
Citation: Song, T.; Liao, H.;

Subbarayan, G. Efficient Local

Refinement Near Parametric

Boundaries Using kd-Tree Data

Structure and Algebraic Level Sets.

Algorithms 2022, 15, 245. https://

doi.org/10.3390/a15070245

Academic Editors: Devendra Kumar,

Jesper Jansson and Frank Werner

Received: 27 April 2022

Accepted: 12 July 2022

Published: 13 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Efficient Local Refinement Near Parametric Boundaries Using
kd-Tree Data Structure and Algebraic Level Sets
Tao Song, Huanyu Liao and Ganesh Subbarayan *

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA; taso@microsoft.com (T.S.);
liao85@purdue.edu (H.L.)
* Correspondence: ganeshs@purdue.edu

Abstract: In analysis of problems with parametric spline boundaries that are immersed or inserted
into an underlying domain, the discretization on the underlying domain usually does not conform
to the inserted boundaries. While the fixed underlying discretization is of great convenience as
the immersed boundaries evolve, the field approximations near the inserted boundaries require
refinement in the underlying domain, as do the quadrature cells. In this paper, a kd-tree data
structure together with a sign-based and/or distance-based refinement strategy is proposed for local
refinement near the inserted boundaries as well as for adaptive quadrature near the boundaries.
The developed algorithms construct and utilize implicit forms of parametric Non-Uniform Rational
B-Spline (NURBS) surfaces to algebraically (and non-iteratively) estimate distance as well as sign
relative to the inserted boundary. The kd-tree local refinement is demonstrated to produce fewer sub-
cells for the same accuracy of solution as compared to the classical quad/oct tree-based subdivision.
Consistent with the kd-tree data structure, we describe a new a priori refinement algorithm based
on the signed and unsigned distance from the inserted boundary. We first demonstrate the local
refinement strategy coupled with the the kd-tree data structure by constructing Truncated Hierarchical
B-spline (THB-spline) “meshes”. We next demonstrate the accuracy and efficiency of the developed
local refinement strategy through adaptive quadrature near NURBS boundaries inserted within
volumetric three-dimensional NURBS discretizations.

Keywords: immersed boundary analysis; Non-Uniform Rational B-splines; kd-tree data structure;
adaptive quadrature; algebraic level sets

1. Introduction

The use of fixed underlying discretizations on which an immersed boundary evolves
is a common approach in both finite element analysis and isogeometric analysis (IGA [1,2])
to address many moving boundary problems, including fluid–structure interaction [3,4],
phase evolution [5–8], and crack propagation [9–11]. In these problems, the behavioral
fields may vary rapidly or even discontinuously across the boundaries, thus necessitating
refinement locally near the inserted boundary. There are many well-established approaches
to realizing local refinement of cells. A simple and natural subdivision scheme is the
space tree illustrated in Figure 1a, that is, a quad-tree in two-dimensions (2D) or oct-tree in
three-dimensions (3D).

Subdivision surfaces that converge to smooth limit surfaces are one solution to lo-
cal refinement of complex free-form parametric surfaces, first proposed by Catmull and
Clark [12]. Subdivision surfaces were later used for finite element analysis [13,14] to
recursively refine the initial mesh in order to achieve local refinement as well as good
continuity at vertices. In the isogeometric framework, the tensor product Non-Uniform
Rational B-spline (NURBS) surfaces can be refined (h-refinement [15]) through knot in-
sertion. Anisotropic refinement has been studied in [16]. However, these methods do
not address local refinement. Extensions to tensor product representations, such as the
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Hierarchical B-splines [17], T-splines [18,19], and Truncated Hierarchical B-splines (THB-
splines) [20] allow for local refinement. These geometry modeling techniques have been
used for isogeometric analysis as well [20–22].

(a) Local refinement (b) Quatrature points

Figure 1. Illustration of (a) refinement of fields and (b) their associated quadrature points near
immersed boundaries.

In general, the quadrature cells are intersected by the boundaries regardless of the field
refinement near the immersed boundaries, and therefore cell-wise numerical integration
will be inaccurate. As illustrated in Figure 1b, the immersed boundaries necessitate a
separate integration on each side of the boundary; however, an accurate integration over
such cut cells is challenging. This inaccuracy is independent of any decision as to the
optimal choice of the number of quadrature points discussed in reference [23]. In general,
an adaptive quadrature strategy in which the quadrature cells are locally sub-divided
in accordance with the immersed boundaries is necessary. Renken and Subbarayan [24]
described an adaptive quadrature scheme on trimmed regions of a parametric NURBS
surface. Space tree quadrature cell refinement has been extensively used in isogeometric
analysis [10,25–30]. However, quad/oct-tree subdivision introduces redundant quadrature
cells and significantly increases the computational time during matrix assembly. For exam-
ple, in the quad-tree quadrature cells shown in Figure 1b, the total number of quadrature
cells increases by 276% after a three-level subdivision. The computational performance is
even worse if more cells are intersected by the immersed boundaries or if a higher level of
subdivision is desired.

To refine cut quadrature cells, adaptive quadrature algorithms that rely on subdi-
vision have been developed to generate boundary-fitted quadrature sub-cells in the cut
elements. Rüberg and Cirak [31] planarized the immersed surfaces and then subdivided
the hexahedral elements into boundary-fitted tetrahedral sub-cells. Cheng and Fries [32]
approximated the boundary segment within each cut element with a polynomial, followed
by a subdivision of the cut element into a few serendipity elements. Kudela et al. [33]
developed a directly integrable blending formulation for triangles with curved sides or
quadrilaterals resulting from the cut elements. While the curved element methods yields
very few quadrature sub-cells and preserves geometric accuracy, a robust implementation
accounting for all special cases remains non-trivial. Furthermore, these methods are not eas-
ily extendable to three-dimensional problems. Thus, all of the existing adaptive quadrature
schemes either introduce redundant quadrature points, or require special rules.

