
Citation: Lysenko, S.;

Bobrovnikova, K.; Kharchenko, V.;

Savenko, O. IoT Multi-Vector

Cyberattack Detection Based on

Machine Learning Algorithms:

Traffic Features Analysis,

Experiments, and Efficiency.

Algorithms 2022, 15, 239. https://

doi.org/10.3390/a15070239

Academic Editors: Francesco

Bergadano and Giorgio Giacinto

Received: 19 June 2022

Accepted: 9 July 2022

Published: 12 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

IoT Multi-Vector Cyberattack Detection Based on Machine
Learning Algorithms: Traffic Features Analysis, Experiments,
and Efficiency
Sergii Lysenko 1,*, Kira Bobrovnikova 1, Vyacheslav Kharchenko 2,* and Oleg Savenko 1

1 Computer Engineering and Information Systems Department, Khmelnytskyi National University,
29016 Khmelnytskyi, Ukraine; bobrovnikova.kira@gmail.com (K.B.); savenko_oleg_st@ukr.net (O.S.)

2 Department of Computer Systems, Networks and Cybersecurity, National Aerospace University “KhAI”,
61001 Kharkiv, Ukraine

* Correspondence: sirogyk@ukr.net (S.L.); v.kharchenko@csn.khai.edu (V.K.); Tel.: +380-68-772-81-79 (S.L.);
+380-67-915-19-89 (V.K.)

Abstract: Cybersecurity is a common Internet of Things security challenge. The lack of security in IoT
devices has led to a great number of devices being compromised, with threats from both inside and
outside the IoT infrastructure. Attacks on the IoT infrastructure result in device hacking, data theft,
financial loss, instability, or even physical damage to devices. This requires the development of new
approaches to ensure high-security levels in IoT infrastructure. To solve this problem, we propose
a new approach for IoT cyberattack detection based on machine learning algorithms. The core of
the method involves network traffic analyses that IoT devices generate during communication. The
proposed approach deals with the set of network traffic features that may indicate the presence of
cyberattacks in the IoT infrastructure and compromised IoT devices. Based on the obtained features
for each IoT device, the feature vectors are formed. To conclude the possible attack presence, machine
learning algorithms were employed. We assessed the complexity and time of machine learning
algorithm implementation considering multi-vector cyberattacks on IoT infrastructure. Experiments
were conducted to approve the method’s efficiency. The results demonstrated that the network traffic
feature-based approach allows the detection of multi-vector cyberattacks with high efficiency.

Keywords: Internet of Things; cybersecurity; cyber threats; malware detection; machine learning;
network traffic

1. Introduction
1.1. Motivation

The Internet of Things is a concept that aggregates many technologies and physical
objects—devices that exchange data and interact over the internet, as well as big data that
generate these devices. Internet of Things devices have various purposes and complexities,
from wearable things or technology to intelligent devices in smart homes and critical
infrastructure. The Internet of Things was designed to make many areas of human life
more comfortable and safer. However, the Internet of Things not only brings increased
comfort but also new challenges and problems related to cybersecurity [1,2].

Security issues surrounding the Internet of Things infrastructure are determined by
the specific features of an environment. One possible feature involved in building an IoT in-
frastructure is an IoT system of groups of identical or similar technical characteristic devices.
If a specified device has a vulnerability, such homogeneity multiplies its impact [3–5].

Important issues include security issues with protocols used in the internet infras-
tructure, the use of unsafe network services, such as Telnet and SSH, and vulnerabilities
in routers and open ports. With the ability to monitor and collect data on the IoT, even
specialized compromised IoT devices with limited resources can be used to leverage critical

Algorithms 2022, 15, 239. https://doi.org/10.3390/a15070239 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070239
https://doi.org/10.3390/a15070239
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5352-077X
https://doi.org/10.3390/a15070239
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070239?type=check_update&version=1

Algorithms 2022, 15, 239 2 of 25

infrastructure systems, such as database servers. Vulnerability in the IoT device commu-
nication protocol can spread to other devices that use the vulnerable protocol in the IoT
infrastructure [6].

Thus, vulnerabilities in the protocols used in the IoT network can have devastating
effects on the entire IoT infrastructure. The criticalities of these effects depend on the
environments in which the compromised IoT devices operate.

Moreover, in some cases, the deployment conditions of IoT devices make it difficult or
impossible to reconfigure or upgrade IoT devices. Often, IoT devices cannot be upgraded
due to the discontinuation of device support from the manufacturer. This leads to the
possibility of new vulnerabilities and threats to the IoT device in the future, as the current
security mechanisms of device deployment may be out of date. Technical support and man-
agement of IoT smart devices are important cybersecurity issues in the long run. Another
specific problem surrounding IoT cybersecurity is the fact that the internal operation of a
smart device and the data streams generated by the device may be unknown to the user.
The situation is complicated by the constant availability of IoT devices on a network and
the ignorance of users (i.e., concerning potential cybersecurity risks). It may lead to the
use of dangerous settings on IoT devices (default), direct network connections of internet
devices to the internet, the use of obsolete or unreliable devices, and weak passwords.

One important IoT cybersecurity risk is that the functionality of smart devices can
be changed by the device manufacturer without the consent or knowledge of the user (by
updating the device firmware). It creates a new vulnerability that can allow the smart
device to partially change the functionality or perform undesirable actions on the user’s
device, such as collecting sensitive user data without the user’s knowledge.

However, the risks are not limited to data confidentiality. Attacks on IoT infrastructure
can not only target compromised devices to steal sensitive data or cause financial losses but
also disrupt or damage IoT devices physically. Compromised IoT devices can even lead to
the injuries or deaths of people who depend on these devices or work with them.

Thus, non-compliance with basic security requirements (for both manufacturers and
the users of smart devices) is the main cause of IoT cybersecurity problems. Common
causes of security breaches in IoT infrastructure due to manufacturers are vulnerabilities in
the IoT device software, lack of support for automatic updates, lack of firmware updates,
and dangerous update mechanisms. This situation is often caused by manufacturers at-
tempting to launch new smart devices as soon as possible. Vulnerabilities in software and
web applications can lead to the theft of sensitive information or the spread of malicious
firmware updates. Another common problem is unsafe authentication methods provided
by the device manufacturers. The above weaknesses of the current IoT state of affairs,
as well as the heterogeneity of the IoT environment, make IoT devices more vulnerable
than computers and servers on conventional networks. Vulnerable components of IoT can
be IoT devices, device software, and communication channels of the IoT infrastructure.
The main threats in IoT infrastructure are distributed denial of service (DDoS), disclo-
sure of confidential information, falsification, spoofing, and elevation of privilege. These
threats are commonly used by cybercriminals as entry points, followed by other criminal
activities: infecting devices with malicious software, stealing sensitive data, or blocking
network connections.

Mentioned factors contribute to the high probability of compromising IoT devices, the
spread of malicious software, and various multi-vector cyberattacks on IoT infrastructure
(MVIA). At the same time, compromised IoT devices can be used as sources of attacks both
inside and outside the IoT infrastructure.

The next subsection presents a brief analysis of the modern ideas and methods ad-
dressed to solve the problem of IoT malware detection by analyzing the advantages
and disadvantages.

Algorithms 2022, 15, 239 3 of 25

1.2. Objectives and Contribution

The main objectives of the work were to study the possibility of a multi-vector cy-
berattack detection in the IoT infrastructure based on a flow analysis and a deeper traffic
analysis that takes into account IoT protocol features. This research aims to improve de-
tection efficiency via various machine learning algorithm usages. The proposed approach
deals with the set of network traffic features that may indicate the presence of cyberattacks
in the IoT infrastructure and compromised IoT devices.

Thus, the novelty of this work involves the approach used for IoT multi-vector cy-
berattack detection, which involves a flow-based features analysis. It enables decreased
detection time and is scalable. On the other hand, if the flow-based feature analysis was
unable to conclude the attack presence, a deep analysis of network traffic with the use of
MQTT-based, DNS-based, and HTTP-based features analysis was employed.

This paper is organized as follows. Section 2 presents the state-of-the-art. Section 3
describes the machine learning algorithms for cyberattack detection. Section 4 discusses the
stages of the proposed IoT multi-vector cyberattack detection technique based on machine
learning algorithms with the traffic features analysis. Section 5 proposes the experiments
and the efficiency of the proposed approach. Finally, we present our conclusions and
future research.

2. The State-of-the-Art

The scientific community is focusing on the increasing problems concerning cyber-
security today. Solutions devoted to cyberattack detection against Internet of Things
infrastructure are widely presented [7,8]. Quite possibly, the most encouraging approaches
for IoT cyberattack detection are based on machine learning algorithms (MLA) [9–13].

To solve the cyberattack detection problem, the authors of [14] proposed an approach
that executes the IoT malware traffic analysis. It is based on the usage of multilevel
artificial intelligence and involves neural networks and binary visualization. In addition,
the approach proposes efficiency improvement via learning from the misclassification
approach, which includes three main stages, is designed to collect the network traffic,
perform the binary visualization to store the collected network traffic in ASCII, convert
it to 2D images, and process/analyze the obtained binary image. An analysis of the
binary images is executed using the TensorFlow tool, an end-to-end open-source platform
designed to use machine learning for different problem solutions. It can find and classify
patterns automatically. The main advantage of the tool is the ability to organize the system
retraining as well as the possibility to make the image recognition. The approach proposes
the use of the algorithm to perform the visualization of the collected traffic characteristics
as an image (in the form of tiles using the Binvis tool). The TensorFlow machine tool can
make predictions. The use of graphic tiles allows the determination of the tile combination
on which the image is based. It is able to detect needed objects regardless of the location
within the obtained image. The provided method can perform the IoT device protection on
the gateway level, bypassing the IoT environment constraints.

The authors of [15] presented a survey on the experimental studies with a detailed
analysis of a set of machine learning algorithms. The article included comparative data
concerning the algorithm detection efficiency of anomalous behavior in IoT networks. Ex-
perimental results have shown that the best efficiency concerning used datasets is produced
by the random forest algorithm. Nevertheless, all investigated machine learning algo-
rithms demonstrated to be very close to random forest algorithm and detection efficiency
results; sometimes the choice of an appropriate algorithm depends on the nature of the
analyzed data.

Article [16] is devoted to machine learning classifiers involved in the botnet traffic
analysis in the IoT environment. Nine IoT devices were employed for dataset construc-
tion, consisting of several botnet attack types. To evaluate the efficiency of the proposed
approach, true positive, true negative, false positive, false negative, F1-score accuracy,
precision, and recall were used. The experimental results of the research demonstrated that

Algorithms 2022, 15, 239 4 of 25

the random forest algorithm produced the best results while the support vector machine
produced the lowest results. The main disadvantage of the approach is the strong need for
data analysis of all features in processed datasets.

