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Abstract: Network attack traffic detection plays a crucial role in protecting network operations and 
services. To accurately detect malicious traffic on the internet, this paper designs a hybrid algorithm 
UMAP-RF for both binary and multiclassification network attack detection tasks. First, the network 
traffic data are dimensioned down with UMAP algorithm. The random forest algorithm is improved 
based on parameter optimization, and the improved random forest algorithm is used to classify the 
network traffic data, distinguishing normal data from abnormal data and classifying nine different 
types of network attacks from the abnormal data. Experimental results on the UNSW-NB15 dataset, 
which are significant improvements compared to traditional machine-learning methods, show that 
the UMAP-RF hybrid model can perform network attack traffic detection effectively, with accuracy 
and recall rates of 92.6% and 91%, respectively. 
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1. Introduction 
Since 2020, with Corona Virus Disease 2019 sweeping the world, people have had to 

work online, and most schools have adopted online classes to teach. Internet traffic has 
increased dramatically, and many unscrupulous individuals have used hacking tech-
niques to create malicious traffic to interfere with the normal operation of network devices 
to profit from this period. Cyber threats have been ranked as one of the most critical 
threats to the world economy, with expected USD 133 billion cyber-security-related ex-
penditure to date [1]. With the constant development and popularity of cyber security [2], 
cyber attack security detection systems are widely used to protect cyberspace and ensure 
that people can browse the web in a secure network environment. Network attack traffic 
detection has been one of the main methods to enhance network security in recent years 
[3], which monitors network traffic or suspicious activities in hosts and issues alerts when 
such activities are detected. Currently, network attack traffic detection is gradually mov-
ing toward intelligence, and research on strange traffic attacks based on machine learning 
or data mining [4] has yielded significant results. 

The network traffic in the current internet environment is growing, and the variety 
of malicious traffic is increasing. Traditional machine-learning methods are difficult to 
effectively detect network attack traffic and have low detection efficiency. To better han-
dle the high-dimensional network security connection data and improve the efficiency of 
subsequent detection of abnormal data, we propose a hybrid algorithm—called uniform 
manifold approximation and projection algorithm-random forest (UMAP-RF)—for detec-
tion methods. First, large and complex network traffic is dimensionally reduced by using 
the uniform manifold approximation and projection algorithm (UMAP) [5], and then, an 
improved random forest (RF) is adopted for more accurate detection and classification. 
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Compared with traditional machine-learning methods, the UMAP-RF hybrid algorithm 
greatly reduces the detection time for network data with large and tedious data volume 
and improves the efficiency of network attack security detection. The characteristics of 
network connection data after dimensionality reduction are more pronounced, which fur-
ther enhances the accuracy of differentiation based on normal data and abnormal data. 
This hybrid algorithm solves the problems of ineffective processing of high-dimensional 
data and low detection accuracy in the current research of network attack traffic detection 
technology, and it directly improves the accuracy and efficiency of network traffic attack 
detection. Moreover, this paper visualizes and analyzes the network traffic data after de-
tection and classification, which visually verifies the effectiveness of the algorithm more 
intuitively. The dataset used in the experiments of this paper is UNSW-NB15 [6]. Com-
pared with KDDCUP99 [7] and NSL-KDD [8], the dataset UNSW-NB15 has more attack 
types, can better simulate the network traffic on the internet nowadays and has a more 
practical reference value. To make the proposed solution more applicable in network at-
tack traffic detection techniques, the KDDCUP99 and NSL-KDD datasets are used in the 
binary classification experimental part under the same experimental environment, and 
the experimental results show that the hybrid algorithm UMAP-RF still has excellent ex-
perimental results. 

The main contributions of this paper are as follows. Firstly, this paper uses the UMAP 
algorithm based on network traffic feature filtering for dimensionality reduction, so that 
the reduced network security connection data highlight the key feature information, 
which helps classify the normal and abnormal data. Additionally, the processing speed is 
very fast when facing a large amount of data, which directly improves the efficiency of 
network security attack detection. Second, this paper restores the structure of the classi-
fied data to the maximum extent for the visualization study, and it can be observed that 
there is a clear distinction between normal and abnormal data in the visualization effect 
diagram of binary classification and multi-classification, and different kinds of abnormal 
data are also distinguished from each other. Third, the random forest algorithm is im-
proved based on parameter optimization, using the number of base evaluators and the 
maximum number of leaf nodes to optimize the parameters of the random forest algo-
rithm, and the improved algorithm can effectively prevent overfitting and improve the 
classification performance of the random forest algorithm. The accuracy and false alarm 
rate are significantly improved compared to other machine-learning algorithms. 

Section 2 of this paper introduces the current status of domestic and international 
research on network attack traffic detection techniques and compares the accuracy of var-
ious detection models. Section 3 gives the hybrid algorithm UMAP-RF proposed in this 
paper, including the model and algorithm steps, and Section 4 conducts the experiments 
to evaluate and compare the accuracy and running time obtained from the detection clas-
sification. 