In this paper, algorithms are proposed to enhance the efficiency of local refinement
and adaptive quadrature near parametric boundaries, including:

1. Novel a priori local mesh refinement algorithms using signed and unsigned distance
measures from parametric NURBS surfaces [34,35]. These algorithms construct and
utilize implicit forms of parametric NURBS to algebraically (and non-iteratively)
identify intersection between cells and immersed parametric boundaries.
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2. An adaptive quadrature algorithm using the above refinement strategy coupled with
the k-dimensional tree (referred to as kd-tree) data structure to efficiently eliminate
unnecessary quadrature points and special rules for cut cells.

2. kd-TreeData Structure for Cell Subdivision

The broad idea of kd-tree subdivision is motivated by the process shown in Figure 2,
in which the magnified bottom right 2× 2 elements in Figure 1a are shown. It can be
observed that many adjacent non-intersected quad-tree sub-cells (marked with dashed
lines) can be combined into single cells. By removing these dashed lines, the number of
sub-cells is reduced without loss of integration accuracy, as demonstrated later in this paper.
Thus, for certain cells a complete subdivision into four (2D) or eight (3D) sub-cells is not
necessary. A partial subdivision can be carried out by either splitting the cells direction-wise
or combining the sub-cells during post-processing. As shown in Figure 2, the total number
of quadrature sub-cells decreases by 17% with partial subdivisions.

Figure 2. Illustration of sub-cell coalescence when removing non-intersected cell grids.

2.1. Algorithm

kd-tree is a binary space tree that partitions the space dimension-wise, and is a superset
of the quad-tree and oct-tree. The kd-tree structure has a long tradition in computational
geometry [36] in the context of solving range searching problems. kd-tree parallelization
has been extensively investigated to increase construction speed [37,38]. Specifically, given
a set of spatial points, a kd-tree can store the points in an orderly manner in order to achieve
quick range searching. In this work, the kd-tree is used to store the sub-cells instead of
spatial points. A two-dimensional example is shown in Figure 3.
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Figure 3. Illustration of kd-tree based sub-division. The maximum level illustrated here is three. Each
level consists of two depths that represent different splitting directions; li (stored in nodes) and Ci

(stored in leaves) denote a splitting line and a sub-cell, respectively.

In a standard kd-tree, each level has k depths, i.e., k-times splitting (e.g., a 2D tree splits
in the x and y directions successively, whereas a 3D tree splits in the x, y, and z directions).
In the present work, extra flexibility is provided in the splitting procedure by enabling an
arbitrary order of the splitting direction within each level. First, we explore all possible
splitting directions at each depth, and choose the direction in which the splitting line/plane
l does not intersect with the boundary. If the intersection cannot be avoided in any direction,
a default splitting direction is chosen. Each split produces two new sub-cells. If any of the
sub-cells is not intersected by the boundary, a corresponding leaf is created in the kd-tree.
Otherwise, the split continues until the maximum level is reached. The pseudocode of the
proposed algorithm is described in Algorithm 1.

Remarks:

1. After the kd-tree is constructed for a given cut element, a tree traversal algorithm,
such as Depth First Search (DFS) or Breadth First Search (BFS), can be employed to
extract all the leaves of the kd-tree and obtain the sub-cells stored therein. The tree
traversal step is generally much faster than tree construction.

2. The intersection between the splitting line/plane and the boundary can be identified
by checking the signed algebraic level sets [34,35] between them, as discussed in
Section 4. A line or plane is assumed to intersect the boundary if the bounding
vertices of the line/plane have opposite signs. The algebraic level sets are a monotonic
measure of distance to the NURBS boundary, enabling accurate judgment of the
intersection. This intersection check does not introduce additional cost compared
with a quad/oct-tree structure, as it is required in the latter as well.

3. In the included numerical examples, the cell is cut in the middle whenever an intersec-
tion is detected; this can be further enhanced by unequal splitting of the cells, albeit
with the additional cost of determining an accurate intersection location.
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Algorithm 1 Algorithm for building kd-tree data structure.

Input: Cell C, depth of tree depth, splitting direction vector dir and auxiliary flag nocheck
Output: kd-tree v containing quadrature sub-cells in leaves

1: function BUILDKDTREE(C, depth, dirs, nocheck)
2: if depth mod Dim = 0 then . Reinitialize at the first depth of each level
3: dir← [x, y](2D) or [x, y, z](3D)
4: nocheck← f alse
5: end if
6: SplitDir← dir(1) . Set the first element in dir as the default splitting direction
7: if nocheck = f alse then
8: if C not intersect boundary or depth = MaxDepth then
9: return leaf containing C

10: else if length(dir) ≥ 2 then . No further check is needed if only one direction is
available

11: for i← 1, length(dir) do
12: nocheck← true
13: if Splitting line(2D)/plane(3D) in dir(i) not intersect boundary then
14: nocheck← f alse
15: SplitDir← dir(i)
16: end if
17: end for
18: end if
19: end if
20: C′hal f , C′′hal f ← Split C in SplitDir
21: dirnew ← Exclude SplitDir from dir
22: vle f t ← BuildKdTree(C′hal f , depth+1, dirnew, nocheck)
23: vle f t ← BuildKdTree(C′′hal f , depth+1, dirnew, nocheck)
24: return v with two branches vle f t and vright
25: end function

2.2. Comparison with Quad/Oct-Tree

Here, the kd-tree structure is compared with quad-tree and oct-tree in the following
three aspects:

1. Number of Quadrature Sub-cells Generated: Table 1 summarizes the worst-case and
best-case ratios of the number of sub-cells generated by kd-tree to that generated
by quad/oct-tree. In the worst-case scenario, the immersed boundary is sufficiently
complex that all of the cells have to be completely subdivided in each level. Therefore,
the number of sub-cells generated by kd-tree subdivision is the same as that generated
by quad-tree and oct-tree. The best-case ratio is proven in Theorem 1.

