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Abstract: Network attack traffic detection plays a crucial role in protecting network operations and
services. To accurately detect malicious traffic on the internet, this paper designs a hybrid algorithm
UMAP-RF for both binary and multiclassification network attack detection tasks. First, the network
traffic data are dimensioned down with UMAP algorithm. The random forest algorithm is improved
based on parameter optimization, and the improved random forest algorithm is used to classify the
network traffic data, distinguishing normal data from abnormal data and classifying nine different
types of network attacks from the abnormal data. Experimental results on the UNSW-NB15 dataset,
which are significant improvements compared to traditional machine-learning methods, show that
the UMAP-RF hybrid model can perform network attack traffic detection effectively, with accuracy
and recall rates of 92.6% and 91%, respectively.

Keywords: internet; cyber attack; random forest; UMAP; machine learning

1. Introduction

Since 2020, with Corona Virus Disease 2019 sweeping the world, people have had to
work online, and most schools have adopted online classes to teach. Internet traffic has
increased dramatically, and many unscrupulous individuals have used hacking techniques
to create malicious traffic to interfere with the normal operation of network devices to
profit from this period. Cyber threats have been ranked as one of the most critical threats
to the world economy, with expected USD 133 billion cyber-security-related expenditure
to date [1]. With the constant development and popularity of cyber security [2], cyber
attack security detection systems are widely used to protect cyberspace and ensure that
people can browse the web in a secure network environment. Network attack traffic
detection has been one of the main methods to enhance network security in recent years [3],
which monitors network traffic or suspicious activities in hosts and issues alerts when
such activities are detected. Currently, network attack traffic detection is gradually moving
toward intelligence, and research on strange traffic attacks based on machine learning or
data mining [4] has yielded significant results.

The network traffic in the current internet environment is growing, and the variety
of malicious traffic is increasing. Traditional machine-learning methods are difficult to
effectively detect network attack traffic and have low detection efficiency. To better han-
dle the high-dimensional network security connection data and improve the efficiency of
subsequent detection of abnormal data, we propose a hybrid algorithm—called uniform
manifold approximation and projection algorithm-random forest (UMAP-RF)—for detec-
tion methods. First, large and complex network traffic is dimensionally reduced by using
the uniform manifold approximation and projection algorithm (UMAP) [5], and then, an
improved random forest (RF) is adopted for more accurate detection and classification.
Compared with traditional machine-learning methods, the UMAP-RF hybrid algorithm
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greatly reduces the detection time for network data with large and tedious data volume and
improves the efficiency of network attack security detection. The characteristics of network
connection data after dimensionality reduction are more pronounced, which further en-
hances the accuracy of differentiation based on normal data and abnormal data. This hybrid
algorithm solves the problems of ineffective processing of high-dimensional data and low
detection accuracy in the current research of network attack traffic detection technology,
and it directly improves the accuracy and efficiency of network traffic attack detection.
Moreover, this paper visualizes and analyzes the network traffic data after detection and
classification, which visually verifies the effectiveness of the algorithm more intuitively.
The dataset used in the experiments of this paper is UNSW-NB15 [6]. Compared with KD-
DCUP99 [7] and NSL-KDD [8], the dataset UNSW-NB15 has more attack types, can better
simulate the network traffic on the internet nowadays and has a more practical reference
value. To make the proposed solution more applicable in network attack traffic detection
techniques, the KDDCUP99 and NSL-KDD datasets are used in the binary classification
experimental part under the same experimental environment, and the experimental results
show that the hybrid algorithm UMAP-RF still has excellent experimental results.

The main contributions of this paper are as follows. Firstly, this paper uses the UMAP
algorithm based on network traffic feature filtering for dimensionality reduction, so that
the reduced network security connection data highlight the key feature information, which
helps classify the normal and abnormal data. Additionally, the processing speed is very
fast when facing a large amount of data, which directly improves the efficiency of network
security attack detection. Second, this paper restores the structure of the classified data
to the maximum extent for the visualization study, and it can be observed that there is a
clear distinction between normal and abnormal data in the visualization effect diagram of
binary classification and multi-classification, and different kinds of abnormal data are also
distinguished from each other. Third, the random forest algorithm is improved based on
parameter optimization, using the number of base evaluators and the maximum number of
leaf nodes to optimize the parameters of the random forest algorithm, and the improved
algorithm can effectively prevent overfitting and improve the classification performance of
the random forest algorithm. The accuracy and false alarm rate are significantly improved
compared to other machine-learning algorithms.