The IoT cyberattack detection approach for the IoT network is presented in [17]. It
is based on the use of intelligent technologies. The produced intelligent system operates
with a set of network features. The approach aims to reduce the feature number via its
ranking with the usage of the correlation coefficient, random forest algorithm, and the gain
ratio. The base for the experimental research involves three feature sets, where using the
proposed algorithm is to be combined to obtain an optimized feature set. The means of data
processing the authors used were K-nearest neighbor, random forest, and XGBoost machine
learning algorithms. All experiments were based on the usage of NSL-KDD, BoT-IoT, and
DS2OS datasets. The investigation of the detection efficiency of the proposed system was
executed. For this purpose, the metrics of accuracy, detection rate, F1-score, and precision
were evaluated.

An approach for IoT attack detection based on the usage of cloud technologies and
software-defined networks (SDNs) is presented in [18]. It employs a decentralized two-
layer SDN and is able to perform attack mitigation in the wireless IoT infrastructure. To
execute the network traffic control for each subnet domain, the predefined local domain
controller of the specified domain was employed. The core of the approach is a special
controller connected to a local controller and it is placed in the cloud environment. The
approach also involves some special local controllers to perform the traffic collection from
the investigated domains to perform the feature extraction, and, as a result, to find out
the facts of the DDoS attack presence in the domain. The attack detection process is based
on the analysis of 155 features, collected via the SPAN function of the Cisco switch. The
obtained feature values were evaluated by detection modules placed within all defined
local controllers to detect DDoS attacks. The approach used an extreme learning machine
(ELM) as a decision-maker for attack detection. The feed-forward neural network with
semi-supervised learning was used. The main advantage of ELM implementation is the
training time reduction as it performs the random selection of the initial parameters. As
a result, usage of ELM decreases the detection time. An attack mitigation module is also
presented on each local controller. There is the possibility to organize the data exchange
between each local controller, as well as with the universal controller. The proposed attack
mitigation technique involves a set of attack mitigation scenarios able to perform in the
wireless internet environment for different fixed devices.

The authors of [19] propose an intrusion detection system for IoT infrastructures. It
is based on deep learning (DL-IDS). The approach for the IoT infrastructure intrusion
detection involves the network traffic analysis; the data normalization procedure (to avoid
the uncertainties in the obtained dataset); the data similarity evaluation on the usage of
the Minkowski distance (to take into account the missing values, to eliminate possible
redundancy, and to remove from the dataset the redundant and duplicate data); the
replacement of the missing feature values in the obtained dataset (taking into account
the evaluated values of the nearest neighbor on the basis of the K-nearest neighbor in the
Euclidean distance to produce the average values for proceed data (to not take into account
the classification results based on the data obtained from the more frequent entries); the
traffic feature selection procedure on the basis of the spider monkey optimization algorithm
usage (the set of features that are able to indicate the intrusion into the IoT infrastructure);
and the exact intrusion detection procedure based on the stacked-deep polynomial network
for the incoming data classification to mark it as normal or abnormal. The proposed
approach is able to detect intrusions concerning the IoT environment (a remote-to-local
attack, a DDoS attack, a probing attack, a user-to-root attack, etc.).

The study [20] provides research devoted to the usage of machine learning algorithms
for anomaly detection in the Internet of Things infrastructures. To do this, the authors
investigated the effectiveness and the main aspects of the usage of several single algorithms
or their combinations for detection. The efficiency of the anomaly detection involved

Algorithms 2022, 15, 239 5 of 25

performance metrics, such as false positives, false negatives, specificity, sensitivity, and
overall accuracy. The experimental part of the study is based on the Nemenya and Friedman
tests that made it possible to perform a statistical analysis of the classifiers’ differences.
Another aspect of the research was the evaluation of the classifiers’ response time. For
this purpose, specific IoT infrastructure (as part of the implemented IDS) was employed.
As a result of the conducted experiments, the authors of the study concluded that the
most acceptable classification accuracy and the time of response were provided by the
classification trees, regression trees, and extreme gradient boosting.

An approach for cyberattack detection as an AD-IoT system is presented in [21].
The proposed system is designed for the smart city infrastructure and is based on the
random forest machine learning algorithm. The system aims to detect the compromised IoT
devices that are placed in the distributed fog nodes. The division of normal and malicious
behaviors of IoT devices is executed on the basis of monitoring and analyzing the fog
nodes’ network traffic. Such analysis is performed to verify whether the fog level attacks
are detected and to inform the cloud security services concerning the evaluated results. The
presented approach demonstrates sufficient detection efficiency and applies to the smart
city infrastructure.

An approach for DDoS attack detection is presented in [22]. It is based on the hybrid
optimization algorithms of Metaheuristic lion and Firefly. It was designed to perform data
collecting, data preprocessing for noise removing, and filling missing data. The feature
extraction was performed by employing recursive feature elimination (RFE). An important
item of the proposed technique is the possibility of detecting low-rate attacks using the
hybrid ML-F optimization algorithm. For the attack classification, a random forest classifier
was used.

The article [23] introduces an IDS, which is based on the technique that uses an
ensemble-based voting classifier. This approach uses multiple classifiers as a base learner.
The final prediction is formed via producing the classifier’s vote for the traditional classifier
predictions. As the mean of the efficiency evaluation of the presented approach, a set of IoT
devices with the usage of different sensors (garage door, light motion, GPS sensor, fridge
sensor, thermostat, modbus, and weather) were employed. Multi-class attacks, such as XSS,
Ransomeware, scanning injection, DDoS, and backdoor, were involved in the technique
efficiency verification. The efficiency of the presented method was compared with the
set of new intrusion detection approaches provided by scientists. The comparison was
constructed on the basis of the accuracy, precision, recall, and F-score metrics. Furthermore,
a set of machine learning algorithms, such as decision tree, naive Bayes, random forest, and
K-nearest neighbors were involved in the comparison procedure. The experimental results
demonstrated that the proposed approach has a high detection efficiency.

The authors of [24] propose a detection method for DoS/DDoS attacks against the IoT
using machine learning. The approach aims to detect and apply the mitigation scenarios
in the situation of DoS/DDoS attacks. To do this, the approach employs a multiclass
classifier (“Looking back”). In addition, the ability of the technique to detect “malicious”
packets makes it possible to apply mitigation measures against attacks that employ specific
packet types.

The approach in [25] provides a botnet detection system for IoT devices. It is based on
the algorithm named local–global best bat, which is used for neural networks and is able to
process the botnet’s feature sets to distinguish malicious and benign network traffic. As an
experimental part of the study, the botnets Mirai and Gafgyt were used to infect several
commercial IoT devices. In addition, to classify 10 botnet classes, the proposed algorithm
was used. It was designed to tune the neural network hyperparameters and optimize the
weight. The authors made the efficiency comparison of the provided algorithm with other
approaches. The experimental results demonstrated that the proposed botnet detection
approach accuracy was up to 90%, while BA-NN was 85.5%, and PSO-NN was 85.2%.

The authors of [26] proposed a taxonomy of intrusions detection systems that utilizes
the data objects as the dimensions to summarize and classify machine learning- and

Algorithms 2022, 15, 239 6 of 25

deep learning-based IDS. The survey clarifies the concept of IDSs. Moreover, machine
learning-based algorithms, metrics, and benchmark datasets frequently used in IDSs were
introduced. IDSs applied to various data sources, i.e., logs, sessions, packets, and flow,
were analyzed. The proposed taxonomic system was presented as a baseline and key
IDS issues with using machine learning and deep learning algorithms. Moreover, future
developments and challenges of IDS were discussed.

The authors of [27] introduced a probabilistic-driven ensemble (PDE)-based approach.
This approach operates with several classification algorithms, wherein the effectiveness
of these algorithms has been improved by applying a probabilistic criterion. Thus, the
proposed approach allows maximizing the possibility of detecting intrusion events, regard-
less of the operational scenario, using several evaluation models. This makes it possible
to distinguish ordinary events from related events to all classes of attacks. Experiments
performed by using real-world data show that the proposed ensemble approach has better
capability in detecting intrusion events (concerning known solutions).

The authors of [28] presented machine learning-based IDS. The feature reduction
approach has two components: (1) Auto-encoder as a deep learning instance for dimension-
ality reduction; and (2) principal component analysis. The resulting set of low-dimensional
features from both approaches was used to build different classifiers, i.e., Bayesian network,
random forest, linear discriminant analysis, and quadratic discriminant analysis for design-
ing IDS. The obtained experimental findings show better performance in terms of detection
rate, false alarm rate, accuracy, and F-measure for binary and multi-class classification. This
approach is able to reduce the feature dimensions of the CICIDS2017 dataset from 81 to 10,
with high accuracy in both multi-class and binary classifications.

The objective of [29] was to apply various approaches for handling imbalanced datasets
to design an effective IDS from the CIDDS-001 dataset. The effectiveness of sampling
methods based on CIDDS-001 was studied and experimentally evaluated via random forest,
deep neural networks, variational autoencoder, voting, and stacking machine learning
classifiers. The developed system makes it possible to detect attacks with high accuracy
when processing an unbalanced distribution of classes using a smaller number of samples.
It makes it possible to apply the proposed system to data classification problems if it is
necessary to merge data in real-time.

In [30], the authors were devoted to solving cybersecurity problems, such as the
difficulty in distinguishing illegitimate activities from legitimate ones due to their high
degrees of heterogeneity and similar characteristics. To solve this problem, a local feature
engineering approach was proposed. This approach is based on the adoption of a data pre-
processing strategy that allows reducing the number of network event patterns, increasing
their characterization. The main distinguishing feature of the approach is that it operates
locally in the feature space of each single network event, allowing to introduce new features
and discretizing their values. The experimental results showed that the proposed approach
improves the performance of known solutions.

The results of the machine learning algorithm efficiency analysis for detecting cyberat-
tacks in the Internet of Things infrastructure are presented in Table 1.

The analysis of related works allows concluding that most studies had good detection
accuracy; nevertheless, the main disadvantage of the investigated works is that they do not
cover most features that may indicate the attack presence.

The analysis shows that the known approaches for detecting IoT cyberattacks demon-
strate high-efficiency levels. Nevertheless, there are limitations—the inability to detect
and respond to unknown attacks (zero-day attacks), the low efficiency of detection of
multi-vector attacks; a high level of false positives, a significant response time that is
unacceptable for real-time systems, and the need for significant amounts of computing
resources. Another important aspect is the need to select a minimum and sufficient set of
informative network traffic features that are able to indicate the presence of cyberattacks in
the IoT infrastructure.

Algorithms 2022, 15, 239 7 of 25

Table 1. Machine learning algorithm (MLA) efficiency for cyberattack detection in the Internet of
Things infrastructure.