2. Related Works 
Machine-learning-based network attack traffic detection has attracted the attention 

of many researchers engaged in the network security industry [9], especially the prevalent 
deep learning nowadays. Several researchers have introduced deep-learning models to 
network attack traffic detection and achieved good results. 

Ever since data mining was introduced in 1989, the application of data mining in 
network attack traffic detection systems has become the main research direction of net-
work attack traffic detection technology. The U.S. Department of Defense Advanced Plan-
ning Agency (DARPA) created the DARPA 1998 dataset [10]. Subsequently, Wenke Lee 
et al. divided this dataset into training data with markers and unmarked test data [11], 
named the KDDCUP99 dataset, and later, the NSL-KDD dataset originated from it. Since 
the birth of these datasets, machine-learning and later deep-learning techniques have been 
massively applied in the study of network attack traffic detection models. Currently, the 
primary methods applied in machine learning for network traffic attack detection include 
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support vector machines (SVM) [12], decision trees [13], Bayesian [14] and artificial neural 
networks [15], etc. The NSLKDD dataset cannot meet the current research needs in the 
field of intrusion detection due to its inherent shortcomings. Moustafa et al. published the 
UNSW-NB15 dataset. Compared with the KDDCUP99 and NSL-KDD datasets, the 
UNSW-NB15 dataset contains the most comprehensive attack scenarios. Researchers can 
detect malicious traffic by imitating the actual network environment based on this dataset, 
which promotes the development of network attack traffic detection research. 

More and more research on network traffic anomaly detection has been conducted at 
home and abroad in recent years. Guoyan Huang’s team proposed a K-Means algorithm-
based clustering of typical network traffic in the UNSW-NB15 dataset [16], processed the 
extracted representative feature subsets with a feature recursive elimination algorithm 
and then designed nine algorithm combinations by combining three machine-learning al-
gorithms: decision trees, random forest and XGBoost [17]. Zhang Renjie of Nanjing Uni-
versity of Posts and Telecommunications clustered some samples screened by the KNN 
algorithm with the DBSCAN algorithm [18]. The recall and F1 scores obtained by training 
on some features of the UNSW-NB15 dataset showed a significant improvement. Fengjie 
Hu of Xidian University designed a network intrusion detection system based on the light 
GBM model. The accuracy obtained by comparison and validation on the dataset UNSW-
NB15 was 85.78% [19]. Meftah experimented with an improved SVM algorithm on the 
UNSW-NB15 dataset, and the accuracy obtained was 82% [20]. Kasongo improved the test 
accuracy of the binary classification scheme from 88.13% to 90.85% by using the XGBoost-
based feature selection method allowing DT and other ways [21]. Cao Bo proposed a net-
work intrusion detection model incorporating a convolutional neural network and gated 
recursive units and obtained an accuracy of 86.25% after experiments on the UNSW-NB15 
dataset, which was 1.95% higher than the same type of CNN-GRU [22]. Alzaqebah tuned 
the parameters of the extreme learning machine (ELM) by an improved gray wolf optimi-
zation algorithm (GWO) to test the proposed method using the UNSW-NB15 dataset and 
experimentally obtained an accuracy rate of 81% [23]. 

However, these methods did not perform a good job in dimensionality reduction in 
the dataset. The training speed of traditional machine-learning algorithms will be signifi-
cantly reduced when facing large network traffic. For such problems, the UMAP algo-
rithm based on network traffic feature filtering can effectively handle high-dimensional 
network traffic data and make the characteristics of the reduced-dimensional network 
traffic data more pronounced. It has a speedy running time and processes the data with 
high computational efficiency. Additionally, the hybrid algorithm UMAP-RF yields an 
accuracy of 92.6% after binary classification experiments on the UNSW-NB15 dataset, 
both of which are more accurate and have better performance than those obtained by the 
methods proposed in the above literature. 

3. Hybrid Algorithm UMAP-RF 
The hybrid algorithm UMAP-RF performs dimensionality reduction on the UNWS-

NB15 dataset by the UMAP algorithm, and the reduced data are classified by the im-
proved random forest algorithm based on parameter optimization to distinguish normal 
data from abnormal data and then classify the abnormal data. 

3.1. UMAP Dimensionality Reduction Algorithm 
The UMAP algorithm was created based on the theoretical framework structure of 

Riemannian geometry and algebraic topology [5] to reduce the dimensionality of high-
dimensional data based on the conclusion that high-dimensional spaces map to low-di-
mensional similarities [24]. 
Theorem 1 . In Euclidean space, mapping points in high-dimensional space to low-dimensional 
space, the points originally close are definitely still close in low-dimensional space, but the points 
originally far away have some probability of becoming close. 
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Proof of Theorem 1. In the process of mapping points in high-dimensional space to low-
dimensional space, we need to use embedding to calculate the similarity using inner prod-
uct operation. Suppose v  is a k -dimensional embedding vector in high-dimensional 
space, and x  is a randomly generated k -dimensional mapping vector. Then, we can 
use the inner product operation to map v  to a one-dimensional space and obtain the 
value xvvh ∗=)( . In the process of mapping, some distance information will be lost; 
therefore, some similar points will be misclassified, which will cause the points that are 
far from each other in the high-dimensional space to gather together in the low-dimen-
sional space after mapping.□ 