Table 1. Worst-case and best-case ratios of the number of sub-cells generated by kd-tree, quad-tree,
and oct-tree.

Problem Dimension Worst Case Best Case

2D (N2d-tree/Nquad-tree) 1 2/3
3D (N3d-tree/Noct-tree) 1 3/7

Theorem 1. Given an arbitrary immersed boundary, the number of sub-cells generated by
kd-tree subdivision is no smaller than two-thirds of that generated by quad-tree, and three-
sevenths of that generated by oct-tree.

Proof. The minimum kd-tree splits of a 2D and a 3D cell are illustrated in Figure 4.
A complete single-level 2D subdivision operation increases the number of sub-cells
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by 4− 1 = 3, whereas an incomplete single-level 2D subdivision only increases it by
3− 1 = 2. Assume that the total number of complete and incomplete subdivision
operations is given by Sc and Si, respectively. The total number of sub-cells in a 2D
tree is provided by

N2d-tree = 1 + 3Sc + 2Si. (1)

Next, assume that the total number of subdivisions is Stotal. If Sc = Stotal and
Si = 0, the kd-tree degenerates to a quad-tree, i.e.,

Nquad-tree = 1 + 3Stotal. (2)

Given an arbitrary immersed boundary, the N2d-tree/Nquad-tree ratio is provided by

N2d-tree
Nquad-tree

=
1 + 3(Stotal − Si) + 2Si

1 + 3Stotal
≥ 1 + 2Stotal

1 + 3Stotal
>

2
3

. (3)

Likewise, a complete single-level 3D subdivision operation adds 8− 1 = 7 sub-
cells. However, the number of sub-cells added by an incomplete 3D subdivision
may vary from 3 to 6. If a real number c ∈ [3, 6] is used to represent the average
sub-cell increment per subdivision, the total number of sub-cells in a 3D tree can be
expressed as

N3d-tree = 1 + 7Sc + cSi. (4)

The N3d-tree/Noct-tree ratio can then be obtained as follows:

N3d-tree
Noct-tree

=
1 + 7(Stotal − Si) + cSi

1 + 7Stotal
≥ 1 + cStotal

1 + 7Stotal
>

c
7
≥ 3

7
. (5)

(a) Minimum 2D tree splits. (b) Minimum 3D tree splits.

Figure 4. Minimum kd-tree splits within a single level: (a) 2D tree and (b) 3D tree splits, producing
three and four sub-cells, respectively.

2. Computational Cost in Tree Construction: Given a quadrature cell to be subdivided,
the vertices that need to be checked in the kd-tree are a subset of those in a quad/oct-
tree. Furthermore, the kd-tree yields a lower number of sub-cells in each level (see
Figure 4). Therefore, kd-tree results in a faster algorithm than quad/oct-tree.

3. Aspect Ratio of Generated Sub-Cells: Table 2 lists the worst-case and best-case aspect
ratios of the sub-cells generated by quad-tree, oct-tree, and kd-tree subdivisions.
Because the cell splits are symmetric and the splitting direction changes at different
depths of each level, no aspect ratio worse than 1:2 (2D tree) or 1:1:2 (3D tree) can occur.
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Table 2. Aspect ratios of the sub-cells generated by quad-tree, oct-tree, and kd-tree subdivision.
The initial element shape is assumed to be square (2D) or cubic (3D).

Tree Type Worst Case Best Case

Quad-tree 1:1
Oct-tree 1:1:1
2D tree 1:2 1:1
3D tree 1:1:2 1:1:1

2.3. Numerical Examples

Two numerical examples are presented below to demonstrate kd-tree sub-division.

2.3.1. Hyper-Planar Boundary

The first example, as shown in Figure 5, involves a hyper-plane immersed boundary
(a line in 2D and a plane in 3D). A hierarchical sub-cell structure can be observed in this
example. The number of generated sub-cells is listed in Table 3.

(a) Immersed line at y = 0.95. (b) Immersed plane at z = 0.95.

Figure 5. kd-tree subdivision of a unit cell in the presence of (a) a 2D immersed line and (b) a 3D
immersed plane. The maximum level is three in both examples. The domain color represents a signed
distance to the immersed boundary.

Table 3. Comparison of the kd-tree and quad/oct-tree subdivision in the presence of a hyper-planar
boundary as shown in Figure 5.

Tree Type Nsubcell Ratio of Nsubcell

2D tree 15 0.682Quad-tree 22

3D tree 85 0.574Oct-tree 148

2.3.2. Hyper-Spherical Boundary

The second example is illustrated in Figure 6, where a hyper-spherical boundary is
embedded in the domain. The corresponding numbers of created sub-cells are summarized
in Table 4.
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(a) Immersed circle (R = 0.72) (b) Immersed spherical surface (R = 0.72)

Figure 6. kd-tree subdivision of a unit cell in the presence of (a) a quadrant and (b) a one-eighth spher-
ical surface. The hyper-spheres are centered at a corner and have a radius of R. The maximum level
is four in both examples. The domain color represents a signed distance to the immersed boundary.

Table 4. Comparison of kd-tree and quad/oct-tree subdivision in the presence of a hyper-spherical
boundary as shown in Figure 6.

Tree Type Nsubcell Ratio of Nsubcell

2D tree 48 0.787Quad-tree 61

3D tree 521 0.722Oct-tree 722

3. kd-Tree Data Structure for THB-Spline Refinement

The popular THB splines [20] are chosen here to demonstrate local refinement using
kd-tree sub-division. We first briefly review THB splines before demonstrating kd-tree data
structure for THB splines.