Authors Goal MLA Data Set Result

Shire, R.; Shiaeles, S.;
Bendiab, K.; Ghita B.;
Kolokotronis, N. [14]

malware detection,
zero-day malware

classification

Convolutional Neural
Network and binary

visualization

Real network
environments

Accuracy of 91.32%,
Precision of 91.67%,

Recall of 91.03%

Elmrabit, N.;
Zhou, F.; Li, F.;
Zhou H. [15]

anomaly detection,
attack detection

Logistic Regression, Decision
Tree, Adaptive boosting, KNN,
Random Forest, Naive Bayes,

Gated Recurrent Units, Simple
Recurrent Neural Network,

Convolutional Neural
Network and Long short-Term

Memory, Convolutional
Neural Network, Long

short-Term Memory, Deep
Neural Network

UNSW-NB15,
CICIDS-2017, ICS

Cyberattack

Performance about
99.9% using Random
Forest (CICIDS-2017)

Bagui, X. Wang;
Bagui, S. [16] intrusion detection Logistic regression, SVM,

random forest

UCI Machine
Learning

Repository
Accuracy of about 99%

Kumar, P.;
Gupta, G.P.;

Tripathi, R. [17]

cyber-attack detection
against IoT networks

K-nearest neighbor, random
forest, XGBoost

DS2OS, NSL-KDD,
BoT-IoT

Accuracy up to 99%,
detection 90–100%

Ravi N.;
Shalinie S.M. [18]

DDoS attacks
detection and

attacks mitigation

ELM, semi-supervised extreme
learning machines UNB-ISCX Accuracy of

about 96.28%

Otoum, Y.; Liu, D.;
Nayak A. [19]

DoS, user-to-root
(U2R),

remote-to-local (R2L)
detection,

probe, intrusions

Stacked-deep
polynomial network NSL-KDD

Accuracy up to 99.02%,
Precision up to 99.4%,

recall up to 98.3%,
F1-score up to 98.8%

Verma, A.;
Ranga, V. [20]

Survey on machine
learning algorithms

for DoS
attacks detection

AdaBoost, extremely
randomized trees, multilayer
perceptron, classification and

regression trees, random forest,
gradient boosted machine,
extreme gradient boosting

UNSW-NB15,
NSL-KDD,
CIDDS-001

Regression trees,
classification trees, and
EG boosting show the
best results—accuracy
up to 96.7%, specificity
up to 96.2%, sensitivity

up to 97.3%

Alrashdi, I.;
Alqazzaz, A.;

Aloufi, E.;
Alharthi, R.;
Zohdy, M.;

Ming, H. [21]

Detection of
DDoS attacks Bat Algorithm N-BaIoT Accuracy up to 90%

Krishna, E.S.;
Thangavelu, A. [22]

Detection of the
DDoS attacks Random Forest NSL-KDD, NBaIoT

Accuracy up to 99.98%,
precision up to 99.87%,

recall up to 100%,
and F-score up

to 99.73%

Mihoub, A.;
Fredj, O.B.;

Cheikhrouhou, O.;
Derhab, A.;

Krichen, M. [23]

Investigation of
DoS/DDoS attacks

detection for IoT
based on ML
algorithms

Looking-back-enabled
random forest IoT-Bot Accuracy up to 99.81%

Algorithms 2022, 15, 239 8 of 25

Table 1. Cont.

Authors Goal MLA Data Set Result

Khan, M.A.;
Khan Khattk, M.A.;
Latif, S.; Shah, A.A.;

Ur Rehman, M.;
Boulila, W.;

Ahmad, J. [24]

intrusion detection

Combined decision tree, naive
Bayes, random forest, and

K-Nearest Neighbors using a
voting-based technique

TON IoT

Accuracy up to 88%,
Precision up to 90%,

Recall up to 88%,
F-score of 88% for

DT-RF-NB based on
binary classification

with a combined
IoT dataset

Alharbi, A.;
Alosaimi, W.;
Alyami, H.;

Rauf, H.T. [25]

detection of
DDoS attacks Bat algorithm N-BaIoT Accuracy up to 90%

Saia, R.; Carta, S.;
Recupero, D.R. [27]

intrusion
events detection

Multilayer perceptron,
decision tree, adaptive

boosting, gradient boosting,
random forests

NSL-KDD

Better performance
compared to single

classifiers in terms of
specificity, without

significant degradation
in other aspects, since

there is little
degradation in terms of

mean F-score, but a
positive mean AUC

(compared to
competitor

approaches),
demonstrates the
effectiveness of
the approach

Abdulhammed, R.;
Musafer, H.;
Alessa, A.;

Faezipour, M.;
Abuzneid, A. [28]

developing the
features

dimensionality
reduction approaches

for machine
learning-based IDS

Bayesian network, random
forest, linear discriminant

analysis, quadratic
discriminant analysis

CICIDS2017

Reducing the feature
dimensions of a dataset
from 81 to 10, with high

accuracy of 99.6% in
both multi-class and
binary classification

Abdulhammed, R.;
Faezipour, M.;
Abuzneid, A.;

AbuMallouh, A. [29]

applying various
approaches for

handling imbalanced
datasets to design

effective IDS

Random forest, deep neural
networks, variational

autoencoder, voting, stacking
CIDDS-001 Attacks detection with

up to 99.99% accuracy

Carta, S.; Podda, A.S.;
Recupero, D.R.;

Saia, R. [30]

solving such
cybersecurity

problems, as the
difficulty of

distinguishing
illegitimate activities
from legitimate ones

Random forests, decision tree,
gradient boosting, adaptive

boosting, multilayer
perceptron

NSL-KDD,
CICIDS2017,
UNSW-NB15

Improving the
performance of the

state-of-the-art
canonical solutions

To summarize, there is a strong need to evolve new methods for cyberattack detec-
tion in the IoT infrastructure. To do this, we are to eliminate technique drawbacks and
increase the detection efficiency of detecting known and unknown cyberattacks in the IoT
infrastructure.

Algorithms 2022, 15, 239 9 of 25

3. Machine Learning Algorithms for Cyberattack Detection

The current study has involved five MLAs for IoT multi-vector cyberattack detections, as
they were mostly used in (recent) research for efficient object classification [15–17,20,22,30];
we relied on our own experience in MLA use for cyberattack detection [11]:

1. Decision tree (DT) [31,32];
2. Random forest (RF) [33–38];
3. K-Nearest Neighbor (KNN) [39];
4. Extreme Gradient Boosting (XGBoost) [40];
5. Support Vector Machine (SVM) [41–43].

4. IoT Multi-Vector Cyberattack Detection Based on Machine Learning Algorithms
4.1. Detection Steps

The approach for IoT cyberattack detection includes the following steps (Figure 1):

1. Traffic obtaining;
2. Grouping packets by type, source device, and time. Packets from each device are

grouped by type and by N records, according to the last connection time;
3. Feature extraction;
4. Feature classification based on the machine learning algorithm;
5. Result producing.

Algorithms 2022, 15, x FOR PEER REVIEW 12 of 27

Figure 1. IoT cyberattack detection scheme.

Figure 1. IoT cyberattack detection scheme.

Algorithms 2022, 15, 239 10 of 25

4.2. Features Description

An important task is to speed up the detection of attack traffic. Early detection of
attack traffic provides an opportunity to increase the security of the Internet of Things
infrastructure, as it prevents the further spread of malicious software compromising not
yet infected devices in the IoT infrastructure. Therefore, to speed up the detection of
cyberattacks in the infrastructure, four types of features are involved:

• Flow-based features;
• MQTT-based features;
• DNS-based features;
• HTTP-based features.

Using only flow-based features (Table 2) makes it possible to speed up the detection of
attacks on the network by faster extraction of features from streams and their analyses. In
the case of suspicious traffic behavior that cannot be unambiguously classified as an attack,
an in-depth traffic analysis is applied with the MQTT-based (Table 3), DNS-based (Table 4),
and HTTP-based (Table 5) feature extractions.

Table 2. Flow-based features.

Features Designation Value Description

1 f1 Protocol type
2 f2 Source IP address
3 f3 Destination IP address
4 f4 Source port
5 f5 Destination port
6 f6 Last connection time
7 f7 Transaction bytes from f2 to f3
8 f8 Transaction bytes from f3 to f2
9 f9 Mean packet size transmitted by f2
10 f10 Mean packet size transmitted by f3
11 f11 Source bits per second
12 f12 TTL value, f2 to f3
13 f13 TTL value, f3 to f2
14 f14 Interpacket interval
15 f15 Bandwidth
16 f16 Packet jitter

Table 3. MQTT-based features.

Features Designation Value Description

1 f18 The amount of connections to f3 in N gathered records according to f6
2 f19 The amount of connections of f2 in N gathered records according to f6
3 f20 The amount of connections of f2 and f5 in N gathered records according to f6
4 f21 The amount of connections to f3 and f4 in N gathered records according to f6
5 f22 The amount of connections of f2 and f3 in N gathered records according to f6

Table 4. HTTP-based features.

Features Designation Value Description

1 f48 HTTP request method (GET, POST, HEAD)
2 f49 HOST header value
3 f50 Length of the HOST header value
4 f51 URL in the request
5 f52 Length of URL
6 f53 HTTP pipelining depth
7 f54 Uncompressed size of the transferred data from the client

Algorithms 2022, 15, 239 11 of 25

Table 4. Cont.

Features Designation Value Description

8 f55 Uncompressed size of the transferred data from the server
9 f56 Percentage of f48 with the same f49 in N records according to f6
10 f57 Percentage of the f49 the with same the f51 in N records according to f6
11 f58 Percentage of f48 with the same f51 in N records according to f6

Table 5. DNS-based features.

Features Designation Value Description

1 f23 Requested domain name
2 f24 Value specifying the request type
3 f25 Length of f23
4 f26 Amount of unique characters in f23
5 f27 Entropy of f23

6 f28
TTL-period, mode (the value that appears most often in a set of data), in N records

according to f6

7 f29
TTL-period, median (the numerical value separating the higher half of a data sample

from the lower half), in N records according to f6
8 f30 TTL-period, average value, in N records according to f6

9 f31
Amount of A-records corresponding to f23 in the incoming DNS messages (the feature

is used if value f31 > 1), in N records according to f6

10 f32
Amount of IP addresses concerned with f23 (feature is used if value f31 = 1), in N

records according to f6

11 f33
Average distance between the IP addresses concerned with f23 (feature is used if value

f31 = 1), in N records according to f6

12 f34
Average distance between the IP addresses in the set of A-records for f23 in the

incoming DNS message (feature is used if value f31 > 1), in N records according to f6

13 f35
Amount of unique IP addresses in sets of A-records corresponding to f23 in the DNS

messages (feature is used if value f31 > 1), in N records according to f6

14 f36
Average distance between unique IP addresses in sets of A-records corresponding to
f23 in the DNS messages (feature is used if value f31 > 1), in N records according to f6

15 f37
Domain name amounts that share IP addresses corresponding to f23, in N records

according to f6

16 f38

Sign of the usage of uncommon types of DNS records, or DNS records that are not
commonly used by a typical client (e.g., TXT are most often used for tunneling

(excluding mail servers), KEY, or NULL)

17 f39
The entropy of the DNS records, which are contained in the DNS messages (CNAME,

TXT, NS, MX, KEY, NULL, etc.)
18 f40 Maximum size of the DNS messages about f23, in N records according to f6

19 f41
Sign of success of DNS query (f41 = 0 if DNS query failed, and f41 = 1 if DNS query

was successful)
20 f42 Answer length
21 f43 Mean class value in N records according to f6
22 f44 Mean type value in N records according to f6
23 f45 Amount of f2 and f23 in N records according to f6
24 f46 Amount of f23 to the same f2 in N records according to f6
25 f47 Percentage of the domain in N records according to f6

This section presents the involvement of four feature types for multi-vector cyberattack
detection in the IoT infrastructure. The features based on flow analysis enable the possibility
of speeding up attack detections through faster analyses and make the detection algorithm
scalable, allowing us to analyze high-bandwidth IoT traffic. On the other hand, the features
based on deep packet analyses enable us to improve the accuracy of detection in cases
where the use of a sign based on flow analysis does not provide an unambiguous answer
about the presence of a cyberattack (and also allows detecting the multi-vector attacks).