Given a high-dimensional data point },...,{ 1 nxxX =  and a low-dimensional data 

point },...,{ 1 nyyY = . Using the nearest neighbor algorithm, the set of k  nearest neigh-

bors of each ix  is obtained },...,{x
kii x . Where x  is a high-dimensional space, ix ∈ x , 

ix  denotes the i -th data in the high-dimensional space; then, using an exponential prob-
ability distribution, the high-dimensional topology can be expressed as follows. 

( )( )max 0, ,
exp ji i i

i j
i

d x x
p

ρ

σ

 − − =   
 

∣

 (1) 

where iρ  denotes the distance from point ix  to the first nearest neighbor data point, 

and iσ  denotes the diameter from point ix  to the first nearest neighbor data point. 
Additionally, note that this is not a symmetric function, so this function should be sym-
metrized with high-dimensional probability to avoid overcrowding of cluster representa-
tions, so that different clusters can be represented in the overlapping regions. 

ij i j j i i j j ip p p p p= + −∣ ∣ ∣ ∣
 (2) 

High-dimensional probabilistic symmetry is necessary because after UMAP com-
bines the points with local metric changes, it may appear that the weights of the graph 
between node a  and node b  are not equal to the weights between node b  and node 
a , where jip |  denotes the weight of the i -th point to the j -th point distance, and ijp |  
denotes the weight of the j -th point to the i -th point distance. 

After establishing the topology in the high-dimensional spatial distribution, it is cor-
respondingly necessary to establish the probability distribution in the low-dimensional 
space as well. 

( )( ) 12
1

b

ij i jq a y y
−

= + −  (3) 

The curve cluster b
ji yya 2)( −  is used in formula (3) to model the low-dimensional 

distance probabilities, not exactly t-distributed, where the default hyperparameters 
93.1≈a , 79.0≈b  [5]. 

The UMAP algorithm expects data points of the same kind to be as close together as 
possible in the low-dimensional space after dimensionality reduction, while data points 
of different kinds are as far away from each other as possible. Therefore, the following 
function is introduced. 

|
|

|

( )
Attractive= ( ) log( )
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i j

i j
i j

p X
p X
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In formulae (4) and (5), )(| Xp ji  is the weight of data points in the high-dimensional 

distribution, and )(| Yq ji  is the weight of data points in the low-dimensional distribu-
tion. The algorithm first applies a gravitational force to data points of the same kind in the 
dataset and a repulsive force to data points of different kinds. Thus, it achieves the effect 
that data points of the same kind are clustered together, while data points of different 
kinds are kept away. 

Given the above description, the specific description of the UMAP algorithm is 
shown in Algorithm 1. 

Algorithm 1. UMAP algorithm 
function UMAP ( X , n , d , min-dist,n-epochs) 
for all Xx ∈  do                 
fs-set [ x ] ← LocalFuzzySimplicialSet ( X , x , n ) 
top-rep Xx∈← fs-set [ x ] 

←Y SpectralEmbedding(top-rep, d ) 
←Y OptimizeEmbedding(top-rep, Y ,min-dist,n-epochs) 

return Y  

3.2. Random Forest Algorithm Based on Parameter Optimization 
The random forest algorithm is a large-scale, high-dimensional data learning classi-

fier integrated with multiple independent decision tree classifiers, each of which is ob-
tained based on Bootstrap sampling. Then, multiple decision trees are combined to derive 
the final classification result by voting. The random forest algorithm is chosen to classify 
network traffic data because it can improve the training speed of large samples by high 
parallelization when dealing with the data volume of network security connection data. 
The process of constructing the random forest algorithm is as follows: 
1. Construct multiple sub-datasets. Form an intermediate dataset by selecting k samples 

through sampling with put-back from a dataset, including k samples, and then ran-
domly select a few features among all features of this intermediate dataset as the final 
dataset; 

2. Build a sub-decision tree based on the sub-dataset. Assume that a sub-dataset has M 
features. When each node of the decision tree needs to split, randomly select m fea-
tures from these features (m < M), then select one of the m features as the splitting 
attribute of the node. Keep repeating this step until it can no longer be classified. The 
principle of judgement is that the attribute selected by a node next time is the attrib-
ute used in the last split; 

3. Follow the above steps to construct a large number of sub-decision trees, which form 
a random forest; 

4. Input the dataset into different sub-decision trees. Different judgments will be ob-
tained. The most judgmental result is the classification result obtained by the random 
forest. 
Given the above description, the specific description of random forest algorithm is 

shown in Algorithm 2.  
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Algorithm 2. Random Forest algorithm 
For 1=a  to A : 

(a) A boostrap sample Y  of size *X  is randomly selected from the training set. 
(b) Grow a random-forest tree aT  to the boostrapped data, repeating the following 

steps recursively for each terminal node of the tree, guiding to the minimum 
node size minx . 

i. Select n  variables at random from the q  variables. 
ii. Pick the best variable among the n . 
iii. Split the node into two child nodes. 

