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Abstract: Capacity drop is the critical phenomenon that triggers traffic congestion, while traffic
evolution is very complex during a capacity drop. This study applied the empirical vehicle trajectory
data to explore the traffic characteristics during the capacity drop at the tunnel bottleneck section.
We first construct a capacity drop analysis model using image processing technology to extract
high-precision vehicle trajectories. We then analyze the characteristics of the evolution process of the
capacity drop at the bottleneck area. The results show that the capacity drop is a dynamic evolution
process from free flow to congested flow where traffic operation is distinct. The capacity drop shows
the difference between congested flow and non-congested flow. The driving characteristics of drivers
in the two states are also different. The influence of lane-changing behavior on the capacity drop is
estimated. In the free flow state, the disturbance caused by lane-changing can be quickly eliminated.
With the increase in vehicle numbers in the area, the frequent lane-changing behavior accumulates
disturbance. When the disturbance reaches a certain degree, congestion will occur, and the vehicle’s
speed will drop sharply, resulting in a capacity drop.

Keywords: vehicle trajectories; capacity drop; tunnel bottleneck; lane change

1. Introduction

With the acceleration of urbanization and the improvement of motorization level in
urban traffic, urban tunnel bears increasing traffic pressure, which is the most common
bottleneck type of urban traffic [1–3]. Unlike open ground traffic, urban tunnels have
typical characteristics such as limited building space, exceptional driving environment,
unique driving rules, and significant internal and external brightness differences. The
maximum discharge flow measured downstream decreases immediately when a bottleneck
is activated. This phenomenon is called “capacity drop”. Vehicles are more susceptible to
interference from various factors and form an agglomeration effect of traffic flow distur-
bance, causing tunnel congestion and triggering the “capacity drop” phenomenon [4–6].
The actual vehicle flow rate of the tunnel is significantly lower than the standard capacity.

Previous research shows that capacity drop has attracted significant attention from
researchers. Loop detector data are generally used to estimate the occurrence of the capacity
drop to establish the prediction model. Some research used vehicle trajectory data from
the simulation model for capacity drop analysis. In our study, the advancement is that
we applied the empirical vehicle trajectory data extracted from cameras to explore the
characteristics of the traffic during the capacity drop at the tunnel bottleneck section. We
also explored the influence of lane-changing behaviors on the capacity drop with empirical
vehicle trajectory data to establish the prediction model.

Nanjing Yingtian Street Tunnel, as one of the fast channels connecting Jiangbei New
Area and the main urban area, also undertakes the significant demand of commuting across
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the river. On the monitoring video platform of the whole tunnel, high-precision vehicle
trajectory data are obtained, and the characteristics of the data are statistically analyzed.

2. Literature Review

Researchers observed the phenomenon of the capacity drop in early studies. Ini-
tially, the concept of the “capacity drop” first appeared in the 1960s when Edie [7] and
Greenberg [8] obtained two significantly different areas by drawing the flow–density point
diagram of the Lincoln Tunnel in the United States. There are free flow and congested flow.
It has a significant flow difference at the regional junction of two areas, the “capacity drop”
phenomenon. Koshi draws the “reverse-λ” shape of the flow–density point diagram and
the discontinuity of the change from free flow to congested flow to explain the capacity
drop [9]. He believed that the driver in congested traffic flow is more inclined to have
a more considerable car-following distance, but this comment lacks corresponding data
support. The range of 5%-30% drop in the maximum discharge flow at the bottleneck has
been widely observed, bringing excessive travel delays and safety concerns [10–12].

Previous research has investigated the cause of capacity drop using aggregated traffic
data from loop detectors. Kerner proposed the “three-phase traffic” theory and the concept
of “phase transition” [13–15] and believed that the “phase transition” process of traffic flow
caused the “breakdown phenomenon” of a sudden decrease in vehicle speed, resulting in
capacity drop. Studies have observed capacity drop in areas where lane changing often
occurs, near weaving segments [16,17], merging [18–20], diverging [21], and lane-drop [22]
bottlenecks. Some researchers found that the magnitude of the capacity drop is associated
with the density [23,24], the demand of ramp flows [25], the speed at the bottleneck [26],
and the number of lanes [27].

