(2,3,180)(2,4,180)(3,1,120)(3,2,100)(3,3,10)(4,2,210)
2 (160) (1,2,240)(1,3,210)(2,1,210)(2,2,180)(2,3,240)(2,4,180)(3,3,15)(4,3,210)

4 1 4 (100) (1,1,210)(1,2,240)(1,3,210)(2,2,240)(2,4,180)(4,1,10)(4,2,100)(4,3,100)
5 (100) (1,1,180)(1,3,210)(2,1,180)(2,2,180)(2,3,210)(3,1,210)(3,2,210)(4,1,10)(4,2,120)(4,3,100)

2 1 (100) (1,1,240)(1,2,240)(1,3,210)(2,1,180)(2,3,180)(2,4,240)(3,1,180)(3,2,240)(3,3,240)(4,2,20)
3 (80) (2,2,240)(2,3,240)(2,4,240)(3,2,210)(4,2,20)
4 (140) (1,1,180)(1,2,210)(1,3,180)(2,2,240)(2,4,240)(4,1,100)(4,2,10)(4,3,100)
5 (80) (1,1,180)(1,3,180)(2,1,240)(2,2,210)(2,3,210)(3,1,240)(3,2,180)(4,1,80)(4,2,15)(4,3,80)

3 2 (100) (1,2,210)(1,3,210)(2,1,210)(2,2,210)(2,3,180)(2,4,210)(3,3,210)(4,3,20)
4 (140) (1,1,240)(1,2,210)(1,3,240)(2,2,180)(2,4,180)(4,1,120)(4,2,100)(4,3,15)
5 (140) (1,1,180)(1,3,240)(2,1,210)(2,2,180)(2,3,210)(3,1,240)(3,2,240)(4,1,100)(4,2,100)(4,3,10)

4.2. Solution Encoding

A solution encoding is a technique of transforming a problem statement into a search-
able space of all feasible solutions, in which an algorithm can be applied to explore iter-
atively for optimal solutions. Hence, its design is the first most crucial step in solving
a problem using a search-based algorithm. The solution encoding used in this paper
combines features from the solution representations in [2] for FJSP lot streaming and that
in [1] for dividing the genetic search into two stages. This solution encoding is depicted in
Figure 1 for a typical solution of the prototype problem presented in the previous section.

As shown in Figure 1a, the solution representation has two segments. The first segment
(Segment-1), detailed in Figure 1b, encodes the numbers and sizes of sublots for all the
jobs. The number of genes in this segment is equal to the sum of the maximum number
of sublots of each job (∑J

j=1 Sj), where there are Sj genes corresponding to each job. The



Algorithms 2022, 15, 246 13 of 42

gene αj,s takes a continuous value from the interval [0, 1]. The decoding procedure for the
number and sizes of the sublots from Segment-1 is detailed in Section 4.3.1.
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(c) Details for Segment-2 in Stage-1, where a gene takes a value [j, s, o].
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(d) Details for Segment-2 in Stage-2, where a gene takes a value [j, s, o, m].

Figure 1. Solution representation.

The second segment (Segment-2) of the solution encoding has two forms. The first
form, detailed in Figure 1c, is applicable for the first stage of the search by the genetic
algorithm. The number of genes in this segment is equal to the total number of operations

in all the sublots, which can be computed as ∑J
j=1 ∑

Oj
o=1 Sj ×Oj. Each gene is a 3-tuple

[j, s, o] composed of job, sublot, and operation indices. For a particular [j, s], there are Oj
number of genes corresponding to each operation of the sublot, and a gene [j, s, o] appears
in the segment earlier than [j, s, o′] if o < o′.

This segment provides the order (left to right) in which the operations are considered
for assignment and sequencing. Whenever an operation of a sublot of a given job is to be
assigned to a machine, the algorithm chooses the machine that completes the operation
sooner after completing the operations previously assigned to this machine. In that case,
the order in which the operations are assigned to machines represents their processing
sequence.

The second form of Segment-2, detailed in Figure 1d, is for the second stage of
the genetic search. This form of the segment explicitly encodes both the assignment
and sequencing of the operations on the machines. Each gene, in this form, is 4-tuple
[j, s, o, m] where m encodes the machine assignment for operation [j, s, o] and it is restricted
to take the value such that Pj,o,m = 1. Moreover, for a given [j, s], the gene [j, s, o, m]
appeared earlier the sequence than [j, s, o′, m′] if o < o′. The sequence of the operation on
a given machine m is dictated by the order in which the genes appeared on Segment-2.
For instance, the assignment and the sequence of the operation on machine m = 4 is
(j1, s2, o1) → (j2, s1, o2) → (j4, s1, o2) → (j1, s1, o2) → (j2, s1, o4). The detail discussion
of the decoding of Segment-2 under the first and the second stage of the genetic search is
given in Section 4.3.2.
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4.3. Solution Decoding
4.3.1. Number and Size of Sublots

The decoding of the number and sizes of sublots from Segment-1 is similar to that
discussed in [2]. Given the values of the genes in Segment-1, the size of a sublot bs,j can be
computed using Equation (57). Once all the bs,j’s are calculated, a sublot whose size is less
than a minimum threshold value is set to zero, and the corresponding gene αs,j is also set
to zero. Then, the sizes of the other sublots are reevaluated using the same Equation (57).
In this decoding, the number of the sublots for a given job is equal to the number of sublots
whose sizes are greater than zero.

bs,j =


αs,j

∑
Sj
s=1 αs,j

if ∑
Sj
s=1 αs,j > 0

Bj/Sj Otherwise

(57)

4.3.2. Assignment, Sequencing, and Completion Time

Once the sizes of all the sublots are known (see Section 4.3.1), the assignment, sequenc-
ing, and completion times of the operation of each non-zero sublot and other variables are
determined using the information obtained from Segment-2 and two decoding procedures
outlined in this section. The first decoding procedure is applicable for Stage-1 of the genetic
search, while the second is for Stage-2.

Stage-1

In Stage-1 of the genetic search, the assignment and sequencing of the operations
and the determination of their starting and finish times are obtained using a procedure
that utilizes the information in the first form of Segment-2 of the solution representation
(Figure 1c). In describing this procedure, let us first define GeneS2F1[l] to denote the
content of a gene [j, s, o] in the first form of Segment-2 at location l, where l runs from 1 to
the total number of genes in this segment. Moreover, let us define rm as a run counter for
machine m, which increases by one every time an operation is assigned to the machine.

With this definition, the steps for the determination of the assignment and sequencing
of operations in Stage-1 of the search are outlined in Figure 2 along with the procedure
described in Figure 3 to evaluate the decision variables co,s,j,m, lm,o,s,j, es,j, and ds,j. In Step-1,
the counters l and rm are initialized to 1 and 0, respectively. The values of the indices j, s,
and o are obtained from GeneS2F1[l] at Step-2. In Step-3, if bs,j is zero, the algorithm moves
to Step-9. Otherwise, it advances to Step-4. In these steps, the counter rm is temporarily
increased by 1 corresponding to all the eligible machines for operation o of job j. Then, using
the procedure outlined in Figure 3 , the variables co,s,j,m, lm,o,s,j, es,j, and ds,j are evaluated
corresponding to all these eligible machines.

In Step-5, the machine that finishes operation [o, s, j] with the smallest co,s,j,m is selected,
and in Step-6, the operation is assigned to the rth

m run of this machine. In Step-7, the values
of the decision variable calculated corresponding to the selected machine are retained as
final values. The values of the counter rm, that was temporarily increased in Step-4, are
reduced by 1 corresponding to those machines that are not selected to process operation
[o, s, j]. In Step-9, the algorithm stops if all the operations are assigned, or otherwise, it
increases the counter l by one and then returns to Step-2.
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Step 1. Set l = 1. Set rm = 0; ∀m.

Step 2. Set (j, s, o) = GeneS2F1[l] of the chromosome in Figure 1c.

Step 3. If bs,j > 0, go to Step 4; otherwise, go to Step 9.

Step 4. Temporarily set rm = rm + 1 for each eligible machine m of operation o of job
j (for each m such that po,j,m = 1). Using the procedure described in Figure 3 ,
calculate the completion time of operation o of sublot s of job j corresponding
to each of the eligible machines m.

Step 5. Using the results from Step 4, select the machine that can complete the opera-
tion sooner.
Say this machine is machine m∗.

Step 6. Assign operation o of sublot s of job j to the (rm∗)
th run of machine m∗.

Step 7. Retain the values of co,s,j,m, lm,o,s,j, es,j, and ds,j calculated in Step 4 correspond-
ing to machine m = m∗ as the final values of these variables.

Step 8. Set rm = rm − 1 corresponding to all the other machines considered in Step 4
but not selected to processes operation o of job j in Step 5.