Section 2 of this paper introduces the current status of domestic and international re-
search on network attack traffic detection techniques and compares the accuracy of various
detection models. Section 3 gives the hybrid algorithm UMAP-RF proposed in this paper, in-
cluding the model and algorithm steps, and Section 4 conducts the experiments to evaluate
and compare the accuracy and running time obtained from the detection classification.

2. Related Works

Machine-learning-based network attack traffic detection has attracted the attention of
many researchers engaged in the network security industry [9], especially the prevalent
deep learning nowadays. Several researchers have introduced deep-learning models to
network attack traffic detection and achieved good results.

Ever since data mining was introduced in 1989, the application of data mining in
network attack traffic detection systems has become the main research direction of network
attack traffic detection technology. The U.S. Department of Defense Advanced Planning
Agency (DARPA) created the DARPA 1998 dataset [10]. Subsequently, Wenke Lee et al.
divided this dataset into training data with markers and unmarked test data [11], named
the KDDCUP99 dataset, and later, the NSL-KDD dataset originated from it. Since the
birth of these datasets, machine-learning and later deep-learning techniques have been
massively applied in the study of network attack traffic detection models. Currently, the
primary methods applied in machine learning for network traffic attack detection include
support vector machines (SVM) [12], decision trees [13], Bayesian [14] and artificial neural
networks [15], etc. The NSLKDD dataset cannot meet the current research needs in the
field of intrusion detection due to its inherent shortcomings. Moustafa et al. published
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the UNSW-NB15 dataset. Compared with the KDDCUP99 and NSL-KDD datasets, the
UNSW-NB15 dataset contains the most comprehensive attack scenarios. Researchers can
detect malicious traffic by imitating the actual network environment based on this dataset,
which promotes the development of network attack traffic detection research.

More and more research on network traffic anomaly detection has been conducted at
home and abroad in recent years. Guoyan Huang’s team proposed a K-Means algorithm-
based clustering of typical network traffic in the UNSW-NB15 dataset [16], processed the
extracted representative feature subsets with a feature recursive elimination algorithm
and then designed nine algorithm combinations by combining three machine-learning
algorithms: decision trees, random forest and XGBoost [17]. Zhang Renjie of Nanjing
University of Posts and Telecommunications clustered some samples screened by the KNN
algorithm with the DBSCAN algorithm [18]. The recall and F1 scores obtained by training
on some features of the UNSW-NB15 dataset showed a significant improvement. Fengjie
Hu of Xidian University designed a network intrusion detection system based on the light
GBM model. The accuracy obtained by comparison and validation on the dataset UNSW-
NB15 was 85.78% [19]. Meftah experimented with an improved SVM algorithm on the
UNSW-NB15 dataset, and the accuracy obtained was 82% [20]. Kasongo improved the test
accuracy of the binary classification scheme from 88.13% to 90.85% by using the XGBoost-
based feature selection method allowing DT and other ways [21]. Cao Bo proposed a
network intrusion detection model incorporating a convolutional neural network and
gated recursive units and obtained an accuracy of 86.25% after experiments on the UNSW-
NB15 dataset, which was 1.95% higher than the same type of CNN-GRU [22]. Alzaqebah
tuned the parameters of the extreme learning machine (ELM) by an improved gray wolf
optimization algorithm (GWO) to test the proposed method using the UNSW-NB15 dataset
and experimentally obtained an accuracy rate of 81% [23].

However, these methods did not perform a good job in dimensionality reduction in the
dataset. The training speed of traditional machine-learning algorithms will be significantly
reduced when facing large network traffic. For such problems, the UMAP algorithm based
on network traffic feature filtering can effectively handle high-dimensional network traffic
data and make the characteristics of the reduced-dimensional network traffic data more
pronounced. It has a speedy running time and processes the data with high computational
efficiency. Additionally, the hybrid algorithm UMAP-RF yields an accuracy of 92.6% after
binary classification experiments on the UNSW-NB15 dataset, both of which are more
accurate and have better performance than those obtained by the methods proposed in the
above literature.