3.1. Brief Review of Truncated Hierachical B-Splines

Define a sequence of k-variate B-spline bases Bl , l = 0, 1, . . . , L − 1 satisfying the
following nesting relation:

spanB0 ⊂ spanB1 ⊂ · · · ⊂ spanBL−1. (6)

Thus, any lower-level B-spline basis function Nl
i ∈ Bl , l = 0, 1, . . . , L − 2 can be

represented by a linear combination of higher-level B-spline basis functions Nl+1
j ∈ Bl+1

as follows:

Nl
i = ∑

supp Nl+1
j ⊂supp Nl

i

αjNl+1
j . (7)

For the case of one-dimensional dyadic refinement (i.e., the knot vectors are uniform
and each knot span is halved from V l to V l+1), Equation (7) takes the form:

Ni,p = 2−p
p+1

∑
j=0

(
p + 1

j

)
Nl+1

2i−1+j,p (8)
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where p is the degree of the B-spline. We further define a sequence of nested domains

Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩL−1 (9)

where each Ωl ∈ Rk represents a k-dimensional refinement region at level l and its boundary
∂Ωl is aligned with the knot grid of Bl−1. A two-dimensional hierarchical mesh example is
shown in Figure 7.

ΩL

ΩE

ΩF

ΩH

(a) Nested domains (b) Overlaid hierarchical mesh

Figure 7. A two-dimensional four-level dyadic hierarchical mesh: (a) the nested domains contain
level-wise sub-meshes; (b) the sub-meshes are overlaid to generate the hierarchical mesh.

The hierarchical B-spline basisH is defined as

H =
L−1⋃
l=0

{
Nl
∣∣∣Nl ∈ Bl ∧ supp Nl ⊆ Ωl ∧ supp Nl * Ωl+1

}
. (10)

As illustrated in Figure 8a, the hierarchical B-spline basis functions do not satisfy the
partition of unity property. Giannelli et al. [20] proposed a truncation operator to remove
the higher-level B-spline components from a current-level basis function:

truncl+1 Nl
i = Nl

i − ∑
supp Nl+1

j ⊂supp Nl
i

supp Nl+1
j ⊆Ωl+1

αjNl+1
j (Subtractive Representation) (11a)

= ∑
supp Nl+1

j ⊂supp Nl
i

supp Nl+1
j *Ωl+1

αjNl+1
j (Additive Representation). (11b)

The general THB-spline basis T can be constructed as follows:

T =
L−1⋃
l=0

{
N̂l
∣∣∣N̂l = truncL−1 · · · truncl+2 truncl+1 Nl ,

Nl ∈ Bl ∧ supp Nl ⊆ Ωl ∧ supp Nl * Ωl+1
}

. (12)
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𝑁J

𝑁JKE
removed	𝑁J

𝑁J

trunc	𝑁J

𝑁JKE
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(a) HB-spline

𝑁J

𝑁JKE
removed	𝑁J

𝑁J

trunc	𝑁J

𝑁JKE
removed	𝑁J

(b) THB-spline

Figure 8. Illustration of the basis functions of a two-level (a) hierarchical B-spline and (b) truncated
hierarchical B-spline. The Nl in the dashed line can be represented by a linear combination of Nl+1,
and is therefore removed to avoid linear dependence.

3.2. kd-Tree-Based Mesh Representation

The THB splines are defined over a sequence of nested domains which form a
hierarchical mesh. An efficient representation of the hierarchical mesh along with a
robust mesh generator plays an important role in the performance of the THB spline-
based local refinement.

Kiss et al. [39] proposed a quad-tree data structure to represent two-dimensional THB
spline meshes. As will be shown later, a quad-tree results in exponential space complexity
in the worst case. Recently, an alternative binary tree data structure has been utilized [40]
for multi-dimensional meshes. The internal nodes of the tree store the splitting lines during
domain subdivision, whereas the leaves of the tree contain homogeneous pieces of the
domain. The nature of this new data structure is in fact a kd-tree. Figure 9 illustrates an
example of kd-tree representation for a two-dimensional hierarchical mesh.

Data	Structure	– K-d	Tree
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(a)

Data	Structure	– K-d	Tree
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	𝑙"

	𝑙%
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	𝑙&

	𝑙'

	𝑙$

	𝑙(

(b)

Figure 9. kd-tree representation of a two-dimensional hierarchical mesh. (a) Splitting lines and cells in
the hierarchical mesh; (b) kd-tree representation. In (a), the domain is subdivided into homogeneous
cells, with each belonging to only one hierarchical level, while in (b) the splitting lines and the cells
are stored in the internal nodes and leaves of a kd-tree data structure, respectively.
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A significant advantage of kd-tree representation over quad/oct-tree is that the former
approach enables unequal subdivision of the domain, which results in fewer splits during
tree construction. Consequently, the number of leaves generated by kd-tree subdivision
is smaller than that generated by quad-tree or oct-tree subdivision. Figure 10 illustrates
an instance of successive stripe refinement on a square domain. As the boundaries of the
refinement regions are not aligned with bisection planes, a quad-tree representation will
contain 3 · 2n − 3 internal nodes and 9 · 2n − 8 leaves, leading to a space complexity of
O(2n). In contrast, its kd-tree counterpart only needs n internal nodes and n + 1 leaves,
of which the space complexity is O(n).Comparison	with	Quad-tree

!" !% !# !&!,

Successive	stripe	refinement	on	a	
4x4	initial	grid.	The	line	!, splitting	level	
- and	- + 1 is	given	by	0 = 4 − 3 ⋅ 2"7,

0 4

4

9

0

• K-d	Tree	is	a	super	set	of	Quad-tree
and	Oct-tree

• K-d	Tree	allows	asymmetric	splitting,
leading	to	lower	space	complexity	in
space	partitioning

• Worst	case	analysis	(see	LHS	example):
Ø K-d	Tree	has	- internal	nodes	and	- + 1

leaves,	space	complexity	is	: -
Ø Quad-tree	has	3 ⋅ 2, − 3 internal	nodes	and
9 ⋅ 2, − 8 leaves,	space	complexity	is	:(2,)

Figure 10. n-stripe refinement on a 4× 4 domain. The left boundary of each refinement region Ωi is
provided by ξ = 4− 3 · 21−i and the right boundaries coincide at ξ = 4. The splitting lines during
kd-tree subdivision are labeled with li, i = 1, 2, · · · , n.