Recent studies explored the capacity drop from the human behavior perspective. Based
on Newell’s hyperbolic theory [28], Yeo conducted statistical analysis by intercepting part
of the vehicle trajectory data in Next Generation Simulation (NGSIM) [29]. He elaborated
and explained the asymmetric driving behavior theory [30] and effectively connected the
capacity drop phenomenon with this theory. It is believed that after experiencing conges-
tion, drivers tend to adopt a more considerable headway distance during acceleration. The
shock wave formed by the disturbance during the driving process has a more noticeable
impact on capacity drop [31,32]. The macroscopic node model and kinematic wave theory
are proposed to predict the causes of the capacity drop [33,34].

Some researchers believe that car-following behaviors are the cause of the capacity
drop. For example, Jin established a behavior model of first-order capacity drop at the
continuous bottleneck based on the Lighthill–Whitham–Richards (LWR) model [35,36],
taking the limited acceleration of the vehicle as an additional constraint of the optimal
model of traffic flow at the bottleneck. More recently, Chen et al. revealed that combining
different acceleration rates and desired driving behavior speeds induced voids and reduced
capacity [37]. Through research and analysis of NGSIM data, Simon Oh quantified the traffic
flow generated by stop-and-go waves and lane changing downstream of the bottleneck [38].
On the other hand, Zhang et al. considered the lane changer’s insertion speed as a factor
in AIMSUM, a traffic simulation software. They found that lane-changing vehicles with a
high insertion speed could offset the capacity drop [39].

3. Tunnel Vehicle Trajectory Data Extraction
3.1. Extraction of Fixed-Point Vehicle Trajectory in the Tunnel

To obtain each vehicle’s spatial and temporal coordinate data in the tunnel monitoring
field of view, it is necessary to identify and track each vehicle in the video. Firstly, each
image frame is binarized, and the threshold value of vehicle identification size is set to
realize each vehicle’s rough detection and identification. To further improve the accuracy
and speed of detection, this paper adopts the emerging deep learning algorithm You Only
Look Once (YOLO) v5 to recognize and detect moving targets in monitoring [40,41]. Then,
the intermittent trajectory matching and missing trajectory completion are performed based
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on the speed limit judgment data association algorithm for the primary construction of
vehicle trajectories. Then, the coordinate conversion method is applied to map the image
coordinates to the Frenet coordinates along the lane and perpendicular to the direction
of the lane. Finally, the overall algorithm of empirical mode decomposition (EMD) noise
reduction is used to reduce the trajectory error and improve the trajectory accuracy at the
fixed point of the tunnel [42].

3.2. Reconstruction of Vehicle Track in Entire Space–Time of Tunnel

There is a blind area of track detection of 40 to 70 m between the adjacent video
surveillance of the tunnel. To obtain the space–time continuous track of vehicles in tunnels
and ensure the track’s authenticity, the curves represent the track of the vehicle movement,
which is improved based on the cubic Hermite interpolation method. The cubic polynomial
function is introduced into the Hermite interpolation algorithm to solve the slope. This
method does not need other vehicle motion information, the algorithm complexity is low,
and the interpolation accuracy is higher than linear interpolation, cubic spline interpolation,
and cubic Hermite interpolation. The overall schematic diagram is shown in Figure 1.
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4. Analysis of Capacity Drop Based on Phase Transition-Theory

The capacity drop indicates the difference in capacity between the crowded and
non-crowded flow. Many studies have taken the occurrence of congestion, queuing, and
other phenomena as the prerequisites for the capacity drop. In this section, the inclined
cumulative curve is used to identify the moment of traffic capacity drop at each section
of the tunnel. Combined with Kerner’s three-phase traffic flow theory, the temporal and
spatial characteristics of vehicle speed are used as indicators to draw the temporal and
spatial characteristics of the vehicle track in each lane. The phase change points in vehicle
track data are extracted in combination with various phase characteristics to study the
correlation of traffic capacity drop.