Step 9. If l is equal to the total number of operations, stop; otherwise, set l = l + 1
and go to Step 2.

Figure 2. A decoding procedure for the solution representation given in Figure 1c for the first stage
of the two-stage genetic algorithm.

Stage-2

In Stage-2 of the genetic search, the second form of Segment-2 of the solution repre-
sentation (Figure 1d) is used. This form of the segment explicitly encodes the assignment
and sequencing of the operations as it was discussed in Section 4.2. Unlike the decoding
procedure previously discussed for Stage-1, the decoding in Stage-2 does not follow a
greedy approach in selecting a machine for an operation assignment as the assignment and
sequencing are directly inferred from the solution representation.

The decoding procedure is only for the determination of several continuous variables
along with the start and finish times of the operations of all the sublots with non-zero sizes.
This decoding procedure is outlined in Figure 4. In this decoding procedure, the notation
GeneS2F2[l] denotes the content of the gene [j, s, o, m] at location l of the second form of
Segment-2. The notations l and rm have the same meaning as when they were used in the
previous discussion.

4.3.3. Calculating Objective Function Terms

In the decoding procedures presented in the previous section, the values of co,s,j, es,j,
ds,j, and lm,o,s,j were determined. Once the values of these variables are known for each
sublot with size greater than zero (bs,j > 0), the various terms of the objective function can
easily be calculated as shown in Table 3.
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If operation o of sublot s sublot of job j is to be processed on rth
m run of machine m, the

values of the variables co,s,j, es,j, ds,j, êj, d̂j, and lm,o,s,j are calculated based on one of the
following four cases:

• Case 1: [o = 1; rm = 1]

(a) Operation o of sublot s of job j is the first operation to be assigned on machine
m (i.e., rm = 1), and

(b) o = 1.

co,s,j = Dm + S∗o,j,m + bs,j × To,j,m;
lm,o,s,j = S∗o,j,m + bs,j × To,j,m;
es,j = co,s,j,m − bs,j × To,j,m − Ao,j × S∗o,j,m.

• Case 2: [o > 1; rm = 1]

(a) Operation o of sublot s of job j is the first operation to be assigned on machine
m (i.e., rm = 1),

(b) o > 1, and
(c) Operation o− 1 of sublot s of job j was assigned on machine m′.

co,s,j = max{Dm + (1− Ao,j) × S∗o,j,m , co−1,s,j,m′ + Lo,j} + bs,j × To,j,m + Ao,j ×
S∗o,j,m;
lm,o,s,j = S∗o,j,m + bs,j × To,j,m;
If o = Oj, then ds,j = co,s,j,m.

• Case 3: [o = 1; rm > 1]

(a) Operation o of sublot s of job j is not the first operation to be assigned on
machine m (i.e., rm > 1),

(b) Operation o′ of sublot s′ of job j′ is the operation to be processed immediately
before operation o of sublot s of job j on machine m (i.e., Operation o′ of sublot
s′ of job j′ was assigned to run rm − 1 of machine m), and

(c) o = 1.

co,s,j = co′ ,s′ ,j′ ,m + So,j,m,o′ ,j′ + bs,j × To,j,m;
lm,o,s,j = So,j,m,o′ ,j′ + bs,j × To,j,m;
es,j = co,s,j,m − bs,j × To,j,m − Ao,j × So,j,m,o′ ,j′ .

• Case 4: [o > 1; rm > 1]

(a) Operation o of sublot s of job j is not the first operation to be assigned on
machine m (i.e., rm > 1),

(b) Operation o′ of sublot s′ of job j′ is assigned immediately before operation o
of sublot s of job j on machine m (i.e., Operation o′ of sublot s′ of job j′ was
assigned to run rm − 1 of machine m),

(c) o > 1, and
(d) Operation o− 1 of sublot s of job j is assigned on machine m′.

co,s,j = max{co′ ,s′ ,j′ ,m + (1− Ao,j) × So,j,m,o′ ,j′ , co−1,s,j,m′ + Lo,j} + bs,j × To,j,m +
Ao,j × So,j,m,o′ ,j′ ;
lm,o,s,j = So,j,m,o′ ,j′ + bs,j × To,j,m;
If o = Oj, then ds,j = co,s,j,m.

Figure 3. Calculation of the decision variables co,s,j, es,j, ds,j, and lm,o,s,j.
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Step 1. Set l = 1. Set rm = 0; ∀m.

Step 2. Set (j, s, o, m) = GeneS2F2[l] of the chromosome in Figure 1d.

Step 3. If bs,j > 0, go to Step 4; otherwise, go to Step 7.

Step 4. Set rm = rm + 1.

Step 5. Assign operation o of sublot s of job j to the (rm)th run of machine m.

Step 6. Calculate the values of co,s,j,m, lm,o,s,j, es,j, and ds,j using the procedure de-
scribed in Figure 3.

Step 7. If l is equal to the total number of operations, stop; otherwise, set l = l + 1
and go to Step 2

Figure 4. A decoding procedure for the solution representation given in Figure 1d for the second
stage of the two-stage genetic algorithm.

Table 3. Calculating the objective function terms once the values of co,s,j, es,j, ds,j, and lm,o,s,j are
evaluated corresponding to each sublot with non-zero size.

Intermediate Calculation Obj. Function Term

cmax = max∀(o,s,j) co,s,j Z1 = cmax

fs,j = ds,j − es,j
fmax = max∀(s,j)|bs,j>0{ fs,j} Z2 = fmax

ftotal = ∑∀(s,j)|bs,j>0{ fs,j} Z3 = ftotal

êj = min∀s|bs,j>0{es,j}
d̂j = max∀s|bs,j>0{ds,j}
f̂ j = d̂j − êj
f̂max = max∀j{ f̂ j} Z4 = f̂max

f̂total = ∑∀j{ f̂ j} Z5 = f̂total

ĝj = min∀s|bs,j>0{ds,j}
ĥj = d̂j − ĝj
ĥmax = max∀j{ĥj} Z6 = ĥmax

ĥtotal = ∑∀j{ĥj} Z7 = ĥtotal

l̂m = Dm + ∑∀(m,o,s,j)|bs,j>0{lm,o,s,j}
l̂max = max∀m{lm} Z8 = l̂max

l̂total = ∑∀m{lm} Z9 = l̂total

l̂min = min∀m{lm}
l̂di f f = lmax − lmin Z10 = l̂di f f

4.4. Handling Multi-Objectives

In the literature, there are many techniques in handling multi-objective optimization
using evolutionary algorithms. However, due to its simplicity and computational efficiency,
we choose a weighted sum approach in which multiple objectives are aggregated into a
single objective using a weight vector. In the best scenario, the weight vector is assigned by
decision-makers who have knowledge regarding the relative importance of the objective
functions. However, because of large differences in magnitudes of the objective functions,
scaling the objectives is always desirable to obtain solutions consistent with the decision-
makers’ preferences.

Hence, in the aggregated objective, the kth objective function has to be multiplied by
the weights Wk, reflecting the decision makers’ preferences, and Ψk for scaling as shown in
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Equation (58) . In this research, we adopt a simple objective function scaling mechanism in
such a way that, in the initial population of the genetic algorithm, the magnitude of the
maximum values of objective function terms Z2 through Z10 will have the same values as
the maximum value of Z1.

This scaling procedure can be mathematically described as shown in Equation (59)
where ZIni−max

k represents the maximum value of objective Zk in the initial population. The
decision-maker is free to choose any positive value of Wk. The problem may be solved
multiple times with different sets of Wk’s, and the resulting solutions can be presented to the
decision-makers for final decision. Nevertheless, scheduling is a day-to-day activity where
the decision-makers may already have a preferred set of Wk’s from previous experience.

Z =
10

∑
k=1

Wk ·Ψk · Zk (58)

Ψk =
ZIni−max

1

ZIni−max
k

(59)

4.5. Genetic Operators

A genetic algorithm works on a population of solutions. The initial population is
generated randomly, and the algorithm works iteratively to evolve this population towards
promising solutions following the principles of natural evolution. The mechanisms used to
achieve this artificial evolutionary process are collectively called genetic operators. These
operators are broadly classified into selection, crossover, and mutation. The operators used
in the proposed genetic algorithm are discussed below.

4.5.1. Selection Operators

The role of selection operator in a genetic algorithm is to mimic the principle of the survival of
the fittest in natural evolution. This operator creates a mating pool of individuals for reproduction.
Selection can be applied in a variety of ways. In this research, we considered the three most
commonly used approaches in the literature—namely, (1) proportional, (2) linear ranking, and (3)
tournament selections. The following notations are used to describe these selection operators.

N Number of individuals (solutions) in a population.

U(t) Population of solution at generation t.