Output the ensemble of trees A
aT 1}{  

To make a prediction at a new point h : 
Classification: Let )(hCa


 be the class prediction of the a th random-forest tree. Then, 

majorityhC A =)(rf


vote A

a hC 1)}({


. 

To further improve the effectiveness of the random forest algorithm for detecting 
malicious traffic in complex network traffic, this paper improves the random forest algo-
rithm based on parameter optimization using base evaluators (n_estimators) and the max-
imum number of leaf nodes (max_leaf_nodes). Hyperparameters are very important for 
machine-learning algorithms because they directly control the behavior of the training 
algorithm and have an essential impact on the performance of machine-learning models. 

3.3. UMAP-RF Hybrid Algorithm 
This paper proposes a hybrid algorithm UMAP-RF, reduces the dimensionality of 

UNWS-NB15 dataset by the UMAP algorithm and thus improves the speed and accuracy 
of network attack traffic detection. The random forest algorithm is improved based on 
parameter optimization, and the dimensionality reduction data are bifurcated with the 
improved random forest algorithm. The abnormal data distinguished after bifurcation are 
classified to complete the network attack traffic detection task. 

The UMAP algorithm is chosen as the dimensionality reduction method for the da-
taset in this paper mainly because it can preserve the data structure after the classification 
algorithm as much as possible. UMAP algorithm focuses more on the visualization of the 
classified data structure, and the UMAP visualization graph can intuitively represent the 
relationship between individual data features in the two-dimensional plane. For high-di-
mensional network-traffic-type datasets, this dimensionality reduction method is very ef-
fective for visualizing binary and classifying network attack traffic detection. 

Improving the random forest algorithm based on parameter optimization aims to 
prevent overfitting when classifying more features in the UNSW-NB15 dataset and fur-
ther enhance the random forest algorithm classification performance. The optimized ran-
dom forest algorithm can effectively distinguish between normal and abnormal data and 
classify abnormal data. The accuracy obtained after classification is much higher com-
pared to traditional machine-learning algorithms. The Figure 1 and Table 1 are training 
steps of the UMAP-RF hybrid algorithm and UMAP-RF hybrid algorithm flow chart. 
1. Divide the UNSW-NB15 dataset into 70% training set, 10% validation set (Set hy-

perparameters) and 20% test set; 
2. Convert the non-numerical features to numerical values and remove non-numerical 

features, such as proto, service and state, from the dataset to obtain dataset δ ; 
3. The processed dataset δ  is dimensionally reduced by the UMAP algorithm to ob-

tain dataset θ ; 
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4. Optimize the parameters of the random forest algorithm with the number of base 
evaluators and the maximum number of leaf nodes. n_estimators is set to 1000, and 
max_leaf_nodes is set to 10 by manual parameter tuning; 

5. Import the dataset θ  obtained after UMAP dimensionality reduction into the im-
proved random forest algorithm for training. Classify normal data α  and abnormal 
data β , and complete malicious traffic detection; 

6. Import the detected abnormal data β  into the improved random forest algorithm 
to classify the abnormal data β , and obtain each specific type of network attack 
traffic. 

 
Figure 1. UMAP hybrid algorithm. 

Table 1. List of features in the UNSW-NB15 dataset. 

No. Feature No. Feature No. Feature No. Feature No. Feature 
1 srcip 11 dttl 21 stcpb 31 sintpkt 41 ct_srv_src 
2 sport 12 sloss 22 dtcpb 32 dintpkt 42 ct_srv_dst 
3 dstip 13 dloss 23 smeansz 33 tcprtt 43 ct_dst_ltm 
4 dsport 14 service 24 dmeansz 34 synack 44 ct_src_ ltm 
5 proto 15 sload 25 trans_depth 35 ackdat 45 ct_src_dport_ltm 
6 state 16 dload 26 res_bdy_len 36 is_sm_ips_ports 46 ct_dst_sport_ltm 
7 dur 17 spkts 27 sjit 37 ct_state_ttl 47 ct_dst_src_ltm 
8 sbytes 18 dpkts 28 djit 38 ct_flw_http_mthd 48 attack_cat 
9 dbytes 19 swin 29 stime 39 is_ftp_login 49 label 

10 sttl 20 dwin 30 ltime 40 ct_ftp_cmd   
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4. Experiment and Analysis 
4.1. UNSW-NB15 Dataset and Experimental Environment 

The UNSW-NB15 dataset, created by the Australian Centre for Cyber Security 
(ACCS) Network Scope Lab, is the closest simulation of the current network traffic envi-
ronment, covering one regular class of data and nine attack classes of data. Denial of Ser-
vice (Dos), Exploits (Attack), Generic (General), Reconnaissance, Shellcode and Worms. 
As shown in Table 1, features 1 to 5 are stream features collected from the dataset, 6 to 18 
are based features, 19 to 26 are content features, 27 to 35 are temporal features, 36 to 40 
are generic features, 41 to 47 are general features and 48 to 49 are label features. In this 
paper, we use the training set of UNSW-NB15 to train the model and use its test set to 
evaluate the model performance. 