4.1. Identification of Tunnel Capacity Drop

The advantage of the vehicle oblique accumulation curve is that it can highlight
the phase characteristics of the flow change at the section to identify the flow change
point. However, the abrupt flow is not always the phenomenon of capacity drop. It is not
enough to identify the moment of the capacity drop with the inclined cumulative curve of
vehicles. By combining the inclined cumulative curve of time occupancy and recognizing
the changing trend of a vehicle passing time at the section, the moment of the capacity
drop can be more accurately determined. We draw the cumulative vehicle curve and
the cumulative curve of time occupancy in the oblique coordinate system by combining
the bottleneck characteristics and state parameters. Then, we enlarge the traffic change
characteristics at the section to determine the moment of traffic capacity drop. The basic
principle of the oblique accumulation curve is as follows:

Based on the original cumulative curve of the section, a background value is subtracted.
The change characteristics of the curve are visually enlarged, and the change points of
vehicle arrival intensity and vehicle delay at the section are identified. The curve formula
is as follows:

V(x, t) = N(x, t)− qo(x)·t
O(x, t) = T(x, t)− to(x)·t

where:
V(x, t)—the cumulative number of arrivals of vehicles passing through section x

within t after adjustment;
O(x, t)—the cumulative curve of the time occupancy rate of vehicles passing through

section x within t after adjustment;
N(x, t)—the cumulative number of arrivals of vehicles passing through section x

within t;
T(x, t)—the cumulative curve of the time occupancy rate of vehicles passing through

section x within t;
qo(x)—background flow at section x, usually the maximum capacity at this section;
to(x)—undetermined parameter at section x, unit s/h.
Based on the construction method of the oblique cumulative curve of the appealing

vehicle and combined with the research division of this area in this paper, the oblique
cumulative curve of the critical sections (tunnel entrance and exit, slope change points, etc.),
in the whole region of the tunnel is constructed. The oblique cumulative curves display
“virtual departures,” such that the vertical displacements between any two are the excess
vehicle accumulations (queueing) on the intervening tunnel segment. With the oblique
coordinate system, each curve displays the quantity, the virtual vehicle counts to time,
minus a background reduction. We conducted the adjustment tests for the background
parameters of each section. The original parameter value is the average flow multiplied
by the interval extending from the curves’ start time to the current time. Then, we tested
the parameters varying from −10% to 10% of the original value for final use. After several
adjustment tests, the background parameters of each section are determined to significantly
enhance the visual effect of the flow rate change of sections.
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In Figure 2, the oblique accumulation curves of vehicles at the four adjacent sections
are all piecewise approximately linear, showing a stepped characteristic. As shown in the
figure below, at 123 s, the traffic capacity first drops in the bottleneck section. Secondly, the
traffic flow leaving the area downstream of the bottleneck is limited to the merge bottleneck
and lags the merge bottleneck. At 131 s, the flow suddenly changes. At the same time,
the congestion at the merge bottleneck gradually spreads to the segment at the upstream
section. Further, at 177 s, the traffic capacity drops. By calculating the flow rate at the
bottleneck section, the capacity before congestion formation is estimated to be 6700 veh/h,
while the discharge flow after congestion formation is estimated to be 5850 veh/h. The
magnitude of capacity drop at the merge bottleneck is 12.7%.
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4.2. Analysis of Capacity Drop Based on Traffic Flow