U(i, t) The ith individual in the population at generation t.

M(t) Mating pool created via selection operator from the population U(t) (the size of
the mating pool is the same as that of the population).

M(i, t) The ith individual in the mating pool at generation t.

Z(i, t) The weighted objective function value corresponding to the ith individual in the
population at generation t.

Zmin(t) The minimum observed weighted objective function value in the population at
generation t.

Zmax(t) The maximum observed weighted objective function value in the population at
generation t.

F(i, t) The fitness value of the ith individual in the population at generation t.

R(i, t) The rank of the ith individual in the population at generation t for linear ranking
selection.

P(i, t) Probability of selection of ith individual in the population at generation t for
proportional or linear ranking selection method.

T Tournament size for tournament selection.
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4.5.2. Proportional Selection

Proportional selection is a procedure in which individuals from a given generation are
selected (with replacement) to move to the mating pool with a probability proportional to
their fitness F, which needs to be maximized. In a problem where the objective function Z
is to be minimized, a fitness function F has to be devised so that a solution with smaller Z
will have higher fitness than a solution with larger Z.

In such situations, a commonly used fitness function is the reciprocal of Z as shown in
Equation (60) . We also considered other two transformations shown in Equations (61) and
(62). Once the fitness values for all the individuals in the population are calculated, each
individual is assigned a probability of selection defined by the equation in Equation (63).
As can be seen from this equation, P(i, t) is proportional to the fitness F(i, t), and the sum
∑N

i P(i, t) is equal to 1. This probability distribution can be sampled using Monte-Carlo
simulation of a roulette wheel, where each solution is assigned a slot proportional to
its probability of selection (P(i, t)). Algorithm 1 depicts the Monte-Carlo simulation of
a roulette wheel, and every time this algorithm is called, it returns an integer number
(winner) representing the index of the selected individual. The procedure of constituting
the mating pool M(t) from a given population U(t) is depicted in Algorithm 2.

F(i, t) =
1

Z(i, t)
(60)

F(i, t) = Zmax(t) + Zmin(t)− Z(i, t) (61)

F(i, t) = Zmax,t − Z(i, t) (62)

P(i, t) =
F(i, t)

∑N
i F(i, t)

(63)

4.5.3. Linear Ranking Selection

In a linear ranking selection, the individuals in the population are assigned ranks based
on a sorted sequence of their objective function values. The individuals with the worst
objective function are assigned a rank of 1, the next worse individuals are assigned a rank of
2, and so on. In this process, the best individuals are assigned the highest possible rank. Once
each individual is a assigned a rank R(i,t), a selection probability P(i, t) can be calculated
using Equation (64). This probability function can be sampled using Monte-Carlo simulation
of a roulette wheel (Algorithm 1) to constitute the mating pool using Algorithm 2.

P(i, t) =
R(i, t)

∑N
i R(i, t)

(64)

4.5.4. Tournament Selection

Tournament selection is the most commonly used selection operator in the literature.
In this selection procedure, every time a selection is performed, T individuals are randomly
selected (with replacement) from the population, and the one with the smallest Z is selected
as a winner. The process is repeated for N number of times to form a mating pool of N
individuals from a given generation of the population. The integer parameter T is referred
to as the tournament size, and it is usually equal to a small fraction of N where the smallest
possible value is 2. A large value of T results in higher selection pressure and premature
convergence, whereas a small value of T may result in slow convergence. The Monte-Carlo
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simulation of tournament selection is given in Algorithm 3, which can be used along with
Algorithm 2 to constitute the mating pool.

Algorithm 1: Monte Carlo simulation of roulette wheel spinning for proportional
or ranked selection.

Input : P(i, t) for i = 1, 2, ..., N
Output :Winner

1 Set Sum = 0
2 Set ρ = rand()

/* Assign ρ a random number between 0 and 1 using random number
generator function rand() */

3 for i = 1 to N do
4 Sum = Sum + P(i, t)
5 if ρ ≤ Sum then
6 Winner = i
7 Break

/* Break the “for loop” and go to line 10 */
8 end
9 end

10 Return Winner

Algorithm 2: Creating the mating pool M(t).

Input :U(t)
Output : M(t)

1 for i = 1 to N do
2 j = Selection()

/* The function Selection() returns the index of the individual selected from
U(t). This function is implemented either using Algorithm-1 if roulette
wheel selection is used or Algorithm-3 if tournament selection is used */

3 M(i, t) = U(j, t)
4 end
5 Return Winner

Algorithm 3: Monte Carlo Simulation of Tournament selection.

Input : Z(i, t) for i = 1, 2, ..., N
Output :Winner

1 for j = 1 to T do
2 Competitor[j] = RandIntBetween(1, N)

/* Select T competitors randomly */
3 end
4 Winner = Competitor[1]

/* Assign Winner the index of the first competitor */
5 for j = 2 to T do
6 w = Winner
7 i = Competitor[j]
8 if Z(i, t) < Z(w, t) then
9 Winner = i

10 end
11 end
12 Return Winner
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4.5.5. Crossover Operators

Crossover operators are responsible for creating offspring from parent chromosomes
via the exchange of genetic materials, thereby, mimicking sexual reproduction in living
organisms. Once M(t) is formed using the selection operator, each individual is paired
randomly to create a total of N/2 pairs. Then, a crossover operator is applied on each
pair resulting from the creation of offspring. The crossover operators used in this paper
are listed below. SSC1, SSC2, JLOSC, SLOSC, and MAC are direct adaptations from [2].
However, in this paper, JLOSC, SLOSC, and MAC are applicable only in the second stage
of the search. JLSCS and SLGSC share similarities with JLOSC and SLOSC; however, they
are applicable only in the first stage of the genetic search.

(a) Sublot-Size Crossover-1 (SSC1).
(b) Sublot-Size Crossover-2 (SSC2).
(c) Job Level Gene Sequence Crossover (JLGSC).
(d) Sublot Level Gene Sequence Crossover (SLGSC).
(e) Job Level Operation Sequence Crossover (JLOSC).
(f) Sublot Level Operation Sequence Crossover (SLOSC).
(g) Machine Assignment Crossover (MAC).

Figure 5 depicts the first two crossover operators (SSC1 and SSC2). When SSC1 (or
SSC2) is applied, an arbitrary crossover point is selected on Segment-1, and the parts of this
segment that lie to the left (or right) of the crossover point are exchanged. The step-by-step
application of JLGSC is illustrated in Figure 6 where the creation of Child-1 is detailed. In
Step-1, one gene is selected arbitrarily. This gene and all the other genes with the same job
index, j, are copied from Parent-1 to Child-1. In Step-3, all the missing genes of Child-1 are
copied from parent-2 in the order they appeared in this second parent. At the same time,
Child-2 is also created by first copying genes from Parent-2 with the same job index as
the arbitrarily selected gene. The missing genes of Child-2 will be obtained from Parent-1.
SLGSC is applied in a similar manner to JLGSC. However, the gene transfer in SLGSC is
limited to the genes that have the same job and sublot index (j, s) as the arbitrarily selected
gene in Step-1.

JLOSC is applied in four steps as shown in Figure 7. In Step-1, a crossover point (a
gene) is selected arbitrarily. All the genes with the same job index as the arbitrarily selected
gene are copied from Parent-1 to Child-1 in Step-2. In Step-3, the first three elements (j, s, o)
of the missing genes of Child-1 are copied from Parent-2. In the last step, the machine
assignments of the incomplete genes that were copied from Parent-2 are completed by the
machine assignment obtained from Parent-1.

The creation of Child-2 will be performed in a similar manner by starting from Parent-
2. SLOSC is a reduced version of JLOSC where the first step is limited to the genes with
the same job and sublot indices. Hence, if Figure 7 were for SLOSC, only the genes with
job index j = 3 and sublot index s = 2 would be copied to Child-1 in Step-2. When either
JLOSC or SLOSC is applied, Child-1 (Child-2) will have the same machine assigned as
Parent-1 (Parent-2) but with a different operation sequence. Thus, JLOSC and SLOSC
manipulate only the sequence of operations without altering the machine assignments in
Stage-2 of the generic search.
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Figure 5. Illustration of the crossover operators SSC-1 and SSC-2.
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Figure 6. Illustration of the JLGSC crossover operator (an asterisk * in Step-1 denotes the location of
an arbitrarily selected gene).

The machine assignment crossover (MAC), shown in Figure 8, is responsible for
exchanging machine assignment information between parent chromosomes during Stage-2
of the genetic search. As can be seen in the figure, this operator is applied in three steps to
create offspring. In Step-1, several genes are arbitrarily selected (each one with 50% chance).
In Step-2, the contents of Parent-1 are copied to Child-1 without the machine assignment
information of the arbitrarily chosen genes. In the last step, the missing machine assignment
information is copied from Parent-2.
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Figure 7. Illustration of the JLOSC crossover operator (an asterisk * in Step-1 denotes the location of
an arbitrarily selected gene).
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Figure 8. Illustration of the MAC crossover operator (the asterisks * denote the locations of arbitrarily
selected genes).