The network attack traffic detection model experiments and comparison experiments 
presented in this paper were conducted on a 64-bit Windows Intel(R) Core (TM) i7-11700K 
CPU (3.60 GHz) with 32 GB RAM and a Python-based Nvidia GeForce GTX 3070 GPU (8 
GB), using Python’s TensorFlow library to write the UMAP-RF model for this paper. 

4.2. Experimental Results of Dimensionality Reduction Algorithm 
The pre-processed data are imported into the PCA algorithm [25], T-SNE algorithm 

[26] and UMAP algorithm, all of which are commonly used in machine learning to process 
the dimensionality reduction in high-dimensional datasets. The visualization plots and 
running times of the three-dimensionality reduction algorithms are derived by experi-
mental simulation, respectively. 

Figure 2 show the data structure visualization after being processed by the dimen-
sionality reduction algorithm PCA, T-SNE and UMAP, respectively. The purple color at 
the top of the color gradient bar on the right side of the figure to the eighth orange color 
from the top down are abnormal attack data. Different color blocks represent different 
types of attacks, and the rosy color at the bottom is normal data. The more concentrated 
points of the same color and the more separate issues of different colors indicate the ap-
parent effect of data clustering of each feature, thus reflecting the impact of dimensionality 
reduction algorithm clustering. The comparison from the figure shows that the UMAP 
algorithm has the best effect of dimensionality reduction on the dataset and effectively 
spreads out the data of different attack types. 

   
(a) (b) (c) 

Figure 2. Visualization of data structure after dimensionality reduction by three different algorithms. 
(a) PCA algorithm. (b) T-SNE algorithm. (c) UMAP algorithm. 

As shown in Figure 2, although the principal component analysis (PCA) method pro-
jects the high-dimensional data onto a two-dimensional plane after dimensionality reduc-
tion, all features are crowded together without bothering to distinguish normal data from 
abnormal data. Therefore, the principal component analysis (PCA) method is ineffective 
in dimensionality reduction for network attack traffic. As shown in Figure 3, T-SNE can 
further distinguish between normal and abnormal data and preserve the data structure 
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after dimensionality reduction. However, T-SNE is not applicable to large samples and 
cannot achieve the preservation of the global structure. Compared with T-SNE, the UMAP 
algorithm can better reflect the high-dimensional data structure with better continuity. As 
shown in Figure 4, the distinction between normal and abnormal data is more obvious in 
the two-dimensional plane, while the global structure is better preserved after the dimen-
sionality reduction. 

   
(a) (b) (c) 

Figure 3. The confusion matrix by three different algorithms. (a) UMAP-RF algorithm. (b) LOF al-
gorithm. (c) Isolation Forest algorithm. 

 
Figure 4. Histogram comparing the results of the binary classification experiment. 

This paper also compares the running time of three dimensionality reduction algo-
rithms, as shown in Table 2. Principal component analysis (PCA) has the shortest running 
time and is much shorter than the other two methods, but it cannot show the relationship 
between the data after dimensionality reduction. The network traffic dataset needs to re-
tain the structure of the reduced data as much as possible after dimensionality reduction, 
so principal component analysis (PCA) cannot be applied to the study in this paper. Com-
pared with the running time of 695.31s of T-SNE algorithm, the running time of UMAP 
algorithm is only 93.82s, which is much smaller than that of T-SNE algorithm, and UMAP 
algorithm can better retain the data structure after dimensionality reduction. 

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

Accuracy recall FP
UMAP-RF LOF Ioslation Forest
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Table 2. Running time of three-dimensionality reduction algorithms. 

Algorithm Running Time 
PCA 3.59 s 

T-SNE 695.31 s 
UMAP 93.82 s 

In this paper, the UMAP algorithm is introduced for the first time to reduce the di-
mensionality of network traffic data, which can not only preserve the data structure to the 
maximum extent for visualization and research but can be processed very fast when fac-
ing massive network traffic data. 

4.3. Experimental Evaluation Metrics 
In this paper, the classification experiments evaluate the performance of the intrusion 

detection model using four metrics, such as area under curve (AUC), accuracy (accuracy, 
ACC), recall (recall) and F1 score (F1 Score). 