This section uses vehicle speed’s temporal and spatial characteristics as reference
indicators, and the three main lanes’ temporal and spatial trajectory diagrams are homo-
geneously abstracted. We then draw the three-phase traffic flow temporal and spatial
characteristics of the main lanes (see Figure 3). Kerner’s empirical research shows that there
are usually two main blocking patterns at a single bottleneck: the synchronized flow pattern
(phase S) and the wide moving jam pattern (phase J). In Kerner’s theory, the phases J and S
in congested traffic are observed outcomes in universal spatial–temporal features of real
traffic data. Asynchronous flow appears at the bottleneck at the beginning of the congestion
and propagates upstream of the bottleneck. The downstream front of the synchronized flow
is often fixed at a bottleneck. In contrast, a wide-moving jam could occur spontaneously
in this synchronous flow. A wide moving jam is meant to reflect the characteristic feature
of the jam to propagate through any other state of traffic flow and any bottleneck while
maintaining the velocity of the downstream jam front. The speed within the wide moving
jam could be very low, and thus this pattern is also called stop-and-go traffic.
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There is a connection between the capacity characteristic point and the phase change
boundary of the three-phase traffic flow.
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(1) F->S: Free flow changes to synchronous flow. Traffic crash occurs with the sponta-
neous start and propagation of the synchronous flow (the upstream boundary of the
synchronous flow propagates upstream, while the downstream boundary is fixed at
the bottleneck). According to the black dotted arrow in the distance–time diagrams
in the first row of subfigures in Figure 3, the vehicle begins to slow down when
approaching the upstream interface, and the bottleneck capacity does not change
significantly at this time.

(2) S->J: Synchronous flow changes to jam flow. Some narrow moving jams (narrow
moving jams) appeared in this state, and then they evolved into wide moving jams
(J appeared). At this time, the capacity has been significantly reduced.

Combined with the characteristic points of capacity drop in the temporal and spatial
diagram of the vehicle trajectory in the figure, it is found that the vehicle speed decreases
significantly when the traffic flow is approaching the interface. It causes drivers to take
a more considerable distance between vehicles, leading to the phenomenon of “traffic
capacity drop” at the macro level. From the flow–density diagrams in the subfigures of
Figure 3, it can be found that the traffic capacity drop points are all near the synchronous
flow, and vehicles exhibit a significant speed reduction. The capacity decreased rapidly
when the synchronous flow transitioned to the wide moving jam flow. In the synchronous
flow state, the vehicle speed decreases while the density increases, and the traffic capacity
does not change significantly. The synchronous flow is more like the accumulation process
of disturbance. When the disturbance is sufficient, the jam flow occurs.

5. Analysis of Tunnel Driving Behavior

The capacity drop means that the traffic flow follows different operating rules in the
two states of free flow and congested flow. The microscopic level is manifested as the
characteristic difference of vehicle trajectory. When a certain percentage of drivers in the
transportation system are affected by nearby driving vehicles, the traffic flow will lose sta-
bility, manifesting as congestion, traffic capacity drop, and other phenomena summarized
as the “disturbance”. The significant source of disturbance in this study is the deceleration
behavior of vehicles passing through the tunnel.

5.1. Analysis of Headway Distribution

The headway indicates the time difference between the two vehicles passing through
the same position on the road and represents the maximum reaction time of the driver
behind the vehicle when the current vehicle brakes suddenly. The headway distance is
closely related to the traffic flow composition and driving behavior and is an essential
indicator of road capacity, service level, and driving safety. The probability distribution of
headway is shown in Figure 4.

The time headway for different driving speeds ranges from 2.04 s to 2.52 s in syn-
chronous flow and from 2.09 s to 3.76 in the wide moving jam. The time headway distribu-
tion for the two traffic phases shows a clear difference. In synchronous flow, the disturbance
caused by the lane-changing behavior forces the following vehicle to speed adaptation,
varying from high speed to low speed. The traffic inflow at the bottleneck is similar to the
extrusion process, and the headway distance is gradually compressed. Finally, the headway
decreases slightly, explaining that the road system still maintains a high flow input in the
synchronous flow state.