Child-2 is created in a similar manner by starting Step-1 from Parent-2 for the same
locations of the arbitrarily selected genes in creating Child-1 (i.e., locations 6, 10, 14, 18, 20,
23, 25, 27, and 31). Here, it is essential to mention that, although there are many crossover
operators, whenever crossover is to happen between a pair of parent chromosomes, only
one crossover operator will be arbitrarily selected and applied with a probability (pcros)
to create two offspring. If the selected crossover operator is not applied (by chance), the
parent chromosomes will move to the next generation (with or without mutation operators
applied, again by chance).

4.5.6. Mutation Operators

Mutation operators are applied with a small probability on newly generated offspring
to alter the genetic material. This category of operators used in this paper is listed below.
They are adapted from [2], and the need to divide the genetic search into two stages is taken
into consideration. The first two mutation operators, SGVM and SGSM, are applicable in
both Stage-1 and -2 of the GA search. Whereas OGSM is applicable only in Stage-1, and
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OSSM, ROAM, and IOAM are applicable only in Stage-2. Each one of the six mutation
operators listed below is applied with a probability pmut on a newly generated offspring as
long as it is eligible for the stage of the search of the GA.

(a) Sublot Gene Value Mutation (SGVM).
(b) Sublot Gene Swap Mutation (SGSM).
(c) Operation Gene Shift Mutation (OGSM).
(d) Operations Sequence Shift Mutation (OSSM).
(e) Random Operation Assignment Mutation (ROAM).
(f) Intelligent Operations Assignment Mutation (IOAM).

SGVM is used to alter the value of a gene αj,s in Segment-1 of a newly born offspring
chromosome. When this operator is applied, a single gene is arbitrarily selected, and its
value is either increased or decreased (50% by chance) with a small quantity according to
Equations (65) or (66) , respectively. In these two equations, rand() is a function that returns
a random number in the interval [0, 1], and δ is the maximum increment or decrement
quantity, which can be regarded as the GA’s parameter that needs to be set. In this research,
we found that a value of δ between 0.1 and 0.2 is preferable. The second mutation operator,
SGSM, arbitrarily selects a job j in Segment-1 and swaps the values of two arbitrarily
selected genes αj,s and αj,s′ corresponding to sublots s and s′ (s 6= s′).

αj,s = min{1, αj,s + rand()× δ} (65)

αj,s = max{1, αj,s − rand()× δ} (66)

Operation gene shift mutation (OGSM) is applied on form-1 of Segment-2 of the
solution representation (Figure 1c) during Stage-1 of the GA search. When this operator
is applied, it first arbitrarily selects a gene (j, s, o), and then relocates it to an arbitrarily
location after and before the locations of the genes (j, s, o− 1) and (j, s, o + 1), respectively.
If o = 0, the selected gene (j, s, o) can be moved only forward to an arbitral location before
the location of gene (j, s, o + 1), whereas if o = Oj, the gene can be moved only backward
to a location after the location of the gene (j, s, o− 1).

OGSM impacts both the machine assignment and operation sequencing as it alters
the sequence of the genes, which is used to determine the operations assignment and
sequencing in Stage-1 of the GA search by the greedy procedure described in Section 4.3.2.
OSSM is applied on form-2 of Segment-2 (Figure 1d) to shift a location of an arbitrarily
selected gene (j, s, o, m) during Stage-2 of the search. It is applied in a similar manner as
OGSM was applied during Stage-1. However, in Stage-2, since the genes directly encode
the machine assignment, OSSM impacts only the operation sequencing but not the machine
assignment of the operations. ROAM is a mutation operator responsible for altering the
machine assignment in Stage-2 of the GA search.

The operator arbitrarily selects a gene (j, s, o, m), and changes the value of m to a
different eligible machine m′ for operation o of job j (i.e., Po,j,m′ = 1). IOAM intelligently
changes a machine assignment in an attempt to lower the workload on a heavily loaded
machine. This operator first identifies the machine with the largest workload because of the
solution under consideration for a mutation (let that machine be donated as m∗). Then, it
selects one of the operations assigned to m∗ and relocates it to an eligible machine with the
least load as long as the load transfer will not make the least loaded machine more loaded
than m∗ after the load transfer.

5. Numerical Studies
5.1. Model Analysis
5.1.1. Illustration of Objective Function Terms

This section attempts to illustrate the various objective function terms considered in
this paper. For this purpose, the prototype problem presented in Section 4.1 was solved
using the proposed algorithm, where makespan minimization was the only objective
function, and other objective function terms were merely evaluated. The details of a typical
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solution are given in Tables 4–8. Table 4 provides the sizes of the created sublots and
operation-to-machine assignments and the run orders along with the Beginning and End
times of Lag-time, Setup, and Processing. The maximum Processing End time, 2603.8, is
the makespan of the schedule.

Table 4. Operation scheduling for Problem-1.

j s bs,j o m r LB LE SB SE/PB PE

1 1 100.0 1 5 1 0.0 0.0 0.0 100.0 750.0
2 4 6 750.0 870.0 1577.5 1817.5 2092.5
3 4 7 2092.5 2212.5 2112.5 2212.5 2587.5

2 1 90.8 1 2 2 0.0 0.0 303.0 313.0 494.6
2 3 2 494.6 494.6 792.0 812.0 1197.8
3 3 3 1197.8 1237.8 1237.8 1317.8 1907.8
4 3 4 1907.8 1947.8 1907.8 2007.8 2257.4

2 67.7 1 2 3 0.0 0.0 494.6 504.6 640.0
2 2 4 640.0 640.0 640.0 720.0 1058.5
3 2 5 1058.5 1098.5 1098.5 1178.5 1652.5
4 2 7 1652.5 1692.5 2308.1 2428.1 2597.4

3 91.5 1 2 1 0.0 0.0 0.0 120.0 303.0
2 3 1 303.0 303.0 303.0 403.0 792.0
3 2 6 792.0 832.0 1652.5 1667.5 2308.1
4 3 5 2308.1 2348.1 2338.1 2348.1 2599.8

3 1 80.4 1 1 1 0.0 0.0 840.0 920.0 1342.0
2 1 2 1342.0 1342.0 1342.0 1422.0 1783.8
3 1 3 1783.8 1783.8 1783.8 1883.8 2165.2

2 39.2 1 5 2 0.0 0.0 750.0 960.0 1185.5
2 5 5 1185.5 1185.5 2104.4 2114.4 2281.1
3 1 5 2281.1 2281.1 2456.5 2466.5 2603.8

3 80.4 1 5 3 0.0 0.0 1185.5 1200.5 1662.8
2 5 4 1662.8 1662.8 1662.8 1762.8 2104.4
3 1 4 2104.4 2104.4 2165.2 2175.2 2456.5

4 1 50.0 1 4 2 0.0 0.0 520.0 530.0 830.0
2 4 3 830.0 830.0 830.0 930.0 1167.5
3 5 6 1167.5 1167.5 2281.1 2521.1 2583.6

2 50.0 1 4 1 0.0 0.0 120.0 220.0 520.0
2 4 4 520.0 520.0 1167.5 1177.5 1415.0
3 4 5 1415.0 1415.0 1415.0 1515.0 1577.5

LB = Lag-time Begins; LE = Lag-time Ends; SB = Setup Begins; SE = Setup Ends; PB = Processing Begins; and PE =
Processing Ends.

Table 5. Sublot flowtime related performance measure ( fmax and ftotal).

j s es,j ds,j fs,j

1 1 100.0 2587.5 2487.5

2 1 313.0 2257.4 1944.4
2 504.6 2597.4 2092.8
3 120.0 2599.8 2479.8

3 1 920.0 2165.2 1245.2
2 960.0 2603.8 1643.8
3 1200.5 2456.5 1256.0

4 1 530.0 2583.6 2053.6
2 220.0 1577.5 1357.5

Maximum 2487.5
Total 16,560.6
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Table 6. Job flowtime and sublot finish-time separation performance measures ( f̂mas, f̂total , ĥmas, and
ĥtotal).

j êj d̂j f̂j ĥj

1 100.0 2587.5 2487.5 0.0
2 120.0 2599.8 2479.8 342.4
3 920.0 2603.8 1683.8 438.6
4 220.0 2583.6 2363.6 1006.1

Maximum 2487.5 1006.1
Total 9014.7 1787

The values of the objective function terms related to sublot flowtime can be extracted
from Table 4. The entry time to the shop floor of a sublot (es,j) is the setup begin (SB) time
of the first operation if the setup is attached, or it is equal to the setup end (SE) time if the
setup is detached. Here, it is important to note that, if the setup of the first operation is
detached, the setup can begin and be completed before raw material is dispatched to the
shop floor. The sublot departure time (ds,j) is the process end (PE) time of the last operation.