The confusion matrix is a situation analysis table for summarizing the prediction re-
sults of classification models in machine learning. As shown in Table 3, TP is the number 
of correctly predicted positive cases, which is the number of connection records correctly 
classified as attack class in network attack security detection. FN is the number of incor-
rectly predicted positive cases, which is the number of connection records incorrectly clas-
sified as normal class in the scenario of this paper. FP is the number of incorrectly pre-
dicted negative cases, which is the number of connection records incorrectly classified as 
attack class in the scenario of this paper. TN is the number of correctly predicted negative 
cases, which in the scenario of this paper is the number of connection records correctly 
classified as normal class.  

Table 3. Confusion matrix. 

 
Projections 

Attack Normal 

Actual Attack TP FN 
Normal FP TN 

The AUC metric and the ROC curve are introduced in binary classification because 
they provide a more comprehensive assessment of a classifier’s, and in particular, the clas-
sifier’s effectiveness in binary classification, where area under curve (AUC) is defined as 
the area under the ROC curve. 

Accuracy, Recall and F1 Score are defined as formulas (6)–(8), respectively. 

Accuracy TP TN
TP TN FP FN

+=
+ + +

 (6) 

Recall TP
TP FP

=
+

 (7) 

2 Recall PrecisionF1 Score
Recall+Precision
× ×=  (8) 

4.4. Random Forest Classifier Parameter Settings 
For the random forest algorithm classifier, the larger the number of base evaluators 

(n_estimators) in general, the better the classification effect of the algorithm, but all the 
computation and memory required are also larger, which will lead to an increase in train-
ing time. Due to many feature components in the UNSW-NB15 dataset, it is easy to overfit 
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in the process of classification. Overfitting can be prevented by limiting the maximum 
number of leaf nodes (max_leaf_nodes).  

In this paper, we perform parameter tuning on the validation set by manually tuning 
the parameters and finally select the highest scoring set as the final hyperparameters of 
the random forest algorithm. The scores of each hyperparameter group obtained by man-
ual tuning are shown in Table 4. 

Table 4. Scores of each hyperparameter group obtained by manual tuning. 

No. Score (n_estimators, max_leaf_nodes) 
1 83.7 (800, 30) 
2 86.2 (1600, 40) 
3 91.6 (1000, 10) 
4 77.5 (500, 70) 
5 81.1 (2000, 20) 
6 85.4 (200, 10) 

As shown in Table 4, the third set of hyperparameters scored the highest, so the n_es-
timators best parameter is 1000, and the max_leaf_nodes best parameter is 10. The random 
forest algorithm will build the optimal decision tree within the optimal set of parameters 
set in this paper. 

4.5. Analysis of Binary Classification Experimental Results 
The confusion matrix derived from the hybrid algorithm UMAP-RF, isolated forest 

(IF) [27] and local outlier factor (LOF) [28] on a test set is shown in Figure 3. Based on the 
parameters in this result, several evaluation indices were experimentally calculated in an-
ticipation of obtaining a comprehensive performance report of the algorithm. 

In Figure 3, the upper left part of the confusion matrix shows the number of connec-
tion records correctly classified as attack class, and the upper right part shows the number 
of connection records of normal class. The lower left part shows the number of connection 
records incorrectly classified as attack class. The lower right part shows the number of 
connection records correctly classified as normal class. The accuracy rate of each algorithm 
can be calculated from formula (6), the regression rate of each algorithm can be calculated 
from formula (7), and the F1 score of each algorithm can be calculated from formula (8). 

Based on the confusion matrix plots of the above three algorithms, the AUC, accu-
racy, recall and F1 scores of the hybrid algorithm UMAP-RF hybrid, isolated forest algo-
rithm and LOF algorithm are derived and compared, and the comparison of the experi-
mental results is shown in Figure 4. 

As shown in Figure 4, the accuracy, recall and F1 score of the hybrid algorithm 
UMAP-RF based on binary classification experiments are significantly improved com-
pared with other machine-learning algorithms, with an accuracy of 92.6%, a recall of 91% 
and an F1 score of 90.5%, demonstrating that the hybrid algorithm UMAP-RF has a better 
detection effect for distinguishing normal data from abnormal data. 

The ROC curves for the hybrid algorithm UMAP-RF, isolated forest algorithm and 
LOF algorithm are shown in Figure 5. The AUC value is the area under the ROC curve. 
The calculation shows that the AUC value for the hybrid algorithm UMAP-RF is 85%, the 
isolated forest algorithm is 54.4%, and the LOF algorithm is 52.7%. Based on the AUC 
values, it can be seen that the hybrid algorithm UMAP-RF performs significantly better 
compared to the isolated forest algorithm and the LOF algorithm. 
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Figure 5. ROC curve of binary classification experiments. 

To demonstrate the effect of the hybrid algorithm UMAP-RF classifier more visu-
ally, a visualization study of the binary classification-based hybrid algorithm UMAP-RF 
classifier was conducted. As shown in Figure 6, the purple part represents normal net-
work traffic data points, and the rosy part represents abnormal attack traffic data points. 
The purple data points are clustered together and separated from the rosy data points in 
the figure, which maximally restores the data structure after binary classification and 
demonstrates a better clustering effect for visualization and research. 