Algorithms 2022, 15, 239 12 of 25

5. Experiments
5.1. Evaluation Setting

To conduct the experiments, a Wi-Fi network of IoT devices was created. A Raspberry
Pi 3 was configured as a middlebox, which acted as a Wi-Fi access point. To simulate DoS
attacks as a source of malicious traffic, a computer system with a virtual Kali Linux was
used. As a victim of DoS attacks, Raspberry Pi 2 with an installed Apache web server was
used. All devices were connected to create a Wi-Fi network access point.

Three IoT devices (router, thermostat, camcorder) were also connected to the Wi-Fi
network. To obtain normal traffic, a simulation of user interactions with the devices of
the created IoT network was performed. To do this, actions such as transmitting video
from the camera and installing software updates on connected IoT devices were performed.
To obtain malicious traffic, a simulation of performing the most common classes of DoS
attacks was executed.

An HTTP GET flood attack was simulated with the Goldeneye tool [44]; TCP SYN and
UDP flood were simulated with Kali Linux hping3 utility [45]. The iodine utility was used
to perform DNS tunneling attacks [46].

Malicious/benign traffic was collected at the Wi-Fi access point. The IoT traffic
collection was executed via the Zeek tool [47]. It gives capacities to the network intrusion
detection systems (IDS) and empowers security operation centers (SOC). The Zeek tool
was used as a network traffic analyzer with an in-built classification engine.

In the collected DoS traffic samples, the source IP addresses and MAC addresses
were substituted for the IP addresses and MAC addresses of the devices of the created IoT
network. The time of sending malicious packets was modified so that the total collected
IoT traffic replicated the activity of the attacking and normal activity devices.

Thus, the execution of DoS attacks of different types by each IoT device was simulated.

5.2. Dataset Description

To hold the experiments, the traffic generated by Mirai, Gafgyt, Dark Nexus botnets,
UCI Machine Learning Repository, DS2OS, Bot-IoT, N-BaIoT, CIDDS, UNSW-NB15, and
NSL-KDD traffic datasets [48–54] were used.

The DS2OS dataset contains traces gathered from the application layer of the IoT
environment from devices such as movement sensors, light controllers, thermometers,
batteries, thermostats, smart doors, etc. This dataset can be used to assess anomaly-based
attack detection algorithms.

The UNSW-NB15 dataset contains data on nine types of attacks, such as Fuzzers,
Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. A
total of 49 features were extracted to describe these types of attacks.

The N_BaIoT dataset offers real-world IoT traffic data collected from nine IoT devices
infected by Mirai and BASHLITE. Malicious data are divided into 10 attacks as well as
harmless data (with 115 different features).

The Kitsune Network Attack Dataset contains nine network capture datasets in total
that relate to different types of attack traffic against the IoT Infrastructure.

The BoT-IoT dataset was created by deploying a realistic IoT infrastructure network
environment and it includes legitimate IoT network traffic as well as various types of
attacks. The BoT-IoT includes DDoS and DoS for different protocols, OS scan, service scan,
data exfiltration, and keylogging attacks.

The CIDDS and NSL-KDD datasets are built on network intrusion data describing
“bad” connections, which are called intrusions (or attacks) and “good” connections (le-
gitimate connections). These databases describe a wide range of intrusions and take into
account user behavior scenarios.

Furthermore, experiments dealt with the set of traffic features presented in the above-
mentioned datasets for three IoT devices: router, thermostat, and camcorder that were
infected by Mirai, Gafgyt, and Dark Nexus botnets. The set of traffic features corresponds
to four types of attacks (TCP, UDP, HTTP GET, and DNS tunneling).

Algorithms 2022, 15, 239 13 of 25

As each dataset contains different samples and features, the preprocessing and feature
selection processes were executed via each file type analysis and their parsing into the
needed presentation for the next preprocessing. Such files as .csv, .pcap, Argus files, Zeek
files, and .txt were processed.

Mirai is well-known malware that is able to infect an IoT device and turn such a smart
device into a remotely-controlled network of bots—a botnet. The main negative impact
of Mirai is the ability to launch massive DDoS attacks, as well as the ability to scan the
internet for IoT smart devices based on the ARC processor. Such vulnerability as the usage
of a stripped-down Linux version makes it possible to perform the logging into the device
and execute malicious actions. In addition, the Mirai botnet uses a great amount of hijacked
IoT devices to increase its spread and it is very dangerous for its mutating [55].

Gafgyt is a botnet that uses the vulnerabilities of IoT devices. It employs infected de-
vices for large-scale (DDoS) attack execution. Moreover, Gafgyt uses known vulnerabilities
(e.g., CVE-2017-17215, CVE-2018-10561) to implement the downloading of the next-stage
payloads to compromised devices. New versions of the Gafgyt botnet include Mirai-based
components to perform DDoS attacks; HTTP flooding to send a great number of HTTP
requests to server targets to overwhelm them; UDP flooding to send special UDP packets
to server victims to exhaust them; TCP flood attacks; STD attacks to send a random string
to a specified IP address [56].

Dark Nexus is an IoT botnet that launches DDoS attacks. It was designed to launch
credential stuffing attacks against different kinds of IoT devices (video recorders; DLink,
Dasan Zhone, ASUS routers, thermal cameras, etc.) [57].

5.3. Training and Testing

The proposed approach involves five ML algorithms (decision tree, random forest,
K-nearest neighbor, extreme gradient boosting, and support vector machine) to compare
their detection possibilities. All algorithms were trained and tested using the dataset with
training and testing percentages of 75% and 25%.

The BotGRABBER framework uses the scikit-learn library–an open-source platform
for MLA in Python [58]. The configuration of each used MLA relies on the appropriate set
of algorithm parameters. The optimal used values of algorithm parameters are presented
in Tables 6–10 [59–63].

Table 6. Decision tree algorithm parameters [59].

Parameter Value Description

criterion gini The function to measure the quality of a split.
splitter best The strategy used to choose the split at each node.

max_depth None The maximum depth of the tree.
min_samples_split 3 The minimum number of samples required to split an internal node.
min_samples_leaf 1 The minimum number of samples required to be at a leaf node.

min_weight_fraction_leaf 0.0 The minimum weighted fraction of the sum total of weights (of all the
input samples) required to be at a leaf node.

max_features auto The number of features to consider when looking for the best split.
random_state RandomState instance Controls the randomness of the estimator.
class_weight balanced Weights associated with classes.

ccp_alpha 0.0 Complexity parameter used for minimal cost complexity pruning.

Table 7. Random forest algorithm parameters [60].

Parameter Value Description

n_estimators 100 The number of trees in the forest.
criterion gini The function to measure the quality of a split.

max_depth None The maximum depth of the tree.
min_samples_split 2 The minimum number of samples required to split an internal node.

Algorithms 2022, 15, 239 14 of 25

Table 7. Cont.

Parameter Value Description

min_samples_lea 1 The minimum number of samples required to be at a leaf node.
min_weight_fraction_leaf 0.0 The minimum weighted fraction of the sum total of weights.

max_features log2 The number of features to consider when looking for the best split.
class_weight balanced Weights associated with classes.

ccp_alpha 0.0 Complexity parameter used for minimal cost complexity pruning.

Table 8. K-Nearest Neighbor algorithm parameters [61].

Parameter Value Description

n_neighbors 5 Number of neighbors.
weights distance Weight function used in prediction.

algorithm kd_tree The algorithm used to compute the nearest neighbors.
leaf_size 30 Leaf size passed to KDTree.

p 2 Power parameter for the Minkowski metric.
metric str The distance metric to use for the tree.

metric_params dict The number of parallel jobs to run for the neighbors’ search.

Table 9. Extreme gradient boosting algorithm parameters [62].

Parameter Value Description

loss exponential The loss function to be optimized.
learning_rate 0.1 Learning rate shrinks the contribution of each tree.
n_estimators 100 The number of boosting stages to perform.

subsample 1.0 The fraction of samples to be used for fitting the individual base
learners.

criterion squared_error The function to measure the quality of a split.
min_samples_split 2 The minimum number of samples required to split an internal node.

min_weight_fraction_leaf 0.0 The minimum weighted fraction of the sum total of weights (of all the
input samples) required to be at a leaf node.

max_depth 3 The maximum depth of the individual regression estimator.

random_state RandomState instance Controls the random seed given to each tree estimator at each boosting
iteration.

max_features None The number of features to consider when looking for the best split.
max_leaf_nodes None Grow trees with max_leaf_nodes in the best-first fashion.

validation_fraction 0.1 The proportion of training data to set aside as the validation set for
early stopping.

n_iter_no_change None The decision as to whether early stopping will be used to terminate
training when the validation score does not improve.

tol 1 × 103 Tolerance for the early stopping.
ccp_alpha 0.0 Complexity parameter used for minimal cost complexity pruning.

Table 10. Support vector machine parameters [63].

Parameter Value Description

C 1.0 Regularization parameter.
kernel rbf Specifies the kernel type to be used in the algorithm.

gamma auto Kernel coefficient.
tol 1 × 103 Tolerance for stopping criterion.

cache_size 100 Specify the size of the kernel cache (in MB).
max_iter −1 Hard limit on iterations (no limit).

random_state RandomState instance Controls the pseudo-random number generation to shuffle the data for
probability estimates.

Algorithms 2022, 15, 239 15 of 25

5.4. Implementation Platform

To perform the feature extraction, the feature classification based on the machine
learning algorithm, as well as the result of production, the BotGRABBER framework was
employed. It is a multi-vector protection system that can perform network and host activity
analyses. The BotGRABBER framework presents the tool, not only for botnet detection
but also to produce the needed security scenario of the network reconfiguration according
to the type of cyberattack performed by the detected botnet [11,13,43]. The mentioned
tool includes several units aimed at traffic collection, packet processing, feature extraction,
feature classification based on machine learning algorithms, and producing results. The
feature classification unit of the framework is based on the scikit-learn library usage. It is a
free software ML library for the Python programming language [58].

5.5. Results

Experimental results are presented in Tables 11–19.
As examples, comparisons of the different MLA efficiencies for Router/Mirai botnet

detection (TCP attack, UDP attack, HTTP GET attack, and DNS tunneling) are presented in
Figures 2–4.