From the first row of column ten of Table 4, e1,1 = 100, because the job is dispatched
after its setup is completed as the first operation of this sublot has a detached setup time.
The departure time d1,1 = 2587.5. Hence, the flowtime f1,1 = 2587.5− 100 = 2487.5. The
flowtimes for the other sublots can be determined similarly and are summarized in Table 5.
At the bottom of this table, the performance measures fmax and ftotal are indicated as 2487.5
and 16,560.6, respectively.

The job flowtime and sublot-finish-separation objective function terms can be evalu-
ated from Table 5. The entry time ê1 and the departure time d̂1 of the first job are the same
as e1,1 and d1,1, respectively, of the first sublot since this job has only one sublot in the final
solution. Hence, its flowtime f̂1 = f1,1 = 2487.5. The second job has three sublots in the
final solution. Thus, its entry time ê2 is the minimum of {e1,2, e2,2, e3,2} = e3,2 = 120.0, and
its departure time d̂2 is the maximum of {d1,2, d2,2, d3,2} = d3,2 = 2599.8. Therefore, the
flowtime of job-2 is evaluated as f̂2 = 2599.8− 120.0 = 2479.5. For job-3, ê3 is the minimum
of {e1,3, e2,3, e3,3} = e1,3 = 920.0, and d̂3 is the maximum of {d1,3, d2,3, d3,3} = d2,3 = 2603.8.

Therefore, f̂3 = 2603.8 − 920.0 = 1683.8. Similarly, for the forth job, ê4 = 220.0,
d̂4 = 2583.6, and f̂4 = 2363.6. The sublot finish separation time for job-1 is zero since
this job has only one sublot, whereas the sublot finish-time separation of job-2 is the
difference between (1) the maximum of {d1,2, d2,2, d3,2} = d3,2 = d̂2, and (2) the minimum of
{d1,2, d2,2, d3,2} = d1,2 = ĝ2, which is evaluated as ĥ2 = d̂2 − ĝ2 = 2599.8− 2257.4 = 342.4.
The sublot finish-time separations for the other jobs can be evaluated similarly. The result
is summarized in Table 6. In the last row of this table, the objective function components
f̂mas, f̂totoal , ĥmas, and ĥtotoal are indicated as 2487.5, 9014.7, 1006.1, and 1787, respectively.

Table 7 provides the schedule for the prototype problem with respect to the machines.
From this table, the workload because of each operation assignment can be evaluated by
subtracting SB from PE. For instance, from the first row of this table, the load because of
operation-1 of sublot-1 of job-3 is lm,o,s,j = l1,1,1,3 = 1342.0− 840.0 = 502. Similarly, the
workload because of the other four operations on machine-1 can be evaluated as 441.8,
381.4, 291.3, and 147.3, bringing the total workload on this machine to 1763.8 + 840 = 2603.8,
where 840 is the release date of the machine.

The utilization (workload/makespan) of this machine is 100% as its workload is the
same as the makespan. The workloads and the utilization of the other machines are also
evaluated in a similar way as summarized in Table 8. The objective function components
l̂max, l̂total , and l̂max − l̂min are given in the last row of this table as 2603.8, 12,488.4, and 427.7,
respectively. The values for all of the objective function components are summarized in
Table 9.
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Table 7. Operation scheduling for Problem-1 with reference to the machines.

m r j s o SB SE/PB PE

1 1 3 1 1 840.0 920.0 1342.0
2 3 1 2 1342.0 1422.0 1783.8
3 3 1 3 1783.8 1883.8 2165.2
4 3 3 3 2165.2 2175.2 2456.5
5 3 2 3 2456.5 2466.5 2603.8

2 1 2 3 1 0.0 120.0 303.0
2 2 1 1 303.0 313.0 494.6
3 2 2 1 494.6 504.6 640.0
4 2 2 2 640.0 720.0 1058.5
5 2 2 3 1098.5 1178.5 1652.5
6 2 3 3 1652.5 1667.5 2308.1
7 2 2 4 2308.1 2428.1 2597.4

3 1 2 3 2 303.0 403.0 792.0
2 2 1 2 792.0 812.0 1197.8
3 2 1 3 1237.8 1317.8 1907.8
4 2 1 4 1907.8 2007.8 2257.4
5 2 3 4 2338.1 2348.1 2599.8

4 1 4 2 1 120.0 220.0 520.0
2 4 1 1 520.0 530.0 830.0
3 4 1 2 830.0 930.0 1167.5
4 4 2 2 1167.5 1177.5 1415.0
5 4 2 3 1415.0 1515.0 1577.5
6 1 1 2 1577.5 1817.5 2092.5
7 1 1 3 2112.5 2212.5 2587.5

5 1 1 1 1 0.0 100.0 750.0
2 3 2 1 750.0 960.0 1185.5
3 3 3 1 1185.5 1200.5 1662.8
4 3 3 2 1662.8 1762.8 2104.4
5 3 2 2 2104.4 2114.4 2281.1
6 4 1 3 2281.1 2521.1 2583.6

SB = Setup Begins; SE = Setup Ends; PB = Processing Begins; and PE = Processing Ends.

Table 8. Machine workload related performance (l̂max and l̂max − l̂min).

m Workload Utilization

1 2603.8 100.0
2 2557.4 98.2
3 2176.1 83.6
4 2567.5 98.6
5 2583.6 99.2

Maximum workload = 2603.8; Total workload = 12488.4; and Maximum workload difference = 427.7.

5.1.2. Optimizing a Single Objective

When we optimize only one objective function term, unaccounted objective function
terms can be adversely impacted. This phenomenon asserts the importance of multi-
objective optimization. To illustrate this reality, we solve Problem-1 by considering one
objective function term at a time. The result is depicted in Figure 9. Figure 9a provides the
values of the makespan (Z1) when Z1 through Z10 are optimized one at a time as a single
objective function. As it should be the case, the smallest makespan (about 2608) is achieved
when Z1 is considered as the only term in the objective function.
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Table 9. Values of the objective function components.

Objective Term Notation Value

Makespan Z1 2603.8

Maximum Sublot Flowtime Z2 2487.5

Total Sublot Flowtime Z3 16,560.6

Maximum Job flowtime Z4 2487.5

Total job flowtime Z5 9014.7

Maximum Sublot Finish-time Separation Z6 1006.1

Total Sublot finish-time Separation Z7 1787.1

Maximum Machine Load Z8 2603.8

Total Machine Load Z9 2603.8

Maximum Machine Load Difference Z10 427.7

However, when another term alone is optimized, makespan greatly deteriorates. For
instance, when only Z2 alone is optimized, the value of the makespan increases to 5067 (94%
increase). Figures 9b is a plot of the maximum sublot flowtime (Z2) when Z1 through Z10
are optimized one at a time. Its minimum value is 1468 when Z2 alone is optimized. This
value increases to 2431 when Z1 alone is optimized. A single objective optimization of Z6
through Z10 has significantly negative impacts on Z2. A similar phenomenon is observed
on all the other objective function terms, as can be seen from Figures 9c–j.

Here, it is important to note that the magnitude of the severity of a single objective
optimization on the objective function terms that are not incorporated increases as the
problem size increases. To exemplify this fact, we conducted a similar analysis on a
relatively large problem (Problem-4), and the result is compiled in Table 10. For instance,
when the total machine load (Z9) was the only objective function, its value was 573,164 min
(see at row-Z9 column-Z9), which increases by 84,386 min when makespan (Z1) is the only
objective function optimized (see at row-Z1 column-Z9). This increment was only 721 min
in a similar analysis in Problem-1. The total sublot flow time in Problem-4 was equal to
2,115,095 when it was the only objective function (see row-Z3 column-Z3).

This value increases to 4,004,945 when minimizing the maximum machine load is the
only objective (see row-Z8 column Z3). The last two rows of Table 10 show the best and
the worst observed values of each objective function term. From these rows, we can see a
considerably large gap between the best and the worst values of an objective function term.
The best value of an objective function term is obtained when it is the only term optimized,
and the worst is found when it is unaccounted for optimization. These significantly large
deteriorations of unaccounted objective function terms in a large size problem greatly
emphasize the need for multi-objective optimization in real industrial scheduling problems
that are usually large in size.
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Figure 9. Values of the objective function terms in Problem-1 when only one objective function term
is optimized.