The traffic flow at the bottleneck has been compressed in the wide moving jam flow.
The driver tends to drive at a higher distance for safety considerations in this state. In
addition, the driver will have a certain psychological threshold of safe distance, even in a
completely stationary state. There will still be a particular gap between vehicles, so it can
be explained that in the state of wide moving jam flow, the distance between the fronts has
been compressed because of the significantly reduced speed. The probability distribution
of headway shows that the lower the speed, the larger the value.
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5.2. Analysis of Lane-Change Speed

The salient feature of a vehicle changing lanes is vehicle speed change. When the
driver has an intention to change lanes, he usually takes a deceleration action, waits for the
opportunity to enter the target lane, and adjusts his speed in the target lane to enter the
stable following state of the target lane as soon as possible. Speed features of lane change
vehicles are shown in Figure 5.
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When the capacity decreases, the confluence bottleneck area is in a smooth state.
When the driver intends to change lanes, he can quickly adjust his speed and complete the
lane-changing behavior faster. At the same time, according to the trajectory characteristics
of the previous chapter, the area runs at a higher speed and a more considerable distance.
The lane-changing driver has complete space for speed adaptation in a short time and
then changes lanes. As the upstream flow increases, the state of this area enters the
synchronous flow phase. The deceleration behavior of the lane-changing driver in the
original lane decision phase and the speed adjustment behavior in the execution phase
cause the following vehicle to adapt to the speed. The disturbance to the following vehicle
accumulates over time and ultimately causes the traffic capacity to decrease.

When the free flow of the study area changes to a congested flow, the lane-changing
vehicles in the process of reduced capacity show a similar trend as before the reduced
capacity. During this time, the speed exhibits large fluctuations and the fluctuating speed
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of the vehicle during the lane change. The following vehicles cause more significant
disturbances, causing the drivers of the following vehicles to vacate a more substantial gap
for safety reasons, thus causing a decrease in traffic capacity.

After the traffic capacity declines, the road shows more severe congestion, and lane-
changing vehicles show a low-speed and stable trend. There are significant outliers in
the speed box diagram at the lane-changing decision-making stage in this state. After
inspection, these outliers are in the upstream input area or ramp, and the congestion state
has not spread to this area.

We further calculate the speed change of vehicles on the target lane and original lane.
The speed change rate ai is the change of vehicle i’s speed after and before the lane change
divided by the original speed. A positive rate indicates that the speed increases after the
lane change and vice versa. The results on different lanes are summarized in Table 1. For
lane-changing vehicles and following vehicles on the target lane, the speed of most vehicles
is reduced during the lane-changing process. The lane-changing vehicle in the outer lane
has a more serious speed reduction. When the vehicle changes lanes to the inner lane, its
speed increases. The main reason is that the inner lane runs relatively smoothly with less
disturbance. The driver of a lane-changing vehicle can better adjust its driving state after
entering the inner lane because the speed has increased. For the following vehicle on the
original lane, the standard deviation of the parameter is relatively small during the lane
change, which means that the original lane is less disturbed, and the speed fluctuation
reflected is less.

Table 1. Speed change of vehicles on different travel lanes.

Lane 1 Lane 2 Lane 3 Lane 4

Sample
Size Mean (S.D.) Sample

Size Mean (S.D.) Sample
Size Mean (S.D.) Sample

Size Mean (S.D.)

aLC 34 0.042 (11.2) 100 −0.103 (0.400) 125 −0.098 (0.501) 259 −0.083 (0.451)

aFO 11 0.101 (0.221) 42 −0.014 (0.241) 50 0.153 (0.371) 103 0.079 (0.267)

aFT 17 −0.002 (0.283) 49 −0.057 (0.332) 69 −0.060 (0.328) 135 −0.052 (0.294)

aLC is the speed change rate of the lane change vehicle, aFO is the speed change rate of the following vehicle on the
original lane, and aFT is the speed change rate of the following vehicle on the target lane.