3. Hybrid Algorithm UMAP-RF

The hybrid algorithm UMAP-RF performs dimensionality reduction on the UNWS-
NB15 dataset by the UMAP algorithm, and the reduced data are classified by the improved
random forest algorithm based on parameter optimization to distinguish normal data from
abnormal data and then classify the abnormal data.

3.1. UMAP Dimensionality Reduction Algorithm

The UMAP algorithm was created based on the theoretical framework structure of
Riemannian geometry and algebraic topology [5] to reduce the dimensionality of high-
dimensional data based on the conclusion that high-dimensional spaces map to low-
dimensional similarities [24].

Theorem 1. In Euclidean space, mapping points in high-dimensional space to low-dimensional
space, the points originally close are definitely still close in low-dimensional space, but the points
originally far away have some probability of becoming close.

Proof of Theorem 1. In the process of mapping points in high-dimensional space to
low-dimensional space, we need to use embedding to calculate the similarity using inner
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product operation. Suppose v is a k-dimensional embedding vector in high-dimensional
space, and x is a randomly generated k-dimensional mapping vector. Then, we can use
the inner product operation to map v to a one-dimensional space and obtain the value
h(v) = v ∗ x. In the process of mapping, some distance information will be lost; therefore,
some similar points will be misclassified, which will cause the points that are far from each
other in the high-dimensional space to gather together in the low-dimensional space after
mapping. �

Given a high-dimensional data point X = {x1, · · · , xn} and a low-dimensional data
point Y = {y1, · · · , yn}. Using the nearest neighbor algorithm, the set of k nearest neigh-
bors of each xi is obtained {x i, · · · , xik

}
. Where x is a high-dimensional space, xi∈x, xi

denotes the i-th data in the high-dimensional space; then, using an exponential probability
distribution, the high-dimensional topology can be expressed as follows.

pi|j = exp

−max
(

0, d
(

xi, xij

)
− ρi

)
σi

 (1)

where ρi denotes the distance from point xi to the first nearest neighbor data point, and σi
denotes the diameter from point xi to the first nearest neighbor data point. Additionally,
note that this is not a symmetric function, so this function should be symmetrized with
high-dimensional probability to avoid overcrowding of cluster representations, so that
different clusters can be represented in the overlapping regions.

pij = pi|j + pj|i − pi|j pj|i (2)

High-dimensional probabilistic symmetry is necessary because after UMAP combines
the points with local metric changes, it may appear that the weights of the graph between
node a and node b are not equal to the weights between node b and node a, where pi|j
denotes the weight of the i-th point to the j-th point distance, and pj|i denotes the weight of
the j-th point to the i-th point distance.

After establishing the topology in the high-dimensional spatial distribution, it is
correspondingly necessary to establish the probability distribution in the low-dimensional
space as well.

qij =
(

1 + a
(
yi − yj

)2b
)−1

(3)

The curve cluster a(yi − yj)
2b is used in formula (3) to model the low-dimensional dis-

tance probabilities, not exactly t-distributed, where the default hyperparameters a ≈ 1.93,
b ≈ 0.79 [5].

The UMAP algorithm expects data points of the same kind to be as close together as
possible in the low-dimensional space after dimensionality reduction, while data points
of different kinds are as far away from each other as possible. Therefore, the following
function is introduced.

Attractive =pi|j(X) log(
pi|j(X)

qi|j(Y)
) (4)

Repulsive = (1 − pi|j(X)) log(
1− pi|j(X)

1− qi|j(Y)
) (5)

In formulas (4) and (5), pi|j(X) is the weight of data points in the high-dimensional
distribution, and qi|j(Y) is the weight of data points in the low-dimensional distribution.
The algorithm first applies a gravitational force to data points of the same kind in the
dataset and a repulsive force to data points of different kinds. Thus, it achieves the effect
that data points of the same kind are clustered together, while data points of different kinds
are kept away.
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Given the above description, the specific description of the UMAP algorithm is shown
in Algorithm 1.