Table 10. Values of the objective function terms in Problem-4 when only one objective function term
is optimized.

Term Optimized as a Single Objective Function Term Evaluated

Objective Function Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Makespan Z1 26,604 26,511 2,500,084 26,594 1,002,941 8580 96,070 26,593 660,550 715
Maximum Sublot Flowtime Z2 28,756 24,014 2,495,091 28,367 1,016,441 9426 110,413 28,175 665,522 3063
Total Sublot Flowtime Z3 28,822 27,596 2,115,095 27,977 951,313 13,437 173,636 27,964 667,816 2747
Maximum Job Flowtime Z4 28,619 25,156 2,520,010 25,161 990,089 8029 71,921 28,155 663,042 2989
Total Job Flowtime Z5 27,316 26,770 2,312,532 26,846 868,391 6431 41,727 27,071 652,393 2169
Maximum Sublot Finish-Time Separation Z6 37,849 37,323 3,417,121 37,608 1,337,687 709 19,222 30,936 695,833 6275
Total Sublot Finish-Time Separation Z7 30,966 30,475 2,857,497 30,561 1,110,654 1788 10,813 29,629 690,055 4700
Maximum Machine Load Z8 44,197 43,469 4,004,945 43,658 1,586,503 14,786 158,042 25,793 643,747 227
Total Machine Load Z9 43,242 41,933 3,926,277 42,356 1,494,746 15611 76,124 28,123 573,164 10,040
Maximum Machine Load Difference Z10 36,943 36,238 3,314,121 36,671 1,348,060 15,639 161,671 27,729 693,034 15

Minimum (Best Value) 26,604 24,014 2,115,095 25,161 868,391 709 10,813 25,793 573,164 15
Maximum (Worst Value) 44,197 43,469 4,004,945 43,658 1,586,503 15,639 173,636 30,936 695,833 10,040

5.1.3. Jointly Optimizing Z1, . . . , Z10

In the previous section, the best and the worst values of the various objective function
terms were determined when only one term was optimized at a time. In this section, we
attempted to illustrate the ability of the proposed algorithm to jointly optimize all the terms
and achieve values close to their best-known ones. In doing so, we first provide a plot of the
values of the various objective function terms of Problem-4 in Figure 10a when makespan
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is the only objective function optimized. In this figure, the values of the objective function
terms are plotted on a scale between 0 and 1, corresponding to the best and worst values,
respectively.

Makespan achieves its minimum value since it is the only objective optimized. How-
ever, from this plot, one can see that several objective function terms, namely Z6, Z7, and
Z9, are not close enough to their respective best values obtained when each one of them
was the only objective optimized. Next, we solve the same problem to jointly optimize
all the objective function terms with equal weights set at one. The resulting values of the
objective function terms are plotted in Figure 10b. In this plot, except for Z9, all the values
of the objective function terms are close to their best values and far from their worst values.

Finally, Problem-4 was optimized with increased weight for Z9, and the values of
terms are plotted in Figure 10c. From this final plot, one can see that all the terms of the
objective function are much closer to their best values than to their worst values. This result
demonstrates the ability of the proposed algorithm to jointly optimize all the objective
function terms considered in the proposed model.

Best Value

30936

26604

695833

44197

10040

24014

Z5

Z10

Z9

Z8

Z7

Z6

Z3

Z2

Z1

2115095

Worst Value

573164

25161

1586503

173636

868391

0.5

709

Z4

10813

25793

15

43469

4004945

0

43658

15639

When Z1 is the only term optimized

1.0

10040

44197

1.0

Z5

0.5

Z10

Z9

Z8

Z7

Z6

Z3

Z2

Z1

Z4

Worst Value

26604

Best Value

25161

24014

2115095

868391

709

10813

25793

573164

15

43469

4004945

43658

1586503

15639

30936

173636

695833

Jointly optimized

0

(a) W1 = 1 and other weights set at 0 (b) Equal weight, W1 = W2 = · · ·W10 = 1

Z4

15

695833

Z10

0

Z9

10813Z7

Z6

Z3

Z5

Z2

Best Value

2115095

Worst Value

44197

25161

1586503

24014

43658

868391

709

10040

15639

Z1

Z8

43469

4004945

26604

573164

173636

25793 30936

0.5

Jointly optimized

1.0

(c) W9 = 150, other weights set at 1

Figure 10. Values of the objective function terms when (a) only makespan Z1 is optimized, (b)
all terms are jointedly optimized with equal weights set at one, and (c) all terms optimized with
W9 = 150 and other weights set at one.

5.1.4. Further Empirical Study of Objective Functions

In this section, we conducted additional empirical investigations to illustrate the interac-
tion of the objective function terms and their relevance in providing good quality solutions.
A total of eleven cases were investigated. The cases differ by the values of the weights of
the objective function terms. The settings for the weights for these eleven cases are given in
Table 11. In each case, the genetic algorithm was executed ten times, and the average values
of the objective function terms were collected. Table 12 provides these values.
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Table 11. Values of the weights of the objective function terms in Problem-4 in eleven different cases.

Objective Function Term Weight
Case W1 W2 W3 W4 W5 W6 W7 W8 W9 W10

0 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 1 1 1
2 1 0 0 1 1 0 0 1 1 1
3 1 1 1 0 0 1 1 1 1 1
4 1 0 0 1 1 1 1 1 1 1
5 1 1 0 0 0 0 0 1 1 1
6 1 0 1 0 0 0 0 1 1 1
7 1 0 0 1 0 0 0 1 1 1
8 1 0 0 0 1 0 0 1 1 1
9 1 1 1 1 1 1 1 1 0 0
10 1 1 1 1 1 1 1 0 1 0

Table 12. Average values of the objective function terms in Problem-4 from ten replications in each
cases (Cases 0 to 10).

Objective Function Terms
Case Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

0 24,550 23,710 1,057,020 23,762 822,152 425 2030 22,909 565,394 559
1 24,524 23,684 1,017,100 24,206 829,235 4642 15,476 22,657 561,306 366
2 24,640 23,964 1,143,060 24,021 823,195 3222 14,307 23,047 571,702 372
3 24,891 24,183 1,053,079 24,286 847,180 375 1337 22,717 562,619 396
4 24,789 24,322 1,127,425 24,355 835,824 579 2680 22,959 569,595 376
5 24,503 23,470 1,195,014 24,297 877,040 5370 23,064 23,073 573,483 285
6 24,737 24,578 1,013,725 24,618 831,675 4550 14,209 22,639 561,504 308
7 24,406 23,822 1,176,456 23,839 874,850 4198 17,824 22,977 571,159 258
8 24,546 24,447 1,088,981 24,476 815,426 4218 15,152 22,872 568,343 289
9 24,842 23,935 998,845 23,950 811,569 84 376 22,987 562,417 2047

10 24,756 23,870 958,741 23,881 804,054 94 319 23,844 552,727 4202

The setup load is the portion of the total workload Z9 required to perform setup operations.

Case-1 and Case-2 were considered to investigate flowtime performance measures.
Case-1 attempts to minimize the maximum and total sublot flowtime (Z2 and Z3), whereas
Case-2 attempts to minimize the maximum and total job flowtime (Z4 and Z5). The objective
function terms Z1, Z8, Z9 and Z10 are also optimized. In shifting from Case-1 to Case-2, the
total job flowtime (Z5) changes from 829,235 to 823,195 (less than 1% improvement).

However, the total sublot flowtime (Z3) changes from 1,017,100 to 1,143,060 (12%
deterioration). Moreover, Case-2 increased the total workload (Z9) by 10,396 min (a change
from 561,306 to 571,702 min). Hence, optimizing the sublot flowtime is more desirable than
optimizing job flowtime. However, as it can be seen from the values of Z2, Z3, Z4, and
Z5 in Case-0, optimizing both the sublot and job flowtime simultaneously can result in a
favorable solution with respect to the overall flowtime performance.

In both Case-1 and Case-2, the maximum and total sublot finish-times separations (Z6
and Z7, respectively) are significant compared to Case-3 and Case-4. Case-3 and Case-4 are
similar to Case-1 and Case-2, respectively. However, in these two cases, Z6 and Z7 were
also minimized. As can be seen from the result, Z6 and Z7 were reduced substantially with
minimal impacts on sublot and job flowtime perforce measures. The result confirms the
importance of minimizing sublot finish-time separation along with sublot and job flowtime,
which is initially reported in this paper.

Another observation from the empirical study in this section is the importance of
jointly minimizing the maximum and the total of a performance measure. For instance, let
us examine Case-1, Case-5, and Case-6. In Case-1, both the maximum (Z2) and total (Z3)
sublot flowtimes are minimized. Case-5 minimizes Z2 but not Z3, and Case-6 minimizes
Z3 but not Z2. The values of (Z2 and Z3) in Case-1, Case-5, and Case-6 are (23,684 and
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1,017,100), (23,470 and 1,195,014), and (24,578 and 1,013,725), respectively. In shifting from
Case-5 to Case-6, Z2 deteriorates by 4.7%, and Z3 improves by 15%.