6. Conclusions and Discussion

This paper constructs the capacity drop analysis using video image processing technol-
ogy to extract high-precision vehicle trajectory data. The article analyzes the characteristics
of the evolution process of traffic congestion at the bottleneck in a tunnel section. The
capacity drop is captured by plotting the cumulative vehicle count curves. The capacity
at the merge bottleneck is found to be 6700 veh/h, while the magnitude of the capacity
drop is estimated to be 12.7%. We also explored the driving characteristics related to the
occurrence of the capacity drop. The results show that the time headway for different
driving speeds ranges from 2.04 s to 2.52 s in synchronous flow and from 2.09 s to 3.76 in
the wide moving jam, which indicates a clear difference between the two traffic phases.

Based on the analysis, the main findings are summarized as follows: (1) we captured
the dynamic process of tunnel traffic capacity drop involving free flow and congested
flow; (2) the capacity drop in the diagrams shows the difference between congested flow
and non-congested flow, and deep analysis shows the different driving characteristics of
drivers in the two states; (3) the influence of lane-changing behavior on the capacity drop is
captured by analyzing the driving behaviors. In the free flow state, the disturbance caused
by lane-changing can be quickly eliminated. With the increase in vehicle count, frequent
lane-changing behavior will accumulate disturbance. When the disturbance reaches a
certain degree, congestion will occur, and the speed of vehicles will drop sharply, resulting
in a capacity drop. The study’s findings can provide evidence of explanations of causes of
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capacity in tunnel bottlenecks in urban areas, supporting real-time traffic control strategies
to preserve tunnel capacity.

The algorithm proposed in the study has the potential for applications in engineering.
For example, the traffic control center can use the algorithm to accurately monitor and
predict traffic conditions. Once the capacity drop is captured or predicted, we can quickly
inform the drivers about the upcoming congestions within the tunnel via roadside variable
message signs or vehicle onboard displays to take some precautions. In addition, we can
apply active traffic management (variable speed limit, ramp metering, lane control, etc.),
techniques to prevent the drop in tunnel capacity further and maintain a high flow rate [43].
Finally, as we explored the vehicle driving behaviors that trigger the capacity drop, we can
apply some vehicle behavior control measures (such as lane change regulations) to prevent
the disturbance that causes capacity drop. Those are some efforts that can be conducted for
engineering applications based on the algorithms in our research.

In our research, we investigated the vehicle driving behaviors that cause the capacity
drop in tunnel traffic. The vehicle movements can be coordinated via the cooperative
connected and automated mobility (CCAM) technique to prevent the occurrence of capacity
drop and congestion. Cooperative connected and automated mobility (CCAM) aims to
achieve a safer, more efficient, and more comfortable mobility mode by coordinating vehicle
motion states with sharing information [44]. CCAM mainly includes the technology of
vehicular communications, automated driving, and cooperating transportation systems.
Recently, numerical research proposed a series of innovative technology for CCAM, such
as 5G-SDN-MPTCP-based communication systems [45], multi-tier orchestration platform
architectures [46], safety-related assessment platforms [47], and a significant number of
cooperative adaptive cruising control algorithms [48,49]. There are also some evaluation
and incentive systems related to the social and economic benefits of CCAM.

State-of-the-art CCAM has been applied in practices in Europe, America, and Asia.
For example, Europe conducted a project named H2020 5GCroCo to define a successful
path toward providing CCAM services along with cross-border scenarios and reduce the
uncertainties of an actual 5G cross-border deployment [50]. A Plan for Europe is conducted
to achieve 5G deployment along the main transport corridors for autonomous vehicles
in European Union [51]. America has carried out a series of travel services by connected
and automated vehicles, such as MILO in Texas, ARIBO in North Carolina, AAA, and
Nevada [52].

Our research found that the disturbance caused by lane changes, especially when
the disturbance reaches a certain degree, significantly impacts traffic stability and capac-
ity drop. Thus, we can coordinate and control the vehicle lane change moment via the
CCAM, to control the cumulative disturbance under the critical threshold. The proposed
algorithm can help identify this threshold by analyzing the traffic flow and vehicle tra-
jectory samples. Additionally, the algorithm should be slightly updated to identify more
driving parameters for the CCAM system, such as headway, the gap for a lane change,
acceleration/deceleration rate, etc.
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