4. Local Refinement Near Immersed Boundaries Using Algebraic Level Sets

We briefly review signed algebraic level sets before describing the local refinement
algorithm using the algebraic level sets.

4.1. Brief Review of Algebraic Level Sets

Here, we propose using unsigned and signed distance from parametric boundaries
for local refinement near immersed boundaries. In general, estimating the shortest dis-
tance to a parametric boundary requires numerical iteration using the Newton–Raphson
method. Such iterations are generally non-robust, as Newton–Raphson iterations yield
non-unique foot (nearest) points on the parametric surface near regions of large curvature.
In order to circumvent these challenges, we have recently proposed techniques founded on
algebraic geometry to estimate unsigned and signed distance measures from parametric
boundaries, termed algebraic level sets [34,35], which have been further developed for
point projection [41] and phase merging [42]. Algebraic level sets are briefly reviewed
below prior to describing mesh refinement algorithms based on algebraic level sets.

The main idea is to convert a parametric NURBS entity into its implicit form using
the resultant theory and to use the level set of the “implicitized” function as a measure of
distance. Pre-processing by decomposing the NURBS entity into constituent Bezier patches
and post-processing by blending using R-functions are utilized to generate the level sets
from complex NURBS entities. The algebraic level sets have the following properties:
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1. Exact locally near the surface
2. Monotonic function of exact distance
3. Sufficiently smooth for engineering applications
4. Efficiently obtained without numerical iterations

Thus, algebraic level sets can serve the role of a distance measure from the parametric
boundary. Therefore, we refer to the algebraic level sets interchangeably as algebraic dis-
tance fields. We briefly review the computation of algebraic distance fields and illustrate the
procedure through simple examples. Although, the examples illustrated here are of NURBS
curves, the procedure is naturally applicable to parametric surfaces, as demonstrated
in [34,35].

4.1.1. Implicitization of a Parametric Curve

Given a rational parametric curve C(X(u), Y(u), W(u)) of degree p with x = X(u)
W(u) ,

y = Y(u)
W(u) , we can construct two auxiliary polynomials:

g1(x, u) = W(u)x− X(u) = 0 (13a)

g2(y, u) = W(u)y−Y(u) = 0 (13b)

The above polynomial equations can be rearranged in descending power of u,
as follows:

g1(u) = apup + ap−1up−1 + · · ·+ a1u + a0 (14a)

g2(u) = bpup + bp−1up−1 + · · ·+ b1u + b0 (14b)

From the above, the following resultant system can be obtained through algebraic
manipulations [43]:

(apbp−1) · · · (apb0)
...

. . .
...

(apb0) · · · (a1b0)




up−1

up−2

...
1

 =
[
MB
]

p×p


up−1

up−2

...
1

 = 0 (15)

where (aibj) = aibj − ajbi, MB is a Bezout matrix and is a function of x and y with the
following important property:

MB(x, y) = MB
x x + MB

y y + MB
w (16)

where MB
x , MB

y and MB
w depend on control point coordinates and weights. Therefore, these

matrices can be pre-computed for a given rational parametric curve and re-used given any
new physical point x. The determinant, det(MB(x)), is defined as the Bezout resultant.
As all allowable parameter values u for curve C(X(u), Y(u), W(u)) are roots of the system
presented in Equation (15), det(MB(x)) = 0 provides the equation for the implicit version
of the curve. Thus, the algebraic level sets corresponding to a rational parametric curve
(e.g., a Bezier curve) are provided by

Γ(x) = det(MB(x)). (17)

An example of algebraic level sets is shown in Figure 11.
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Figure 11. Implicitization of a quadratic Bezier segment. Level set Γ(x) = det(M(x)) can be used as
a measure of distance.

4.1.2. Boolean Operations by R-Functions

As observed in Figure 11, the direct implicitization extends the parametric curve be-
yond its end points, yielding an invalid distance measure in the extended region. Therefore,
it is desirable to trim the curve C(X(u), Y(u), W(u)) within its parameter range u ∈ [a, b].
In related prior work, Biswas and Shapiro [44] constructed an approximate distance from a
line segment as

g =

√
Γ2 +

(|φ| − φ)2

4
(18)

with Γ being the normal distance from the line and φ a set of points that are positive in
a region formed by a circle circumscribing the line and negative outside of it. This form
yields a smooth distance function across the boundary φ = 0. Upreti et al. [34] extended
the above idea by carrying out boolean operations on fields obtained on individual
segments of an arbitrarily shaped parametric curve and an enclosing convex region
using R-functions [45,46]. The R-functions enable a smooth and purely algebraic boolean
operation, resulting in a continuous distance measure. Two specific R-functions used in
this study are:

1. R-conjunction, equivalent to point-wise set operation of Boolean intersection:

g1 ∧ g2 = g1 + g2 −
√

g2
1 + g2

2 (19)

2. R-disjunction, equivalent to point-wise set operation of Boolean union:

g1 ∨ g2 = g1 + g2 +
√

g2
1 + g2

2 (20)

Upreti et al. [34] used the convex hull property of Bezier and NURBS curves to
provide a natural convex region bounded by control points for curve trimming. They then
normalized the Bezier segments before composing them using the R-conjunction operation
(Equation (19)), thereby generating the desired unsigned algebraic level set. An example of
such an unsigned algebraic level set is shown in Figure 12.
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Figure 12. Algebraic level sets from an open quadratic NURBS curve. The generated algebraic level
sets ensure the smoothness of the field.