Thus, minimizing Z2 alone results in an unfavorable value of Z3 and vice versa. By
adopting Case-1, Z2 deteriorates only by 0.9% from its value in Case-5, and Z3 deteriorates
only by 0.33% from its value in Case-6. Thus, instead of minimizing the maximum or the
total sublot flowtime alone, it is preferable to minimize both of them simultaneously. By
examining Case-2, Case-7, and Case-8, we can also arrive at a similar conclusion regarding
Z4 and Z5.

In the literature, workload balancing in FJSP has been handled either by minimizing
the workload of the most loaded machine (maximum workload Z8) or by minimizing the to-
tal workload (Z9). Accordingly, Case-9 minimizes Z8, and Case-10 minimizes Z9. However,
in both cases, we can see that the difference between the workloads of the most loaded and
the least loaded machines (maximum workload difference, Z10) is significant compared to
all the cases from Case-1 to Case-8 where Z10 is also minimized along with other objective
function terms. Thus, for better workload balancing, it is desirable to minimize Z10 along
with Z8 and Z9. The minimization of Z10 to improve workload balancing is reported for
the first time in this paper.

5.2. Performance Evaluation of RGA and 2SGA
5.2.1. Initial Solution Quality

Bajer et al. [44] and Rahnamayan et al. [45] argued that the quality of the initial
population is an important factor in determining the abilities of evolutionary algorithms to
find acceptable solutions with minimal execution times. With this in mind, Defersha and
Rooyani [1] illustrated that one of the key factors for the success of their two-stage GA is its
ability to find initial solutions with greatly improved makespan. In this paper, we further
illustrate the ability of 2SGA in finding an improved initial population not only with respect
to the makespan but also with many other performance metrics of the multi-objective FJSP
lot streaming presented in Section 3.2.

Table 13 provides the means and the standard deviations of the objective functions
Z1 to Z10 in the initial population of 2000 individuals in Problem-1 and Problem-4. From
this table, it can be clearly seen that the mean and the standard deviation of values of the
various objective functions in the initial population are greatly improved as we move from
RGA to 2SGA. For instance, the mean and standard deviation of the maximum sublot
flowtime (Z2) improve by 41% and 57%, respectively, in Problem-1 and by 47% and 79%,
respectively, in Problem-4. The histogram for the weighted sum of all the objective function
terms of the initial population is displayed in Figure 11. The histogram shows that 2SGA
results in highly improved initial solution quality in solving the proposed multi-objective
FJSP lot streaming problem.

Table 13. The mean and standard deviation of the objective function terms in the initial population
under RGA and 2SGA.

Problem-1 Problem-4

Objective Mean StDev Percentage Mean StDev Percentage

Term RGA 2SGA RGA 2SGA Improvement * RGA 2SGA RGA 2SGA Improvement *

Z1 6317 3767 972 412 (40, 58) 58,513 31,277 3293 748 (47, 77)
Z2 5477 3221 1045 447 (41, 57) 57,435 30,524 3336 690 (47, 79)
Z3 30,138 18,243 6116 2422 (39, 60) 4,574,999 2,476,978 299,643 89,360 (46, 70)
Z4 5895 3483 1003 438 (41, 56) 57,957 30,846 3312 705 (47, 79)
Z5 18,954 10,829 3420 1035 (43, 70) 2,081,854 1,122,475 119,664 17,273 (46, 86)
Z6 2896 1491 1171 581 (49, 50) 21,250 10,607 4788 2282 (50, 52)
Z7 6297 3084 2772 1232 (51, 56) 248,166 116,497 40,929 15,422 (53, 62)
Z8 5058 3336 894 291 (34, 67) 37,728 29,216 2621 538 (23, 79)
Z9 14,816 13,835 596 550 (7, 8) 682,856 667,035 6709 6442 (2, 4)
Z10 3789 1197 1228 532 (68, 57) 19,471 5945 3411 1183 (69, 65)

* The percentage improvement in Mean and StDev (Mean, StDev) in the initial population achieved by 2SGA.
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Figure 11. The distribution of the objective function of the initial populations of 2SGA and RGA in
both Problem-1 and Problem-4.

5.2.2. Convergence Behaviors

The previous section illustrated that 2SGA resulted in an improved initial population
in all the objective function terms. In this section, we compare the convergence behavior of
2SGA and RGA while solving large-size problems (Problems 4 to 7). The basic features of
these problems are given in Table 14. The parameters of the GAs used in this numerical
example are given in Table 15. Figure 12a–g shows the convergence along the objective
function terms Z1 to Z10, respectively, of 2SGA and RGA in solving Problem-4 while all
these terms are simultaneously optimized with equal weight (W1 = W2 = · · · = W10 = 1).
Each convergence curve is an average of 40 replications.

Table 14. Basic features of the problems considered for performance evaluation of the proposed
algorithm.

Problem M J Sj (max) Oj (min, max) NAMPJ (min, max) *

4 25 40 4 (8 15) (3, 6)
5 30 60 4 (8, 16) (3, 6)
6 40 80 4 (10, 18) (2, 8)
7 50 100 4 (10, 20) (2, 8)

* NAMPJ = Number of Alternative Routing per Operation.

Table 15. Algorithm parameters.

Parameters Values

Population Size 2000
Tournament Size Factor α 0.005
Crossover Probability 0.85
Mutation Probability 0.15
Number of generation for the first sage in 2SGA 2500
Total number of genration 10,000
W1, W2, · · · , W10 1.0

Note: Tournament size = α× Population size.

From these convergence curves, we can see that 2SGA was able to converge more
rapidly than RGA along Z1 to Z5, Z8, and Z9. In terms of these objective function terms,
2SGA was able to find better solutions in only a few hundred generations compared with
those determined after more than 10,000 generations by RGA. In terms of Z6, Z7, and Z10,
RGA was able to converge more rapidly than 2SGA. However, 2SGA was able to catch up
with RGA only in a few hundreds of generations right after it changed the search stage,
which occurred at 2500 generations. Figure 12h is the convergence of 2SGA and RGA in



Algorithms 2022, 15, 246 34 of 42

terms of the weighted sum of all the objective function terms, which clearly shows the
superiority of 2SGA over RGA. From the convergence graphs, the first stage of 2SGA was
able to achieve convergence within the first few hundreds of generations.
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Figure 12. The convergence of 2SGA and RGA in solving Problem 4 while all the objective terms are
optimized simultaneously. (Each convergence graph (a–k) is an average of 40 trials, and (l) is the
histogram of the final values of objective function in these 40 trials).

For instance, if 2SGA changed its search stage at 1000 generation, it could provide
highly improved solutions in only 3000 generations, which cannot be achieved using RGA
after many thousands of generations. Figure 12i depicts the histograms of the objective
function of the final solutions in 40 trials in both 2SGA and RGA. In these histograms, 2SGA
achieves approximately 9.5% and 35.6% improvements in the mean and standard deviation,
respectively. An improvement in the standard deviation by 2SGA represents its robustness
in finding good solutions more consistently than RGA. Similar results were obtained while
solving Problems-5, 6, and 7, as shown in Figure 13. The computational times required by
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2SGA and RGA to complete the 10,000 generations using the parameters in Table 15 were
approximately 120, 335, 840, and 1410 min in Problems 4, 5, 6, and 7, respectively.
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Figure 13. The convergence of 2SGA and RGA in solving Problems 4, 5, and 6. (Each convergence
graph is an average of 40 trials. The histograms are for the final values of the objective function in
40 trials).

5.2.3. Improvement through Parallelization

Parallelizing genetic algorithms using a high-performance parallel computing plat-
form has been well recognized as a viable technique to enhance their abilities in solving
many complex and large-size problems. Its application in solving shop scheduling prob-
lems has also been widely reported as reviewed in [46]. In this paper, we adopted a
randomly connected multi-population parallel GA (P-GA) proposed in [47] to illustrate the
performance improvement that can be achieved in both RGA and 2SGA. The P-GA consists
of several subpopulations where each of them is assigned to a dedicated CPU.

A subpopulation evolves independently and communicates periodically by sending
and receiving selected solutions to and from other subpopulations. Whenever commu-
nication occurs, the CPU with rank 0 randomly generates a communication matrix and
broadcasts it to all other CPUs. The migration of the copies of the selected solutions follows
the route generated according to the communication matrix. An example communication
matrix and the resulting migration route for a small instance of parallelization are depicted
in Figure 14 where the CPUs are ranked from 0 to 6. The density of the communication
matrix, the frequency of communication, and the strategy for the selection and replacement
of migrants from the source and to the destination subpopulations are key parameters for
this parallelization technique. An investigation of these parameters is not within the scope
of this paper.