 
Figure 6. Visualization of binary classification effect based on hybrid algorithm UMAP-RF. 

To demonstrate the applicability of the hybrid algorithm UMAP-RF in network at-
tack traffic detection, the normal and abnormal data in the dataset of KDDCUP99 and 
NSLKDD were classified by the hybrid algorithm UMAP-RF, LOF algorithm and isolated 
forest algorithm in the experimental part. The accuracy, recall and F1 score obtained after 
classification were also compared, and the experimental results of different algorithms are 
shown in Figures 7 and 8. 
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Figure 7. Comparison histogram of experimental results of different algorithms for KDDCUP da-
taset. 

 
Figure 8. Comparison histogram of experimental results of different algorithms for NSL-KDD da-
taset. 

As can be seen from Figures 7 and 8, the accuracy, recall and F1 score of the hybrid 
algorithm UMAP-RF after classifying normal and abnormal data in the KDDCUP99 da-
taset and USL-KDD dataset are significantly improved compared with LOF and isolated 
forest algorithms. The hybrid algorithm UMAP-RF still has good results in distinguishing 
normal and abnormal data in the KDDCUP99 dataset, proving that the hybrid algorithm 
UMAP-RF has good applicability in network attack traffic detection. 

The experimental comparison and analysis results above show that the hybrid algo-
rithm UMAP-RF is feasible in the study of the intelligent network attack traffic detection 
model. To further demonstrate the performance of the hybrid algorithm UMAP-RF, the 
differentiated anomalous data are classified again with specific network attack types to 
prove the feasibility of the hybrid algorithm UMAP-RF in multi-classification of network 
attack traffic. 

4.6. Analysis of Multi-Classification Experimental Results 
To evaluate the hybrid algorithm UMAP-RF in the multi-classification task of net-

work attack traffic detection, the results of the control experiments are used for compara-
tive analysis, and the algorithms used in the control experiments are the K-Means cluster-
ing algorithm [29], mini batch K-Means algorithm [30] and LSTM [31] neural network al-
gorithm. The confusion matrix derived from the hybrid algorithm UMAP-RF and the al-
gorithm used in the control experiment is shown in Figure 8. Based on the parameters in 
this result, several evaluation metrics were calculated for the experiment, and since the 
AUC metric does not apply to the multi-classification task, only the accuracy, recall and 
F1 score were used as evaluation metrics for the experiment in the expectation of obtain-
ing a comprehensive performance report of the algorithm. 

Figure 9 shows the multi-classification confusion matrix for the K-Means algorithm, 
mini batch K-Means algorithm, LSTM algorithm and hybrid algorithm UMAP-RF. The 
multi-classification confusion matrix is calculated in the same way as the binary confusion 
matrix. The accuracy rate, regression rate and F1 score of each attack type are calculated 
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from formula (6)–(8). The multi-classification metrics of each algorithm can be obtained 
by averaging the metrics of all attack types. 

  
(a) (b) 

  
(c) (d) 

Figure 9. The confusion matrix by four different algorithms. (a) K-Means algorithm. (b) Mini Batch 
K-Means algorithm. (c) LSTM algorithm. (d) UMAP-RF algorithm. 

Based on the confusion matrix plots of the above four algorithms, the accuracy, recall 
and F1 scores of the hybrid algorithms UMAP-R and K-Means algorithm, mini batch K-
Means algorithm and LSTM neural network algorithm are derived and compared, and 
the experimental results are shown in Figure 10. 

 
Figure 10. Histogram comparing the results of the multi-classification experiment. 

As can be seen from Figure 10, the accuracy, recall and F1 score of the hybrid algo-
rithm UMAP-RF based on abnormal data classification are significantly improved com-
pared with other machine-learning algorithms, with an accuracy of 81.6%, a recall of 80% 
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and an F1 score of 80%, respectively, demonstrating that the hybrid algorithm UMAP-RF 
still has a better detection effect for the differentiation of anomalous data. 

To demonstrate the effect of the hybrid algorithm UMAP-RF classifier more visually, 
the hybrid algorithm classifier based on multi-classification of abnormal data was visual-
ized by the UMAP algorithm. As shown in Figure 11, the color bar on the right of the 
figure denotes different attack types with different colors. The data points of the same 
attack type are clustered together in the figure, while data points of different attack types 
are separated from each other, which maximally restores the data structure after multi-
classification and demonstrates a better clustering effect to make it convenient for visual-
ization research. 

 
Figure 11. Visualization of multi-classification effect based on hybrid algorithm UMAP-RF. 

The experimental comparison and analysis results above show that the hybrid algo-
rithm UMAP-RF is also effective for multi-classification of abnormal data. 