4.1.3. Signed Algebraic Level Sets

The algebraic sign calculation of closed domains [35] is based on point containment
queries. The algorithmic procedure is to first construct a concave/convex bounding box
for the closed boundary by combining the convex hull of each Bezier patch. The candidate
point is queried to see whether it lies within this bounding box. If the point is outside the
bounding box, then the algorithm stops and the point is determined as being outside the
bounded solid. However, if it is inside the box, point containment queries are performed
in the next step in the regions between each Bezier segment and its convex hull. If the
queried point lies inside one of these regions, then the algorithm stops and the point is
again determined to lie outside the bounded solid; otherwise, the query point is classified
as lying within the solid. A positive value of the algebraic sign function implies that the
point is contained in the enclosed region, while zero implies a boundary point. An example
of a signed algebraic level set from a closed NURBS curve is shown in Figure 13.

Figure 13. Algebraic level sets from a closed quadratic NURBS curve.

4.2. Mesh Refinement Algorithms Based on Algebraic Level Sets

The classical mesh refinement schemes are based on a posteriori error estimators [47,48],
which require a trial solution before adaptive refinement of the mesh is carried out. In the
context of immersed boundary problems, it is expected that the behavioral fields will
vary greatly near the boundaries. Therefore, in light of the position of immersed bound-
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aries, a priori mesh refinement is possible. Two adaptive refinement algorithms based on
signed [35] and unsigned [34] distance fields are proposed here, as follows:

1. Sign-based Refinement Algorithm (SRA): The cut cells and their neighbors are recur-
sively subdivided until the maximum level is reached. The cut cells are identified by
checking the signed distance of the cell vertices to the immersed boundaries. As il-
lustrated in Figure 14, a cell is marked as a cut cell if its vertices have opposite signs.
To minimize the number of sign checkings, the vertex signs of the cut cells (ones not
circled in Figure 14a) are stored in memory. As the subdivision continues, the cut cells
in the next level can be determined by an additional check of the signs of the edge,
face, and cell centers (circled in Figure 14a). A first-in-first-out (FIFO) stack queue
(Figure 14b) is utilized to keep track of the cells. The cut cells in the current level are
first popped out from the front of the stack. After sign checking, the cut cells in the
next level are generated and then pushed to the back of the stack. The checking of
signed distance and new cell generation each stop when the maximum chosen level
of refinement is reached.Refinement	Algorithm • Sign-based	Algorithm	

(SBA)
• Store	the	corner	signs	of	
cells	of	level	n	(red	signs),	
and	calculate	the	signs	of	
edge	centers	and	cell	
centers	(green	signs)	to	
justify	the	cells	of	level	l+1

	𝐶"?	𝐶%?

	𝐶#?
	𝐶&?

	𝐶'?

	𝐶"?@" 	𝐶%?@"

𝐶"?𝐶'? 𝐶&? 𝐶#? 𝐶%?	𝐶"?@"	𝐶%?@"
pop_front

generate	next	level	cells	and	push_back

Queue:

• Use	a	queue	to	manage	cells	
Ø Pop	level	n	cells	from	the	front	of	the	

queue
Ø Refine	the	level	n	cells	and	their	k-th

nearest	neighbors
Ø Push	level	n+1	cells	into	the	back	of	

the	queue

(a) Sign-based cell subdivision with respect to a circular boundary

Refinement	Algorithm • Sign-based	Algorithm	
(SBA)
• Store	the	corner	signs	of	
cells	of	level	n	(red	signs),	
and	calculate	the	signs	of	
edge	centers	and	cell	
centers	(green	signs)	to	
justify	the	cells	of	level	l+1

	𝐶"?	𝐶%?

	𝐶#?
	𝐶&?

	𝐶'?

	𝐶"?@" 	𝐶%?@"

𝐶"?𝐶'? 𝐶&? 𝐶#? 𝐶%?	𝐶"?@"	𝐶%?@"
pop_front

generate	next	level	cells	and	push_back

Queue:

• Use	a	queue	to	manage	cells	
Ø Pop	level	n	cells	from	the	front	of	the	

queue
Ø Refine	the	level	n	cells	and	their	k-th

nearest	neighbors
Ø Push	level	n+1	cells	into	the	back	of	

the	queue

(b) Cell stack corresponding to (a)

Figure 14. Illustration of the sign-based refinement algorithm: (a) the cut cells in level l are subdivided
into appropriate sub-cells. The new cut cells in level l + 1 are identified by the newly calculated
(circled) signs and the previously obtained (not circled) signs, and then (b) pushed to the back of the
stack to wait for the next level subdivision.

2. Distance-based Refinement Algorithm (DRA): This algorithm is similar to the SRA except
that the cut cells are determined by checking the magnitude of the distance of the
cell vertices instead of the sign. This is particularly useful when the feature size
dfeature of the immersed boundaries is smaller than the cell size dcell, in which case the
sign-based algorithm may fail to detect a cut cell (see Figure 15a). In distance-based
refinement, a cell is marked as a cut cell if

max
i
|di| <

√
kdcell (21)

where k is the dimension of the domain and di is the distance of the ith vertex of the
cell to the closest boundary. As shown in Figure 15b, cells that would be missed by
SRA can be identified by DRA. In general, the DRA criterion is stricter than that of
the SRA, and can therefore cause relatively more cells to be subdivided.
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	𝐶EJ	𝐶FJ
	𝐶HJ

	𝐶TJ

(a)

	𝐶WJ
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1

	𝐶EJKE 	𝐶FJKE

(b)

Figure 15. (a) Determination of level l cut cells using the sign-based criterion. A cut cell is missed
due to the small feature size. (b) Determination of level l cut cells using the distance-based criterion,
followed by sign-based subdivision to generate the level l + 1 cut cells. For a cell size dcell = 1,
the distances of the Cl

5 vertices to the boundary are annotated in the figure.

One possible strategy combining the above two algorithms is to dynamically switch
between the two based on dcell. The distance-based criterion is chosen if dcell > dfeature;
otherwise, the sign-based criterion is preferred. The inset magnified picture of Figure 15b
shows a sign-based subdivision in the cut cell detected by the distance-based algorithm.