As examples, comparisons of the different MLA efficiencies for Router/Mirai botnet
detection (TCP attack, UDP attack, HTTP GET attack, and DNS tunneling) are presented in
Figures 2–4.

Table 11. Classification results (router—Mirai).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Router/
Mirai

TCP

RF 0.999479 3620 2 4 2024 0.9994748 0.999896 0.999572 0.999615
DT 0.998584 3612 3 5 2030 0.99917 0.998618 0.998894 0.998994

kNN 0.999469 3603 1 2 2044 0.999723 0.999445 0.999584 0.999692
XGBoost 0.998938 3562 5 1 2082 0.998598 0.999719 0.999158 0.999573

SVM 0.996991 3544 6 11 2089 0.99831 0.996906 0.997607 0.997881

UDP

RF 0.999767 7531 5 2 2012 0.999937 0.999835 0.999935 0.999841
DT 0.999267 7515 4 3 2028 0.999468 0.999601 0.999534 0.99975

kNN 0.999476 7470 2 3 2075 0.999732 0.999599 0.999665 0.999821
XGBoost 0.999686 7465 1 2 2082 0.999866 0.999732 0.999799 0.999827

SVM 0.998534 7455 10 17 2068 0.998678 0.998678 0.998678 0.999174

HTTP
GET

RF 0.999694 6434 3 3 2060 0.999834 0.999734 0.999734 0.999839
DT 0.999412 6419 1 4 2076 0.999844 0.999377 0.999611 0.999793

kNN 0.999412 6387 1 4 2108 0.999843 0.999374 0.999609 0.999458
XGBoost 0.999529 6340 2 2 2156 0.999685 0.999685 0.999685 0.999671

SVM 0.997412 6381 5 14 2100 0.998636 0.99637 0.997502 0.999051

DNS
tunneling

RF 0.999624 5978 3 4 2005 0.999798 0.999731 0.999615 0.999944
DT 0.999249 5935 2 4 2049 0.999663 0.999326 0.999495 0.999928

kNN 0.999374 5920 3 2 2065 0.999493 0.999662 0.999578 0.999632
XGBoost 0.998999 5903 5 3 2079 0.999154 0.999492 0.999323 0.999186

SVM 0.997247 5899 5 14 2072 0.998649 0.99542 0.997032 0.997547

Algorithms 2022, 15, 239 16 of 25

Table 12. Classification results (router—Gafgyt).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Router/
Gafgyt

TCP

RF 0.999714 11984 2 2 2002 0.999833 0.999833 0.999833 0.999835
DT 0.999571 11963 2 4 2021 0.999833 0.999666 0.999749 0.999757

kNN 0.999357 11917 4 5 2064 0.999664 0.999581 0.999623 0.999792
XGBoost 0.999643 11881 3 2 2104 0.999748 0.999832 0.99979 0.999734

SVM 0.998713 11888 7 11 2084 0.999412 0.999076 0.999244 0.999523

UDP

RF 0.999738 4498 2 1 1999 0.999656 0.999878 0.999667 0.999882
DT 0.999077 4453 4 2 2041 0.999103 0.999551 0.999327 0.99947

kNN 0.999385 4430 3 1 2066 0.999323 0.999774 0.999549 0.999648
XGBOOST 0.999077 4391 5 1 2103 0.998863 0.999772 0.999317 0.999712

SVM 0.998308 4433 6 9 4433 0.999056 0.998867 0.998961 0.998861

HTTP
GET

RF 0.999784 21082 2 3 2013 0.999905 0.999858 0.999881 0.999913
DT 0.99987 21034 1 2 2063 0.999952 0.999905 0.999929 0.999912

kNN 0.999697 20997 2 5 2096 0.999905 0.999762 0.999833 0.999971
XGBoost 0.999827 20990 1 3 2106 0.999952 0.999857 0.999905 0.999845

SVM 0.998961 20986 6 17 18684 0.998409 0.996144 0.997275 0.999221

DNS
tunneling

RF 0.999846 3191 2 4 2003 0.999674 0.999748 0.999561 0.999783
DT 0.998269 3153 5 4 2038 0.998417 0.998733 0.998575 0.999548

kNN 0.998654 3115 2 5 2078 0.999358 0.998397 0.998878 0.999539
XGBoost 0.999615 3074 1 1 2124 0.999675 0.999675 0.999675 0.999882

SVM 0.996154 3121 10 11 1485 0.998919 0.995688 0.997301 0.997861

Table 13. Classification results (router—Dark Nexus).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Router/
Dark
nexus

TCP

RF 0.999333 5490 4 1 2005 0.999272 0.999818 0.999545 0.999691
DT 0.9992 5472 5 1 2022 0.999087 0.999817 0.999452 0.999982

kNN 0.998933 5455 3 5 2037 0.99945 0.999084 0.999267 0.999836
XGBOOST 0.9992 5417 2 4 2077 0.999631 0.999262 0.999446 0.999285

SVM 0.9976 5394 9 9 2088 0.998334 0.998334 0.998334 0.999444

UDP

RF 0.999344 10196 5 3 1996 0.99951 0.999706 0.999608 0.999488
DT 0.999672 10171 1 3 2025 0.999902 0.999705 0.999803 0.999932

kNN 0.999426 10146 3 4 2047 0.999704 0.999606 0.999655 0.999835
XGBOOST 0.999426 10120 2 5 2073 0.999802 0.999506 0.999654 0.999844

SVM 0.998279 10137 7 9 10137 0.998301 0.997736 0.998019 0.998421

HTTP
GET

RF 0.999771 19767 2 3 2018 0.999899 0.999848 0.999874 0.999853
DT 0.999725 19746 3 3 2038 0.999848 0.999848 0.999848 0.999995

kNN 0.999679 19716 2 5 2067 0.999899 0.999746 0.999823 0.999931
XGBOOST 0.999771 19666 1 4 2119 0.999949 0.999797 0.999873 0.999794

SVM 0.99899 19665 4 18 19665 0.99909 0.995918 0.997502 0.999452

DNS
tunneling

RF 0.999298 9351 3 5 2041 0.999679 0.999466 0.999572 0.999457
DT 0.999474 9301 4 2 2093 0.99957 0.999785 0.999678 0.999974

kNN 0.999737 9285 2 1 2112 0.999785 0.999892 0.999838 0.999859
XGBOOST 0.999386 9243 5 2 2150 0.999459 0.999784 0.999621 0.999482

SVM 0.997895 9302 7 10 9302 0.998109 0.99542 0.996763 0.998561

Algorithms 2022, 15, 239 17 of 25

Table 14. Classification results (thermostat—Mirai).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Thermostat/
Mirai

TCP

RF 0.999938 3623 1 5 2021 0.999724 0.999622 0.999773 0.999913
DT 0.998938 3618 1 5 2026 0.999724 0.99862 0.999171 0.999446

kNN 0.998938 3569 5 1 2075 0.998601 0.99972 0.99916 0.999017
XGBOOST 0.999646 3528 1 1 2120 0.999717 0.999717 0.999717 0.999923

SVM 0.996106 3535 5 17 2093 0.998588 0.995214 0.996898 0.999678

UDP

RF 0.999986 7495 2 1 2052 0.999933 0.999897 0.9999 0.999865
DT 0.999791 7451 1 1 2097 0.999866 0.999866 0.999866 0.999834

kNN 0.999372 7446 1 5 2098 0.999866 0.999329 0.999597 0.999701
XGBOOST 0.999476 7407 1 4 2138 0.999865 0.99946 0.999663 0.999991

SVM 0.997906 7446 3 10 7446 0.999056 0.997172 0.998113 0.999816

HTTP
GET

RF 0.999859 6438 4 4 2054 0.999879 0.999779 0.999779 0.999861
DT 0.999529 6391 2 2 2105 0.999687 0.999687 0.999687 0.999722

kNN 0.999412 6369 4 1 2126 0.999372 0.999843 0.999608 0.999893
XGBOOST 0.999294 6343 5 1 2151 0.999212 0.999842 0.999527 0.999791

SVM 0.997176 6402 9 10 6402 0.998409 0.996144 0.997275 0.999465

DNS
tunneling

RF 0.999649 5976 1 5 2008 0.999833 0.999864 0.999498 0.999692
DT 0.998874 5967 4 5 2014 0.99933 0.999163 0.999246 0.999617

kNN 0.999249 5925 3 3 2059 0.999494 0.999494 0.999494 0.999828
XGBOOST 0.999374 5876 4 1 2109 0.99932 0.99983 0.999575 0.999422

SVM 0.996996 5890 10 15 5890 0.998379 0.995152 0.996763 0.998059

Table 15. Classification results (thermostat—Gafgyt).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Thermostat/
Gafgyt

TCP

RF 0.999943 11973 3 2 2012 0.999849 0.999833 0.999891 0.999954
DT 0.999714 11942 2 2 2044 0.999833 0.999833 0.999833 0.999876

kNN 0.999571 11919 2 4 2065 0.999832 0.999665 0.999748 0.999744
XGBOOST 0.999786 11903 1 2 2084 0.999916 0.999832 0.999874 0.999962

SVM 0.99857 11885 7 13 2085 0.999411 0.998907 0.999159 0.998787

UDP

RF 0.999815 4494 4 5 1997 0.999811 0.999889 0.999993 0.999972
DT 0.998923 4459 2 5 2034 0.999552 0.99888 0.999216 0.998947

kNN 0.999538 4435 2 1 2062 0.999549 0.999775 0.999662 0.999642
XGBOOST 0.998923 4400 3 4 2093 0.999319 0.999092 0.999205 0.999741

SVM 0.996769 4420 6 12 4420 0.99849 0.997548 0.998019 0.998866

HTTP
GET

RF 0.999784 21087 3 2 2008 0.999858 0.999905 0.999881 0.999862
DT 0.99961 21042 4 5 2049 0.99981 0.999762 0.999786 0.999649

kNN 0.99974 21025 1 5 2069 0.999952 0.999762 0.999857 0.999824
XGBOOST 0.99974 20983 1 5 2111 0.999952 0.999762 0.999857 0.999743

SVM 0.999351 20992 8 10 20992 0.998409 0.998182 0.998295 0.999371

DNS
tunneling

RF 0.999931 3187 3 1 2009 0.99976 0.999886 0.999773 0.999842
DT 0.999231 3170 2 2 2026 0.999369 0.999369 0.999369 0.999636

kNN 0.999231 3125 1 3 2071 0.99968 0.999041 0.99936 0.999325
XGBOOST 0.998654 3084 2 5 2109 0.999352 0.998381 0.998866 0.998948

SVM 0.995962 3137 7 9 3137 0.998649 0.995688 0.997166 0.998563

Algorithms 2022, 15, 239 18 of 25

Table 16. Classification results (thermostat—Dark Nexus).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Thermostat/
Dark nexus

TCP

RF 0.999067 5484 5 2 2009 0.999889 0.999735 0.999862 0.999807
DT 0.999333 5457 4 1 2038 0.999268 0.999817 0.999542 0.999866

kNN 0.999067 5440 2 5 2053 0.999632 0.999082 0.999357 0.999787
XGBOOST 0.9988 5409 4 5 2082 0.999261 0.999076 0.999169 0.999392