Algorithm 1 UMAP algorithm

function UMAP (X,n,d, min-dist,n-epochs)
for all x ∈ X do
fs-set [x]←LocalFuzzySimplicialSet (X,x,n)
top-rep ← ∪x∈X fs-set [x]
Y ←SpectralEmbedding(top-rep,d)
Y ←OptimizeEmbedding(top-rep, Y,min-dist,n-epochs)
return Y

3.2. Random Forest Algorithm Based on Parameter Optimization

The random forest algorithm is a large-scale, high-dimensional data learning classifier
integrated with multiple independent decision tree classifiers, each of which is obtained
based on Bootstrap sampling. Then, multiple decision trees are combined to derive the
final classification result by voting. The random forest algorithm is chosen to classify
network traffic data because it can improve the training speed of large samples by high
parallelization when dealing with the data volume of network security connection data.
The process of constructing the random forest algorithm is as follows:

1. Construct multiple sub-datasets. Form an intermediate dataset by selecting k samples
through sampling with put-back from a dataset, including k samples, and then
randomly select a few features among all features of this intermediate dataset as the
final dataset;

2. Build a sub-decision tree based on the sub-dataset. Assume that a sub-dataset has
M features. When each node of the decision tree needs to split, randomly select m
features from these features (m < M), then select one of the m features as the splitting
attribute of the node. Keep repeating this step until it can no longer be classified. The
principle of judgement is that the attribute selected by a node next time is the attribute
used in the last split;

3. Follow the above steps to construct a large number of sub-decision trees, which form
a random forest;

4. Input the dataset into different sub-decision trees. Different judgments will be
obtained. The most judgmental result is the classification result obtained by the
random forest.

Given the above description, the specific description of random forest algorithm is
shown in Algorithm 2.

Algorithm 2 Random Forest algorithm

For a = 1 to A:

(a) A boostrap sample Y of size X∗ is randomly selected from the training set.
(b) Grow a random-forest tree Ta to the boostrapped data, repeating the following steps

recursively for each terminal node of the tree, guiding to the minimum node size xmin

i. Select n variables at random from the q variables.
ii. Pick the best variable among the n.
iii. Split the node into two child nodes.

Output the ensemble of trees {Ta}A
1

To make a prediction at a new point h:

Classification: Let
_
C a(h) be the class prediction of the ath random-forest tree. Then,

_
C

A

rf (h) = majority vote
{
_
C a(h)

}A

1
.
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To further improve the effectiveness of the random forest algorithm for detecting
malicious traffic in complex network traffic, this paper improves the random forest al-
gorithm based on parameter optimization using base evaluators (n_estimators) and the
maximum number of leaf nodes (max_leaf_nodes). Hyperparameters are very important
for machine-learning algorithms because they directly control the behavior of the training
algorithm and have an essential impact on the performance of machine-learning models.

3.3. UMAP-RF Hybrid Algorithm

This paper proposes a hybrid algorithm UMAP-RF, reduces the dimensionality of
UNWS-NB15 dataset by the UMAP algorithm and thus improves the speed and accuracy
of network attack traffic detection. The random forest algorithm is improved based on
parameter optimization, and the dimensionality reduction data are bifurcated with the
improved random forest algorithm. The abnormal data distinguished after bifurcation are
classified to complete the network attack traffic detection task.

The UMAP algorithm is chosen as the dimensionality reduction method for the dataset
in this paper mainly because it can preserve the data structure after the classification
algorithm as much as possible. UMAP algorithm focuses more on the visualization of
the classified data structure, and the UMAP visualization graph can intuitively represent
the relationship between individual data features in the two-dimensional plane. For high-
dimensional network-traffic-type datasets, this dimensionality reduction method is very
effective for visualizing binary and classifying network attack traffic detection.

Improving the random forest algorithm based on parameter optimization aims to
prevent overfitting when classifying more features in the UNSW-NB15 dataset and further
enhance the random forest algorithm classification performance. The optimized random
forest algorithm can effectively distinguish between normal and abnormal data and classify
abnormal data. The accuracy obtained after classification is much higher compared to
traditional machine-learning algorithms. The Figure 1 and Table 1 are training steps of the
UMAP-RF hybrid algorithm and UMAP-RF hybrid algorithm flow chart.
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Table 1. List of features in the UNSW-NB15 dataset.