4.3. Numerical Examples

The efficiency and robustness of the proposed algorithms are demonstrated below
through several numerical examples. Figure 16 shows a seven-level hierarchical refinement
of a square domain with respect to a rectangular immersed boundary. The computational
cost as a function of the number of levels is listed in Table 5. The hierarchical mesh
generation only takes tens of microseconds on a desktop personal computer, even for a
very large number of levels.



Algorithms 2022, 15, 245 17 of 26

Ω"
Ω#

Ω$ Ω% Ω& Ω' Ω(

(a)
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Ω$ Ω% Ω& Ω' Ω(

(b)

Figure 16. A two-dimensional seven-level hierarchical refinement of a square domain with respect to
a rectangular immersed boundary: (a) hierarchical mesh and (b) sub-meshes in each level.

Table 5. Computer time on a personal computer required for hierarchical refinement of the geometry
shown in Figure 16.

Number of Levels 1 2 3 4 5 6 7

Time Cost (¯s) 0.1 0.7 1.4 3.2 6.8 14.8 36.7

In order to include a larger local refinement region, it may be desirable to refine
both the cut cells and their ith neighbors. As illustrated in Figure 17, the order i controls
the bandwidth of a single level mesh. In contrast to level-wise hierarchical refinement,
refinement within a level is referred to as horizontal refinement. A two-dimensional example
of horizontal refinement is shown in Figure 18.
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Horizontal Refinement

(a) A	single cut	cell and	its	1st
and	2nd nearest neighbors

(b) All cut	cells	and	the	union	of
their	1st and	2nd nearest
neighbors

Immersed	boundary

Cut	cells

1st nearest	neighbors

2nd nearest	neighbors

• Often	time,	we	want	not	only 
to	refine	the	intersected	cells 
but	also	their	k-th neighbors
Ø The	k	controls	the	bandwidth	of	a 

single	level	mesh	

(a)Horizontal Refinement

(a) A	single cut	cell and	its	1st
and	2nd nearest neighbors

(b) All cut	cells	and	the	union	of
their	1st and	2nd nearest
neighbors

Immersed	boundary

Cut	cells

1st nearest	neighbors

2nd nearest	neighbors

• Often	time,	we	want	not	only 
to	refine	the	intersected	cells 
but	also	their	k-th neighbors
Ø The	k	controls	the	bandwidth	of	a 

single	level	mesh	

(b)

Figure 17. Schematic of horizontal refinement: (a) the neighbors of a cut cell provide a larger
refinement region, while (b) the union of the neighbors forms a refinement band.

Horizontal Refinement	Examples

(a) Only intersected	cells	are refined (b)	Intersected	cells	and	their first
nearest neighbors are	refined

(c) Intersected	cells	and	up	to the
second	nearest neighbors are refined

(a) i = 0

Horizontal Refinement	Examples

(a) Only intersected	cells	are refined (b)	Intersected	cells	and	their first
nearest neighbors are	refined

(c) Intersected	cells	and	up	to the
second	nearest neighbors are refined

(b) i = 1

Horizontal Refinement	Examples

(a) Only intersected	cells	are refined (b)	Intersected	cells	and	their first
nearest neighbors are	refined

(c) Intersected	cells	and	up	to the
second	nearest neighbors are refined

(c) i = 2

Figure 18. Horizontal refinement with different bandwidth. (a) Only the cut cells are refined.
(b) First-order refinement: the cut cells and their first nearest neighbors are refined. (c) Second-order
refinement: the cut cells and up to their second nearest neighbors are refined.
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The mesh refinement algorithms and kd-tree data structure can be directly extended
to three-dimensional problems thanks to their dimension-independent nature. Figure 19
shows a six-level hierarchical refinement of a cubic domain in the presence of an ellipsoidal
boundary. The computational cost of refinement is summarized in Table 6. Compared to
the time cost during matrix assembly and system solution generation, the sub-second mesh
generation time is almost negligible.

Table 6. Computer time on a personal computer required for hierarchical refinement of the geometry
shown in Figure 19.

Number of Levels 1 2 3 4 5 6

Time Cost (¯s) 0.1 2.4 8.6 47.9 166.3 434.8

(a) Hierarchical mesh around the
immersed boundary

ΩLΩEΩF

ΩHΩTΩW

(b) Exploded view of the nested sub-meshes

Figure 19. A three-dimensional six-level hierarchical refinement of a cubic domain with respect to an
ellipsoidal boundary: (a) hierarchical mesh and (b) sub-meshes in each level.
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5. Adaptive Quadrature Near Immersed Boundaries

As mentioned earlier, accurate quadrature is challenging near inserted boundaries.
The quadrature cells that are cut by the parametric boundary need to be refined adaptively
in order to improve the accuracy of the quadrature. In this section, we utilize the kd-
tree data structure as well as the previously described distance-based refinement strategy
to demonstrate adaptive quadrature and to solve for the behavioral unknowns in three-
dimensional geometrical examples. To compare the developed refinement strategy against
oct-tree subdivision of the quadrature cells, a uniform background “mesh” of NURBS basis
functions is used, into which the parametric NURBS boundaries are immersed. Unlike
the THB refinement shown in Figure 19, where the refinement doubles as quadrature
cells, the uniform background mesh allows us to compare different adaptive quadrature
strategies while holding the number of “nodal” unknowns constant.

5.1. Single Inclusion with Spherical Boundary

The single-inclusion geometry shown in Figure 20 is used to verify the accuracy and
convergence of the kd-tree data structure by comparing the estimated stress concentration
factor against its theoretical value. The spherical inclusion is immersed in a finite domain
with a uniform fraction of unit magnitude, as shown in Figure 20. The theoretical limit
of the stress concentration factor (SCF) near the equator for a single spherical void in an

infinite underlying domain is
σmax

σ
= 2 [49]. A two-dimensional view of the quadrature

points obtained using a kd-tree cell division is shown in Figure 21, revealing hierarchical
refinement of quadrature cells near the immersed boundaries. In Figure 22, the contours of
the Von Mises stress around the equator of the spherical void are shown. The convergence
of the stress concentration factor is plotted in Figure 23 and listed in Table 7. Convergence to
the theoretical limit is obtained with a decrease in the size ratio L

d , provided that sufficient
degrees of freedom (control grids of 20× 20× 20 or 30× 30× 30) are used.