SVM 0.9972 5386 9 12 2093 0.998332 0.997777 0.998054 0.998168

UDP

RF 0.99988 10188 5 5 2002 0.99988 0.99988 0.99988 0.99988
DT 0.999344 10146 3 5 2046 0.999704 0.999507 0.999606 0.999544

kNN 0.999262 10140 5 4 2051 0.999507 0.999606 0.999556 0.999830
XGBOOST 0.999344 10130 5 3 2062 0.999507 0.999704 0.999605 0.999510

SVM 0.998033 10073 3 16 10073 0.99849 0.996984 0.997736 0.998590

HTTP
GET

RF 0.999633 19765 3 5 2017 0.999848 0.999747 0.999798 0.999937
DT 0.999541 19730 5 5 2050 0.999747 0.999747 0.999747 0.999730

kNN 0.999725 19716 2 4 2068 0.999899 0.999797 0.999848 0.999950
XGBOOST 0.999679 19680 3 4 2103 0.999848 0.999797 0.999822 0.999980

SVM 0.999082 19644 4 13 19644 0.998182 0.997275 0.997728 0.999110

DNS
tunneling

RF 0.999649 9381 3 1 2015 0.99968 0.999893 0.999787 0.999683
DT 0.999737 9345 1 2 2052 0.999893 0.999786 0.99984 0.999960

kNN 0.999211 9335 4 5 2056 0.999572 0.999465 0.999518 0.999830
XGBOOST 0.999561 9305 3 2 2090 0.999678 0.999785 0.999731 0.999730

SVM 0.998421 9339 4 13 2044 0.998379 0.996763 0.99757 0.999860

Table 17. Classification results (camcorder—Mirai).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Camcorder/
Mirai

TCP

RF 0.999292 3639 2 2 2007 0.999451 0.999451 0.999451 0.99907
DT 0.998584 3623 4 4 2019 0.998897 0.998897 0.998897 0.999863

kNN 0.999646 3598 1 1 2050 0.999722 0.999722 0.999722 0.999781
XGBOOST 0.998938 3592 3 3 2052 0.999166 0.999166 0.999166 0.999396

SVM 0.996106 3560 8 14 2068 0.997758 0.996083 0.99692 0.998166

UDP

RF 0.999872 7545 2 4 1999 0.999835 0.99987 0.999603 0.99983
DT 0.999267 7497 5 2 2046 0.999334 0.999733 0.999533 0.999701

kNN 0.998953 7451 5 5 2089 0.999329 0.999329 0.999329 0.999833
XGBOOST 0.999581 7444 1 3 2102 0.999866 0.999597 0.999731 0.999515

SVM 0.997592 7412 6 9 7412 0.998867 0.996796 0.99783 0.998597

HTTP
GET

RF 0.999529 6479 2 2 2017 0.999691 0.999691 0.999691 0.99993
DT 0.999412 6461 2 3 2034 0.999691 0.999536 0.999613 0.999737

kNN 0.999412 6437 3 2 2058 0.999534 0.999689 0.999612 0.999959
XGBOOST 0.999412 6421 2 3 2074 0.999689 0.999533 0.999611 0.999982

SVM 0.998353 6405 7 10 6405 0.998409 0.998409 0.998409 0.999113

DNS
tunneling

RF 0.999249 5978 4 2 2006 0.999331 0.999666 0.999498 0.99968
DT 0.998999 5959 4 4 2023 0.999329 0.999329 0.999329 0.999963

kNN 0.999124 5942 4 3 2041 0.999327 0.999495 0.999411 0.999832
XGBOOST 0.998874 5914 5 4 2067 0.999155 0.999324 0.99924 0.999737

SVM 0.997121 5914 5 8 5914 0.99757 0.996225 0.996897 0.999861

Algorithms 2022, 15, 239 19 of 25

Table 18. Classification results (camcorder—Gafgyt).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Camcorder/
Gafgyt

TCP

RF 0.999971 11981 5 1 2003 0.999983 0.999917 0.99985 0.999889
DT 0.999643 11941 1 4 2044 0.999916 0.999665 0.999791 0.999486

kNN 0.999571 11924 5 1 2060 0.999581 0.999916 0.999748 0.999991
XGBOOST 0.999571 11916 3 3 2068 0.999748 0.999748 0.999748 0.999364

SVM 0.998713 11920 10 8 2052 0.999162 0.999329 0.999246 0.999484

UDP

RF 0.999923 4496 4 3 1997 0.999811 0.999833 0.999822 0.999913
DT 0.998615 4465 5 4 2026 0.998881 0.999105 0.998993 0.999888

kNN 0.999077 4430 1 5 2064 0.999774 0.998873 0.999323 0.999442
XGBOOST 0.999231 4387 2 3 2108 0.999544 0.999317 0.99943 0.999591

SVM 0.997231 4365 8 11 1193 0.998301 0.998301 0.998301 0.997732

HTTP
GET

RF 0.99974 21056 3 3 2038 0.999858 0.999858 0.999858 0.999965
DT 0.999827 21049 1 3 2047 0.999952 0.999857 0.999905 0.999425

kNN 0.999784 21006 4 1 2089 0.99981 0.999952 0.999881 0.999628
XGBOOST 0.99974 20958 5 1 2136 0.999761 0.999952 0.999857 0.999901

SVM 0.999091 21005 8 20 21005 0.998636 0.996596 0.997615 0.999821

DNS
tunneling

RF 0.999038 3182 4 1 2013 0.999745 0.999686 0.999215 0.999491
DT 0.998077 3176 5 5 2014 0.998428 0.998428 0.998428 0.999020

kNN 0.998846 3165 2 4 2029 0.999368 0.998738 0.999053 0.999290
XGBOOST 0.998462 3160 4 4 2032 0.998736 0.998736 0.998736 0.999390

SVM 0.996923 3123 5 9 3123 0.998379 0.997301 0.99784 0.997460

Table 19. Classification results (camcorder—Dark Nexus).

Device/
Botnet Attack Algorithm Accuracy TP FP FN TN Precision Recall F1 Score AUC

Camcorder/
Dark

Nexus

TCP

RF 0.999722 5423 5 1 2071 0.999779 0.999816 0.999747 0.99986
DT 0.998933 5403 3 5 2089 0.999445 0.999075 0.99926 0.999869

kNN 0.9988 5378 4 5 2113 0.999257 0.999071 0.999164 0.999911
EGB 0.9992 5359 1 5 2135 0.999813 0.999068 0.999441 0.999932
SVM 0.997867 5336 10 6 2148 0.998129 0.998877 0.998503 0.999542

UDP

RF 0.999918 10187 5 5 2003 0.999809 0.999839 0.999851 0.999861
DT 0.99959 10139 4 1 2056 0.999606 0.999901 0.999753 0.998747

kNN 0.999426 10132 4 3 2061 0.999605 0.999704 0.999655 0.999406
EGB 0.999262 10124 4 5 2067 0.999605 0.999506 0.999556 0.999904
SVM 0.998115 10105 7 16 2072 0.999308 0.998419 0.998863 0.999489

HTTP
GET

RF 0.999633 19769 3 5 2013 0.999848 0.999747 0.999798 0.999851
DT 0.999587 19733 5 4 2048 0.999747 0.999797 0.999772 0.999996

kNN 0.999862 19726 1 2 2061 0.999949 0.999899 0.999924 0.999952
EGB 0.999633 19709 4 4 2073 0.999797 0.999797 0.999797 0.999766
SVM 0.999036 19704 8 13 2065 0.999594 0.999341 0.999467 0.999123

DNS
tunneling

RF 0.999474 9385 4 2 2009 0.999574 0.999787 0.99968 0.999921
DT 0.999386 9344 5 2 2049 0.999465 0.999786 0.999626 0.998696

kNN 0.999649 9318 3 1 2078 0.999678 0.999893 0.999785 0.999282
EGB 0.999386 9305 2 5 2088 0.999785 0.999463 0.999624 0.999645
SVM 0.998421 9317 8 10 2065 0.999142 0.998928 0.999035 0.998664

Algorithms 2022, 15, 239 20 of 25

Algorithms 2022, 15, x FOR PEER REVIEW 22 of 27

DT 0.999587 19733 5 4 2048 0.999747 0.999797 0.999772 0.999996
kNN 0.999862 19726 1 2 2061 0.999949 0.999899 0.999924 0.999952
EGB 0.999633 19709 4 4 2073 0.999797 0.999797 0.999797 0.999766
SVM 0.999036 19704 8 13 2065 0.999594 0.999341 0.999467 0.999123

DNS tunneling

RF 0.999474 9385 4 2 2009 0.999574 0.999787 0.99968 0.999921
DT 0.999386 9344 5 2 2049 0.999465 0.999786 0.999626 0.998696

kNN 0.999649 9318 3 1 2078 0.999678 0.999893 0.999785 0.999282
EGB 0.999386 9305 2 5 2088 0.999785 0.999463 0.999624 0.999645
SVM 0.998421 9317 8 10 2065 0.999142 0.998928 0.999035 0.998664

As examples, comparisons of the different MLA efficiencies for Router/Mirai botnet
detection (TCP attack, UDP attack, HTTP GET attack, and DNS tunneling) are presented
in Figures 2–4.

In this study, the highest level of detection was shown by the random forest
algorithm. However, the type of IoT device that was the source of the attack traffic did not
affect the level of attack detection in any way.

The combination of proposed features based on flow analysis and a deeper traffic
analysis that took into account the IoT protocol features provided good detection levels of
the multi-vector attacks on the IoT infrastructure performed by different types of botnets.

(a) (b)

(c) (d)

Figure 2. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-
nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM)
for Router/Mirai botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS
tunneling.

Figure 2. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-
nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for
Router/Mirai botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

Algorithms 2022, 15, x FOR PEER REVIEW 23 of 27

(a) (b)

(c) (d)

Figure 3. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-
nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM)
for Router/Gafgyt botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS
tunneling.

(a) (b)

Figure 3. Cont.

Algorithms 2022, 15, 239 21 of 25

Algorithms 2022, 15, x FOR PEER REVIEW 23 of 27

(a) (b)

(c) (d)

Figure 3. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-
nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM)
for Router/Gafgyt botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS
tunneling.

(a) (b)

Figure 3. Comparison of different MLA efficiencies (decision tree—DT, random forest—RF, K-
nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for
Router/Gafgyt botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

Algorithms 2022, 15, x FOR PEER REVIEW 22 of 25

(a) (b)

(c) (d)

Figure 4. Comparison for different MLA efficiencies (decision tree—DT, random forest—RF, K-

nearest neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM)

for Router/Dark Nexus botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d)

DNS tunneling.