4.7. Comparison of the Running Time of UMAP-RF Hybrid Algorithm and Other Algorithms 
Time is a critical factor in preventing and reducing the effects of the attack. The net-

work security connection data after dimensionality reduction by the UMAP algorithm 
highlights key feature information and effectively clusters data with different features, 
which significantly reduces the time required for subsequent detection of abnormal data 
and directly improves the efficiency of network traffic attack detection. In the binary clas-
sification experimental section, the running time of the hybrid algorithm UMAP-RF (in-
cluding the running time of UMAP dimensionality reduction) is compared with other ma-
chine-learning algorithms, as shown in Table 5. 

Table 5. Running time comparison of different algorithms. 

Algorithm Running Time 
RF 379.23 s 

LOF 1457.09 s 
Isolation Forest 1027.12 s 

UMAP-RF 243.39 s 
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As shown in Table 5, the UMAP algorithm reduces the dimensionality and then clas-
sifies by the random forest algorithm compared to the direct random forest algorithm in 
terms of running time by one-third, proving that the UMAP dimensionality reduction al-
gorithm can significantly reduce the subsequent time for detecting abnormal data. The 
hybrid algorithm UMAP-RF is not only more accurate than the other two algorithms in 
detecting abnormal data but also requires the lowest running time. By comparing the run-
ning time and accuracy of different algorithms in dichotomous experiments, it is demon-
strated that the hybrid algorithm UMAP-RF can effectively detect abnormal data in a 
shorter time and outperform the other algorithms in terms of comprehensive perfor-
mance. 

4.8. Time Complexity of the Hybrid Algorithm UMAP-RF 
The main factors that determine the time complexity of the dimensionality reduction 

algorithm UMAP include：the number of data points in the high-dimensional space is n
, the original dimension of the high dimension is D , and the target dimension of the low 
dimension is d . The time complexity of the computational process of mapping the data 
points in the high-dimensional space to the low-dimensional space is )nDO（ ; there-
fore, the time complexity of the UMAP algorithm is )nDO（ . 

The main factors that determine the time complexity of the random forest algorithm 
include: the size of sample is N , the number of features is M , and the depth of the tree 
is F . When the cart grows, all the values within the feature are taken as split candidates, 
and an evaluation index is calculated for them, so the time complexity of each layer is 

)NMO（ , and the time complexity of the tree at layer F  is )NMFO（ ; therefore, the 
time complexity of the random forest algorithm is )NMFO（ . 

As shown above, the time complexities of the UMAP algorithm and the random for-
est algorithm are of the same order of magnitude, so the time complexity of the hybrid 
algorithm UMAP-RF is )NMFnDO +（ . 

4.9. Comparison of the Detection Effect of UMAP-RF Hybrid Algorithm and Other Algorithms 
Because the algorithms used in the control experiments are traditional machine-

learning methods, the reference is insufficient. This paper also collects the latest results on 
network attack traffic detection at home and abroad. To ensure the fairness of the experi-
mental comparison, the experimental results compared are used in the UNSW-NB15 da-
taset. The comparison between the hybrid algorithm UMAP-RF and the detection effect 
of classification algorithms used by Guoyan Huang’s team [23], Fengjie Hu [26], Meftah 
[27], Kasongo [28], Cao Bo [29] and Alzaqebah [30] is shown in Table 6 below. 

Table 6. Comparison of the detection effect of UMAP-RF hybrid algorithm and other algorithms. 

Literature Algorithm ACC/% 
Guoyan Huang [23] (LR-RFE) + DT 88.27% 

Fengjie Hu [26] light GBM 85.78% 
Meftah [27] SVM 82.00% 

Kasongo [28] XGBOOST+DT 90.85% 
Cao Bo [29] CNN-GRU 86.25% 

Alzaqebah [30] GWO-ELM 81.00% 
Proposed in this paper UMAP-RF 92.60% 

Table 6 demonstrates that the hybrid algorithm UMAP-RF has a significant improve-
ment in accuracy compared to other algorithms, with optimal detection results, further 
proving that the hybrid algorithm UMAP-RF is practical and feasible in network attack 
traffic detection. 
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5. Conclusions 
This paper applies machine-learning algorithms to network attack traffic detection 

and proposes a hybrid algorithm UMAP-RF for binary and multi-classification network 
attack detection tasks. The dataset used in this paper is the public dataset UNSW-NB15. 
This paper uses the UMAP dimensionality reduction algorithm to reduce the dimension-
ality of the high-dimensional dataset, which significantly accelerates the detection speed 
and accuracy of the network attack traffic. Additionally, the random forest algorithm is 
improved based on parameter optimization, using the base evaluator parameter and the 
maximum leaf node parameter to prevent overfitting and improve the classification per-
formance of the random algorithm. At the same time, the hybrid algorithm UMAP-RF has 
significant advantage in accuracy compared with the control experimental results and the 
research results in recent years at home and abroad in the binary and multi-classification 
experiments. 

The research in this paper also has some shortcomings because there are no condi-
tions to build a large data network center, so the solution proposed in this paper cannot 
be experimentally analyzed in a practical application environment. We will make this part 
of my work the focus of future research and will seek to cooperate with some large do-
mestic data network centers to further improve this research. 
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