In this study, we used a total of 80 concurrently available CPUs in high performance
parallel computing platform to implement the parallel RGA (P-RGA) and the parallel 2SGA
(P-2SGA). Problems 4, 5, 6, and 7 were solved using both the sequential and the parallel
versions of these algorithms using a subpopulation size of 2000. The subpopulations were
allowed to communicate every 30 generations. The change of stage for 2SGA occurred
at 2500 generations. The computation was terminated after 10,000 generations. The
resulting convergence graphs are given in Figure 15. From these graphs, one can see
that parallelization brings performance improvements in both RGA and 2SGA. However,
the crucial finding in this investigation is that the sequential 2SGA using a single CPU
outperforms the parallel RGA that uses 80 CPUs. This finding asserts the superiority of
2SGA over RGA in solving the proposed multi-objective FJSP lot streaming problem.
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Figure 14. Randomly connected topologies for a given communication matrices (adopted from [47]).
Note: The communication matrix and topology is generated every time before solution migration occurs.
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Figure 15. Improvements of convergence behaviors of RGA and 2SGA using the parallelization technique.
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5.3. Empirical Analysis of the Algorithm Parameters
5.3.1. Selection Operators

In this section, we present comparative empirical studies on the various selection
operators presented in Section 4.5. The comparisons are presented in terms of the conver-
gence behavior of 2SGA in solving Problem 4, whereas similar results were obtained in
solving several other problems. The first of these imperial studies is aimed at comparing
the three fitness transformation functions in Equations (60)–(62) used in the proportional
selection method. Figure 16 provides the average convergence from ten test runs using
these three different fitness transformation equations. As can be seen from this figure,
Equations (60) and (61) resulted in similar convergence behaviors of the algorithm. In
contrast, the transformation function in Equation (62) resulted in a much better convergence
of 2SGA when using the proportional selection method.
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Figure 16. The average convergence from ten test runs of 2SGA using proportional selection under
three different fitness transformation while solving Problem-4.

The second empirical study investigates the impact of tournament size in tournament
selection. Figure 17 depicts the results of this study. This figure shows that tournament se-
lection with a smaller tournament size was preferred in solving the proposed mathematical
model using 2SGA. Lastly, a comparison of proportional, linear ranking, and tournament
selection was conducted, and the resulting convergence graphs are given in Figure 18. This
figure shows that the tournament selection resulted in an improved convergence of the
proposed 2SGA. Hence, tournament selection with a small tournament size is the preferred
selection operator in the proposed algorithm.
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Figure 18. The convergence of 2SGA under three different selection operators while solving
Problem-4.

5.3.2. Crossover and Mutation Probabilities

In the proposed algorithm, there are seven crossover and six mutation operators.
Assigning probabilities individually for these thirteen operators and simultaneously tuning
them can be a daunting task. Instead, in this paper, we suggested the crossover and
mutation operators be assigned one crossover and one mutation probability, respectively.
With this scheme, we performed an Analysis of Variance (ANOVA), where mutation and
crossover probabilities are the only two factors, and the objective function is the response.
We chose six levels for each of these factors. The levels for the mutation and crossover
probabilities were {0.05, 0.15, 0.25, 0.35, 0.45, 0.55} and {0.75, 0.80, 0.85, 0.90, 0.95, 1.00},
respectively. For each factor level combination, we conducted five replications. Hence, the
experiment required solving a problem 180 times. The genetic algorithm used a different
seed for its random number generator in each replication of the experiment.

The results of ANOVA for Problem-4 are presented in Table 16 and Figure 19. The
p-values corresponding to the main effects of mutation and crossover probabilities are
zero, thus, implying that these two factors have statistically significant effects on the final
solution quality. On the other hand, the p-value for the interaction effect is high (compared
to a typical significance level α = 0.05), which indicates the absence of interaction between
these two factors. This lack of interaction simplifies parameter tuning, thereby, allowing
the user to optimize them independently.

The plots of the main effects in Figure 19 show that the mutation probability needs
to be set close to 0.35, and the crossover needs to be set at higher values between 0.90 and
1.00. The residual plots do not indicate unusual patterns, thus, confirming the adequacy
of the ANOVA. The analysis also rendered similar results on several other problems of a
varying size considered in this paper. Hence, the recommended values of the mutation
and crossover probabilities can be used to solve different sets of problems using the
proposed algorithm.
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Table 16. Output of the analysis of variance for Problem-4.

Source DF Adj SS Adj MS F-Value p-Value

Mutation Probability 5 1,418,299,280 283,659,856 93.7 0.000
Crossover Probability 5 91,944,634 18,388,927 6.03 0.000
Mutation Probability*Crossover Probability 25 49,082,335 1,963,293 0.64 0.901

Error 144 438,889,368 3,047,843
Total 179 1,998,215,617

DF = Degrees of Freedom; Adj SS = Adjusted sum of square; and Adj MS = Adjusted mean square.
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Figure 19. The main effect and residual plots of the analysis of variance.

6. Discussion, Conclusions, and Future Research
6.1. Discussion and Conclusions

The recent trend in manufacturing scheduling is in developing efficient algorithms
for complex and comprehensive scheduling problems. Apparently following this trend,
a group of authors recently developed an efficient two-stage genetic algorithm for a com-
prehensive flexible job shop scheduling problem (FJSP) that incorporated (1) sequence-
dependent setup time, (2) attached and detached nature of setups, (3) machine release date,
and (4) lag-time. The authors demonstrated the superiority of the developed two-stage
genetic algorithm in solving large-size problems, which motivated our current research.
In this paper, we expand the application of the two-stage genetic algorithm to solve a
comprehensive flexible job shop lot streaming problem that incorporates many objective
functions. Several empirical investigations were conducted on the proposed model and the
two-stage genetic algorithm through which the following observations and conclusions
were made.

• The magnitude of the severity of a single objective optimization on the objective
function terms that are not incorporated increased as the problem size increased.
The result emphasizes the need for multi-objective optimization in real industrial
scheduling problems that are typically large in size.

• Optimizing the sublot flowtime is more desirable than optimizing the job flowtime.
However, optimizing both terms simultaneously can also result in favorable solutions
with respect to the overall flowtime performance.

• In lot streaming, one sublot of a given job may be finished much sooner than the
other sublot of the same job. This may increase the work-in-process inventory. The
newly proposed objective function terms (to minimize the maximum sublot finish-
time separation and total sublot finish-time separation) can alleviate this problem with
minimal impacts on the sublot and job flowtime.

• Instead of minimizing the maximum or the total sublot flowtime, it is advantageous
to minimize both its maximum and total values simultaneously. The same is true with
the other performance measures (the job flowtime, sublot finish-time separation, and
machine workload).

• Workload balancing in FJSP may not be fully achieved by minimizing the maximum
or the total workload or both. A newly proposed objective function term (minimizing
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the maximum workload difference), can result in a better workload balance when
considered along with the minimization of the maximum and/or the total workload.

• The solution representation and the corresponding decoding of the first stage of the
two-stage genetic algorithm can generate initial solutions that are highly improved in
all the ten objective function terms.

• The two-stage genetic algorithm can jointly optimize all the ten objective function
terms of the multi-objective FJSP lot streaming considered in this paper and greatly
outperform the regular genetic algorithm.

• Parallel computation can bring performance improvements in both the two-stage GA
and the regular GA. However, the crucial finding is that the sequential two-stage
GA using a single CPU outperformed the parallel regular genetic algorithm that uses
many CPUs in solving the proposed multi-objective FJSP lot streaming problem.

• The performance of the proportional selection method can be significantly improved
by the appropriate choice of the fitness transformation function.

• Both proportional, linear ranking and tournament selection can result in comparable
performance. However, tournament selection with smaller size of tournament slightly
outperformed the other two.

• Analysis of variance shows the lack of interaction between mutation and crossover
probabilities. Thus, the two probabilities can be tuned independently.

6.2. Future Research

The two-stage genetic algorithm may not be directly applicable in scheduling problems
with the objective of minimizing earliness-tardiness. In particular, the greedy nature of the
first stage is based on finding a schedule that finishes the jobs as early as possible, which is
against minimizing earliness. For instance, finishing jobs too early may represent excess
work-in-process in a JIT environment. Hence, our future research includes the development
of a modified two-stage genetic algorithm to incorporate the minimization of earliness. We
also plan to expand the application of the two-stage genetic algorithm for a multi-resource
constrained FJSP as flexible job shops are often constrained by many kinds of resources in
addition to machines.
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