6. Conclusions and Future Work

A flow-based traffic analysis allows detecting malicious behavior without the need

for an in-depth packet analysis. Meanwhile, a packet content analysis provides an oppor-

tunity to decide whether the intercepted traffic belongs to the attack traffic or normal traf-

fic in cases where the flow-based analysis does not give an unambiguous result. Attempt-

ing to cover features (as many as possible) that indicate the presence of attacks in the In-

ternet of Things infrastructure has its weaknesses. Such an approach requires some time

to analyze in-depth, and it is poorly scalable.

The main experiment results concerning MLA involvement showed that SVM

demonstrated the worst results, while the RF algorithm demonstrated the best results.

In addition, the involvement of different IoT multi-vector cyberattack features based

on flow analysis and features based on the most commonly used IoT protocols caused the

detection of TCP, UDP, HTTP GET, and DNS tunneling attacks approximately at the same

level.

In this paper, we reviewed the known approaches to detect attacks on the Internet of

Things infrastructure based on machine learning and investigated their effectiveness. We

investigated the possibility of detecting traffic attacks on the Internet of Things infrastruc-

ture based on flow analysis and the most commonly used IoT protocols, such as HTTP,

MQTT, and DNS.

Figure 4. Comparison for different MLA efficiencies (decision tree—DT, random forest—RF, K-nearest
neighbor—KNN, extreme gradient boosting—XGBoost, support vector machine—SVM) for Router/Dark
Nexus botnet detection: (a) TCP attack; (b) UDP attack; (c) HTTP GET attack; (d) DNS tunneling.

6. Conclusions and Future Work

A flow-based traffic analysis allows detecting malicious behavior without the need for
an in-depth packet analysis. Meanwhile, a packet content analysis provides an opportunity
to decide whether the intercepted traffic belongs to the attack traffic or normal traffic in
cases where the flow-based analysis does not give an unambiguous result. Attempting to

Algorithms 2022, 15, 239 22 of 25

cover features (as many as possible) that indicate the presence of attacks in the Internet of
Things infrastructure has its weaknesses. Such an approach requires some time to analyze
in-depth, and it is poorly scalable.

The main experiment results concerning MLA involvement showed that SVM demon-
strated the worst results, while the RF algorithm demonstrated the best results.

In addition, the involvement of different IoT multi-vector cyberattack features based
on flow analysis and features based on the most commonly used IoT protocols caused
the detection of TCP, UDP, HTTP GET, and DNS tunneling attacks approximately at the
same level.

In this paper, we reviewed the known approaches to detect attacks on the Internet of
Things infrastructure based on machine learning and investigated their effectiveness. We
investigated the possibility of detecting traffic attacks on the Internet of Things infrastruc-
ture based on flow analysis and the most commonly used IoT protocols, such as HTTP,
MQTT, and DNS.

Traffic from well-known botnets, such as Mirai, Dark Nexus, and Gafgyt was taken
from well-known databases that represent common attacks on the Internet of Things
infrastructures, such as TCP, UDP, HTTP GET, and DNS tunneling, used as malicious traffic.

In addition, attack traffic was generated using known utilities, and benign IoT traffic
was collected from devices such as a router, a thermostat, and a camcorder.

The features presented in the work were classified using various methods of machine
learning and were removed from the received traffic.

The levels of detection of the multi-vector attacks on the Internet of Things infras-
tructure largely depend on the involved objects of training and test samplings/settings of
machine learning algorithms. This important aspect is the subject of further research.

Therefore, future work will focus on the following issues:

1. Different Internet of Things protocols [64] to remove signs of traffic, which will
improve the accuracy of attack detection in the lack of flow-based analysis cases;

2. Efficient ways to reduce the number of traffic features sufficient to detect attacks;
3. Development of ML-based methods for dependability assurance of IoT systems by

combining attacks and intrusion detection, redundancy, and recovery procedures [65].

Author Contributions: Data curation K.B. and V.K.; formal analysis S.L.; investigation K.B. and O.S.;
methodology K.B. and S.L.; project administration V.K.; Software K.B.; supervision V.K.; validation
K.B. and O.S.; visualization K.B. and S.L.; writing—original draft K.B. and S.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The dataset used for this study is publicly available at [43–49].

Acknowledgments: This work was supported by the ECHO project, which has received funding from
the European Union’s Horizon 2020 research and innovation program under the grant agreement
no 830943. The authors appreciate the scientific society of the consortium for creative analysis and
discussion during the preparation of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nozomi Networks Labs. New OT/IoT Security Report: Trends and Countermeasures for Critical Infrastructure Attacks.

Available online: https://www.nozominetworks.com/blog/new-ot-iot-security-report-trends-and-countermeasures-for-critical-
infrastructure-attacks/ (accessed on 3 February 2022).

2. Global Cyber Alliance. GCA Internet Integrity Papers: IoT Policy and Attack Report. Available online: https://www.
globalcyberalliance.org/wp-content/uploads/IoT-Policy-and-Attack-Report_FINAL.pdf (accessed on 5 December 2021).

https://www.nozominetworks.com/blog/new-ot-iot-security-report-trends-and-countermeasures-for-critical-infrastructure-attacks/
https://www.nozominetworks.com/blog/new-ot-iot-security-report-trends-and-countermeasures-for-critical-infrastructure-attacks/
https://www.globalcyberalliance.org/wp-content/uploads/IoT-Policy-and-Attack-Report_FINAL.pdf
https://www.globalcyberalliance.org/wp-content/uploads/IoT-Policy-and-Attack-Report_FINAL.pdf

Algorithms 2022, 15, 239 23 of 25

3. Shaaban, A.M.; Chlup, S.; El-Araby, N.; Schmittner, C. Towards Optimized Security Attributes for IoT Devices in Smart Agriculture
Based on the IEC 62443 Security Standard. Appl. Sci. 2022, 12, 5653. [CrossRef]

4. Seo, S.; Kim, D. IoDM: A Study on a IoT-Based Organizational Deception Modeling with Adaptive General-Sum Game Competi-
tion. Electronics 2022, 11, 1623. [CrossRef]

5. Makarichev, V.; Lukin, V.; Illiashenko, O.; Kharchenko, V. Digital Image Representation by Atomic Functions: The Compression
and Protection of Data for Edge Computing in IoT Systems. Sensors 2022, 22, 3751. [CrossRef]

6. Bliss, D.; Garbos, R.; Kane, P.; Kharchenko, V.; Kochanski, T.; Rucinski, A. Homo Digitus: Its Dependable and Resilient Smart
Ecosystem. Smart Cities 2021, 4, 514–531. [CrossRef]

7. Deorankar, A.V.; Thakare, S.S. Survey on Anomaly Detection of (IoT)- Internet of Things Cyberattacks Using Machine Learning.
In Proceedings of the 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode,
India, 11–13 March 2020; pp. 115–117. [CrossRef]

8. Hristov, A.; Trifonov, R.A. Model for Identification of Compromised Devices as a Result of Cyberattack on IoT Devices. In
Proceedings of the 2021 International Conference on Information Technologies (InfoTech), Varna, Bulgaria, 16–17 September 2021;
pp. 1–4. [CrossRef]

9. Lysenko, S.; Bobrovnikova, K.; Shchuka, R.; Savenko, O. A Cyberattacks Detection Technique Based on Evolutionary Algorithms.
In Proceedings of the 2020 IEEE 11th International Conference on Dependable Systems, Services and Technologies (DESSERT),
Kyiv, Ukraine, 14–18 May 2020; pp. 127–132.

10. Lysenko, S.; Pomorova, O.; Savenko, O.; Kryshchuk, A.; Bobrovnikova, K. DNS-based Anti-evasion Technique for Botnets
Detection. In Proceedings of the 8th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, Warsaw, Poland, 24–26 September 2015; pp. 453–458.

11. Savenko, B.; Lysenko, S.; Bobrovnikova, K.; Savenko, O.; Markowsky, G. Detection DNS Tunneling Botnets. In Proceedings of the
2021 IEEE 11th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and
Applications, Cracow, Poland, 22–25 September 2021; Volume 1, pp. 64–69.

12. Lysenko, S.; Savenko, O.; Bobrovnikova, K. DDoS Botnet Detection Technique Based on the Use of the Semi-Supervised Fuzzy
c-Means Clustering. CEUR-WS 2018, 2104, 688–695.

13. Lysenko, S.; Bobrovnikova, K.; Matiukh, S.; Hurman, I.; Savenko, O. Detection of the botnets’ low-rate DDoS attacks based on
self-similarity. Int. J. Electr. Comput. Eng. 2020, 10, 3651–3659. [CrossRef]

14. Shire, R.; Shiaeles, S.; Bendiab, K.; Ghita, B.; Kolokotronis, N. Malware Squid: A Novel IoT Malware Traffic Analysis Framework
Using Convolutional Neural Network and Binary Visualisation. In Ininternet of Things, Smart Spaces, and Next Generation Networks
and Systems; Springer: Cham, Switzerland, 2019; pp. 65–76.

15. Elmrabit, N.; Zhou, F.; Li, F.; Zhou, H. Evaluation of machine learning algorithms for anomaly detection. In Proceedings of the
2020 International Conference on Cyber Security and Protection of Digital Services (Cyber Security), Dublin, Ireland, 15–19 June
2020; pp. 1–8.

16. Bagui, S.; Wang, X.; Bagui, S. Machine Learning Based Intrusion Detection for IoT Botnet. Int. J. Mach. Learn. Comput. 2021, 11,
399–406. [CrossRef]

17. Kumar, P.; Gupta, G.P.; Tripathi, R. Toward design of an intelligent cyberattack detection system using hybrid feature reduced
approach for IoT networks. Arab. J. Sci. Eng. 2021, 46, 3749–3778. [CrossRef]

18. Ravi, N.; Shalinie, S.M. Learning-driven detection and mitigation of DDoS attack in IoT via SDN-cloud architecture. IEEE Internet
Things J. 2020, 7, 3559–3570. [CrossRef]

19. Otoum, Y.; Liu, D.; Nayak, A. DL-IDS: A deep learning-based intrusion detection framework for securing IoT. Trans. Emerg.
Telecommun. Technol. 2019, 33, e3803. [CrossRef]

20. Verma, A.; Ranga, V. Machine learning based intrusion detection systems for IoT applications. Wirel. Pers. Commun. 2020, 111,
2287–2310. [CrossRef]

21. Alrashdi, I.; Alqazzaz, A.; Aloufi, E.; Alharthi, R.; Zohdy, M.; Ming, H. Ad-IoT: Anomaly Detection of IoT Cyberattacks in smart
City Using Machine Learning. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; pp. 305–310.

22. Krishna, E.S.; Thangavelu, A. Attack detection in IoT devices using hybrid metaheuristic lion optimization algorithm and firefly
optimization algorithm. Int. J. Syst. Assur. Eng. Manag. 2021, 1–14. [CrossRef]

23. Mihoub, A.; Fredj, O.B.; Cheikhrouhou, O.; Derhab, A.; Krichen, M. Denial of service attack detection and mitigation for internet
of things using looking-back-enabled machine learning techniques. Comput. Electr. Eng. 2022, 98, 107716. [CrossRef]

24. Khan, M.A.; Khan Khattk, M.A.; Latif, S.; Shah, A.A.; Ur Rehman, M.; Boulila, W.; Ahmad, J. Voting classifier-based intrusion
detection for IoT networks. In Advances on Smart and Soft Computing; Springer: Singapore, 2022; pp. 313–328.