Table 7. Maximum von Mises stress (near equator) with different size of inclusion (30× 30× 30
control points) in Figure 23.

Diameter of Inclusion d 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Length Ratio L/d 1.25 1.43 1.67 2 2.5 3.3 5

Stress Concentration Factor 3.93 3.10 2.72 2.46 2.29 2.29 2.28

Figure 20. Single spherical void under uniform fraction of unit magnitude.
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Figure 21. Two-dimensional view (xy-plane) of quadrature points in the domain obtained using
kd-tree cell division. A control point grid of 30× 30× 30 was used.

Figure 22. Von Mises stress and stress concentration behavior around the equator of the spherical
inclusion. The sphere has a diameter of 0.2 and is placed at the center of a 1× 1× 1 cubic domain.

Figure 23. Convergence of the stress concentration factor with refinement as a function of the scale
ratio L

d (where L is the size of the underlying cubic domain and d is the diameter of spherical void).
The plots correspond to 10× 10× 10, 20× 20× 20, and 30× 30× 30 control grids.

5.2. Multiple Inclusions with Hyper-Spherical Boundary

The second set of examples are similar in spirit and contain a complex geometry with
multiple elliptical/ellipsoidal voids in two dimensions (Figure 24a) and in three dimensions
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(Figure 24b). The elliptical/ellipsoidal voids are immersed in the underlying domain,
and both kd-tree and quad/oct-tree quadrature cell refinement are implemented (see
Figures 25 and 26) to estimate the volume of the solid region. The estimated volume listed
in Tables 8 and 9 indicates that kd-tree cell division achieves the same degree of accuracy
as quad/oct-tree sub-division, with both methods resulting in an error of 1.70× 10−3 in the
two-dimensional example and 4.77× 10−5 in the three-dimensional example. For two-level
refinement, in the two-dimensional example kd-tree uses 3276 quadrature points, while
quad-tree uses 4032 quadrature points. In the three-dimensional example, kd-tree uses
118,476 quadrature points, nearly one-third fewer than oct-tree subdivision, which results
in 161,244 quadrature points.

(a) two-dimensional (b) three-dimensional

Figure 24. Unit cell with five (a) elliptical and (b) ellipsoidal inclusions.

(a) quad-tree

(b) kd-tree

Figure 25. Quadrature points generated for the example in Figure 24a using (a) quad-tree and
(b) kd-tree data structure with two sub-levels.
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Figure 26. Quadrature points generated for the example in Figure 24b using a kd-tree data structure
with two sub-levels.

Table 8. Comparison of kd-tree and quad-tree cell division for quadrature cell refinement in the
presence of multiple inclusions with elliptical boundary (shown in Figure 24a).

Tree Type Nqp Ratio of Nqp Vact Vapprox Error

2D tree 3276 0.771 0.7173 0.7160 1.7000× 10−3

Quad-tree 4032 0.7160 1.7000× 10−3

Table 9. Comparison of kd-tree and oct-tree cell division for quadrature cell refinement in the
presence of multiple inclusions with hyper-spherical boundary (shown in Figure 24b).

Tree Type Nqp Ratio of Nqp Vact Vapprox Error

3D tree 118,476 0.735 0.9162 0.9618 4.7714× 10−5

Oct-tree 161,244 0.9618 4.7714× 10−5

5.3. Particulate System with Spherical Fillers

In the third example, a more complex geometry is analyzed to show the efficiency of
kd-tree over oct-tree cell division. The number of quadrature points used in the example
is on the order of 1× 107. A particulate system was generated by random packing of
84 spherical fillers in matrix to achieve a volume loading of 43%, as shown in Figure 27.
The net volume of solid spherical fillers was then evaluated separately using adaptive
quadrature based on kd-tree as well as oct-tree cell division. The estimated volume listed
in Table 10 indicates that kd-tree cell division achieves the same degree of accuracy as
oct-tree subdivision after two levels of refinement. kd-tree results in a savings of 5.53× 106

quadrature points relative to oct-tree subdivision, which amounts to 26% savings in the
number of integration points for the same accuracy.

Table 10. Comparison of kd-tree and oct-tree cell division for quadrature cell refinement in a
particulate system with 84 spherical fillers.

Tree Type Nqp Ratio of Nqp Vact Vapprox Error

3D tree 15,753,744 0.740 0.4256 0.4256 3.3451× 10−5

Oct-tree 21,287,043 0.4256 1.9108× 10−5
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Figure 27. Particulate system with 84 spherical fillers.

6. Summary

Three important computational stategies for efficient analysis of immersed boundary
problems have been demonstrated in this paper. First, kd-tree sub-division was proposed
and proven to be more efficient through theoretical analysis as compared against quad-tree
and oct-tree subdivision. The number of sub-cells generated by kd-tree subdivision may be
as few as two-thirds that generated by a quad-tree or three-sevenths that generated by an
oct-tree. Second, we described an efficient local refinement strategy near NURBS boundaries
immersed in the domain based on sign and distance relative to the immersed boundary.
The signs and distance relative to the boundary were efficiently obtained using algebraic
level sets. Last, we evaluated the use of kd-tree cell division for adaptive quadrature
of NURBS-discretized domains near immersed boundaries. The use of kd-tree-based
adaptive quadrature to estimate the volume of a problem with multiple hyper-spherical
voids resulted in the same degree of accuracy as oct-tree subdivision while requiring only a
third as many quadrature points. Thus, significant reduction in degrees of freedom and
quadrature points can be achieved with efficient local refinement using kd-tree cell division.
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