25. Alharbi, A.; Alosaimi, W.; Alyami, H.; Rauf, H.T.; Damaševičius, R. Botnet attack detection using local global best bat algorithm
for industrial internet of things. Electronics 2021, 10, 1341. [CrossRef]

26. Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396.
[CrossRef]

27. Saia, R.; Carta, S.; Recupero, D.R. A Probabilistic-driven Ensemble Approach to Perform Event Classification in Intrusion
Detection System. In Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management, Seville, Spain, 18–20 September 2018; pp. 141–148.

http://doi.org/10.3390/app12115653
http://doi.org/10.3390/electronics11101623
http://doi.org/10.3390/s22103751
http://doi.org/10.3390/smartcities4020027
http://doi.org/10.1109/ICCMC48092.2020.ICCMC-00023
http://doi.org/10.1109/InfoTech52438.2021.9548556
http://doi.org/10.11591/ijece.v10i4.pp3651-3659
http://doi.org/10.18178/ijmlc.2021.11.6.1068
http://doi.org/10.1007/s13369-020-05181-3
http://doi.org/10.1109/JIOT.2020.2973176
http://doi.org/10.1002/ett.3803
http://doi.org/10.1007/s11277-019-06986-8
http://doi.org/10.1007/s13198-021-01150-7
http://doi.org/10.1016/j.compeleceng.2022.107716
http://doi.org/10.3390/electronics10111341
http://doi.org/10.3390/app9204396

Algorithms 2022, 15, 239 24 of 25

28. Abdulhammed, R.; Musafer, H.; Alessa, A.; Faezipour, M.; Abuzneid, A. Features dimensionality reduction approaches for
machine learning based network intrusion detection. Electronics 2019, 8, 322. [CrossRef]

29. Abdulhammed, R.; Faezipour, M.; Abuzneid, A.; AbuMallouh, A. Deep and machine learning approaches for anomaly-based
intrusion detection of imbalanced network traffic. IEEE Sens. Lett. 2018, 3, 1–4. [CrossRef]

30. Carta, S.; Podda, A.S.; Recupero, D.R.; Saia, R. A local feature engineering strategy to improve network anomaly detection. Future
Internet 2020, 12, 177. [CrossRef]

31. Rokach, L.; Maimon, O. Data Mining with Decision Trees: Theory and Applications; World Scientific: Singapore, 2014; p. 81.
32. Flow of Decision Tree Algorithm. Available online: https://www.analyticsvidhya.com/blog/2022/04/complete-flow-of-

decision-tree-algorithm/ (accessed on 10 December 2021).
33. Kotu, V.; Deshpande, B. Data Science: Concepts and Practice; Morgan Kaufmann: San Francisco, CA, USA, 2019; pp. 65–163.
34. Polamuri, S. How the Random Forest Algorithm Works in Machine Learning. Available online: https://dataaspirant.com/2017

/05/22/random-forest-algorithm-machine-learing (accessed on 10 December 2021).
35. Biau, G.; Scornet, E.A. Random Forest Guided Tour. Test 2016, 25, 197–227. [CrossRef]
36. Scornet, E.; Biau, G.; Vert, J.-P. Consistency of random forests. Ann. Statist. 2015, 43, 1716–1741. [CrossRef]
37. Athey, S.; Tibshirani, J.; Wager, S. Generalized random forests. Ann. Statist. 2019, 47, 1148–1178. [CrossRef]
38. Ronaghan, S. The Mathematics of Decision Trees, Random Forest and Feature Importance in Scikit-Learn and Spark. Available

online: https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-feature-importance-in-scikit-
learn-and-spark-f2861df67e3 (accessed on 10 December 2021).

39. Campos, G.O.; Zimek, A.; Sander, J.; Campello, R.J.; Micenková, B.; Schubert, E.; Assent, I.; Houle, M.E. On the evaluation
of unsupervised outlier detection: Measures, datasets, and an empirical study. Data Min. Knowl. Discov. 2016, 30, 891–927.
[CrossRef]

40. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme gradient boosting. R Package Version 0.4-2
2015, 1, 1–4.

41. Weston, J.; Mukherjee, S.; Chapelle, O.; Pontil, M.; Poggio, T.; Vapnik, V. Feature selection for SVMs. Advances in neural information
processing systems 2001, 13, 668–674.

42. Chapelle, O.; Vapnik, V.; Bousquet, O.; Mukherjee, S. Choosing multiple parameters for support vector machines. Mach. Learn.
2002, 46, 131–159. [CrossRef]

43. Lysenko, S.; Bobrovnikova, K.; Savenko, O.; Kryshchuk, A. BotGRABBER: SVM-Based Self-Adaptive System for the Network
Resilience Against the Botnets’ Cyberattacks. In International Conference on Computer Networks; Springer: Cham, Switzerland, 2019;
pp. 127–143.

44. GoldenEye Is a HTTP DoS Test Tool. Available online: https://www.kali.org/tools/goldeneye/ (accessed on 11 December 2021).
45. hping3 Network Tool. Available online: https://github.com/antirez/hping (accessed on 11 December 2021).
46. DNS Tunneling Tool. Available online: https://github.com/yarrick/iodine (accessed on 11 December 2021).
47. Zeek. An Open Source Network Security Monitoring Tool. Available online: https://zeek.org/ (accessed on 11 May 2022).
48. UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/ml/index.php (accessed on 11 December 2021).
49. Kaggle. DS2OS Traffic Traces. Available online: https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces (accessed on

11 December 2021).
50. IEEEDataPort. The Bot-IoT Dataset. Available online: https://ieee-dataport.org/documents/bot-iot-dataset (accessed on

11 December 2021).
51. Kaggle. N-BaIoT Dataset to Detect IoT Botnet Attacks. Available online: https://www.kaggle.com/datasets/mkashifn/nbaiot-

datasetURL (accessed on 11 December 2021).
52. Hochschule Coburg. CIDDS-Coburg Intrusion Detection Data Sets. Available online: https://www.hs-coburg.de/forschung/

forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html (accessed on
11 December 2021).

53. UNSW Sydney. The UNSW-NB15 Dataset. Available online: https://research.unsw.edu.au/projects/unsw-nb15-dataset
(accessed on 11 December 2021).

54. UNB. University of New Brunswick. NSL-KDD Dataset. Available online: https://www.unb.ca/cic/datasets/nsl.html (accessed
on 11 December 2021).

55. What Is the Mirai Botnet? Available online: https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/ (accessed on
11 May 2022).

56. Gafgyt Botnet Lifts DDoS Tricks from Mirai. Available online: https://threatpost.com/gafgyt-botnet-ddos-mirai/165424/
(accessed on 11 May 2022).

57. Dark Nexus, the Latest IoT Botnet Targets a Wide Range of Devices. Available online: https://crazygreek.co.uk/dark-nexus-iot-
botnet-targets-devices/ (accessed on 11 May 2022).

58. Scikit-Learn. Machine Learning in Python. Available online: https://scikit-learn.org/stable/index.html (accessed on
11 May 2022).

59. Sklearn.Tree.DecisionTreeClassifier—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.tree.DecisionTreeClassifier.html (accessed on 11 May 2022).

http://doi.org/10.3390/electronics8030322
http://doi.org/10.1109/LSENS.2018.2879990
http://doi.org/10.3390/fi12100177
https://www.analyticsvidhya.com/blog/2022/04/complete-flow-of-decision-tree-algorithm/
https://www.analyticsvidhya.com/blog/2022/04/complete-flow-of-decision-tree-algorithm/
https://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing
https://dataaspirant.com/2017/05/22/random-forest-algorithm-machine-learing
http://doi.org/10.1007/s11749-016-0481-7
http://doi.org/10.1214/15-AOS1321
http://doi.org/10.1214/18-AOS1709
https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-feature-importance-in-scikit-learn-and-spark-f2861df67e3
https://towardsdatascience.com/the-mathematics-of-decision-trees-random-forest-and-feature-importance-in-scikit-learn-and-spark-f2861df67e3
http://doi.org/10.1007/s10618-015-0444-8
http://doi.org/10.1023/A:1012450327387
https://www.kali.org/tools/goldeneye/
https://github.com/antirez/hping
https://github.com/yarrick/iodine
https://zeek.org/
https://archive.ics.uci.edu/ml/index.php
https://www.kaggle.com/datasets/francoisxa/ds2ostraffictraces
https://ieee-dataport.org/documents/bot-iot-dataset
https://www.kaggle.com/datasets/mkashifn/nbaiot-datasetURL
https://www.kaggle.com/datasets/mkashifn/nbaiot-datasetURL
https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html
https://www.hs-coburg.de/forschung/forschungsprojekte-oeffentlich/informationstechnologie/cidds-coburg-intrusion-detection-data-sets.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://www.unb.ca/cic/datasets/nsl.html
https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
https://threatpost.com/gafgyt-botnet-ddos-mirai/165424/
https://crazygreek.co.uk/dark-nexus-iot-botnet-targets-devices/
https://crazygreek.co.uk/dark-nexus-iot-botnet-targets-devices/
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

Algorithms 2022, 15, 239 25 of 25

60. Sklearn.Ensemble.RandomForestClassifier—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html (accessed on 15 May 2022).

61. Sklearn.Neighbors.KNeighborsClassifier—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/
modules/generated/sklearn.neighbors.KNeighborsClassifier.html (accessed on 15 May 2022).

62. Sklearn.Neighbors.GradientBoostingClassifier—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html (accessed on 11 May 2022).

63. Sklearn.Svm.SVC—Scikit-Learn 1.0.2 Documentation. Available online: https://scikit-learn.org/stable/modules/generated/
sklearn.svm.SVC.html (accessed on 15 May 2022).

64. Kolisnyk, M. Vulnerability analysis and method of selection of communication protocols for information transfer in Internet of
Things systems. Radioelectron. Comput. Syst. 2021, 1, 133–149. [CrossRef]

65. Illiashenko, O.; Kolisnyk, M.; Strielkina, A.; Kotsiuba, I.; Kharchenko, V. Conception and application of dependable Internet of
Things based systems. Radio Electron. Comput. Sci. Control 2020, 4, 139–150. [CrossRef]

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://doi.org/10.32620/reks.2021.1.12
http://doi.org/10.15588/1607-3274-2020-4-14

	Introduction
	Motivation
	Objectives and Contribution

	The State-of-the-Art
	Machine Learning Algorithms for Cyberattack Detection
	IoT Multi-Vector Cyberattack Detection Based on Machine Learning Algorithms
	Detection Steps
	Features Description

	Experiments
	Evaluation Setting
	Dataset Description
	Training and Testing
	Implementation Platform
	Results

	Conclusions and Future Work
	References