No. Feature No. Feature No. Feature No. Feature No. Feature

1 srcip 11 dttl 21 stcpb 31 sintpkt 41 ct_srv_src
2 sport 12 sloss 22 dtcpb 32 dintpkt 42 ct_srv_dst
3 dstip 13 dloss 23 smeansz 33 tcprtt 43 ct_dst_ltm
4 dsport 14 service 24 dmeansz 34 synack 44 ct_src_ ltm
5 proto 15 sload 25 trans_depth 35 ackdat 45 ct_src_dport_ltm
6 state 16 dload 26 res_bdy_len 36 is_sm_ips_ports 46 ct_dst_sport_ltm
7 dur 17 spkts 27 sjit 37 ct_state_ttl 47 ct_dst_src_ltm
8 sbytes 18 dpkts 28 djit 38 ct_flw_http_mthd 48 attack_cat
9 dbytes 19 swin 29 stime 39 is_ftp_login 49 label
10 sttl 20 dwin 30 ltime 40 ct_ftp_cmd

1. Divide the UNSW-NB15 dataset into 70% training set, 10% validation set (Set hyper-
parameters) and 20% test set;

2. Convert the non-numerical features to numerical values and remove non-numerical
features, such as proto, service and state, from the dataset to obtain dataset δ;

3. The processed dataset δ is dimensionally reduced by the UMAP algorithm to obtain
dataset θ;

4. Optimize the parameters of the random forest algorithm with the number of base
evaluators and the maximum number of leaf nodes. n_estimators is set to 1000, and
max_leaf_nodes is set to 10 by manual parameter tuning;

5. Import the dataset θ obtained after UMAP dimensionality reduction into the improved
random forest algorithm for training. Classify normal data α and abnormal data β,
and complete malicious traffic detection;

6. Import the detected abnormal data β into the improved random forest algorithm to
classify the abnormal data β, and obtain each specific type of network attack traffic.

4. Experiment and Analysis
4.1. UNSW-NB15 Dataset and Experimental Environment

The UNSW-NB15 dataset, created by the Australian Centre for Cyber Security (ACCS)
Network Scope Lab, is the closest simulation of the current network traffic environment,
covering one regular class of data and nine attack classes of data. Denial of Service (Dos),
Exploits (Attack), Generic (General), Reconnaissance, Shellcode and Worms. As shown
in Table 1, features 1 to 5 are stream features collected from the dataset, 6 to 18 are based
features, 19 to 26 are content features, 27 to 35 are temporal features, 36 to 40 are generic
features, 41 to 47 are general features and 48 to 49 are label features. In this paper, we
use the training set of UNSW-NB15 to train the model and use its test set to evaluate the
model performance.

The network attack traffic detection model experiments and comparison experiments
presented in this paper were conducted on a 64-bit Windows Intel(R) Core (TM) i7-11700K
CPU (3.60 GHz) with 32 GB RAM and a Python-based Nvidia GeForce GTX 3070 GPU
(8 GB), using Python’s TensorFlow library to write the UMAP-RF model for this paper.

4.2. Experimental Results of Dimensionality Reduction Algorithm

The pre-processed data are imported into the PCA algorithm [25], T-SNE algorithm [26]
and UMAP algorithm, all of which are commonly used in machine learning to process
the dimensionality reduction in high-dimensional datasets. The visualization plots and
running times of the three-dimensionality reduction algorithms are derived by experimental
simulation, respectively.

Figure 2 shows the data structure visualization after being processed by the dimen-
sionality reduction algorithm PCA, T-SNE and UMAP, respectively. The purple color at the
top of the color gradient bar on the right side of the figure to the eighth orange color from
the top down are abnormal attack data. Different color blocks represent different types of
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attacks, and the rosy color at the bottom is normal data. The more concentrated points of
the same color and the more separate issues of different colors indicate the apparent effect
of data clustering of each feature, thus reflecting the impact of dimensionality reduction
algorithm clustering. The comparison from the figure shows that the UMAP algorithm has
the best effect of dimensionality reduction on the dataset and effectively spreads out the
data of different attack types.

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 18 
 

1 srcip 11 dttl 21 stcpb 31 sintpkt 41 ct_srv_src 

2 sport 12 sloss 22 dtcpb 32 dintpkt 42 ct_srv_dst 

3 dstip 13 dloss 23 smeansz 33 tcprtt 43 ct_dst_ltm 

4 dsport 14 service 24 dmeansz 34 synack 44 ct_src_ ltm 

5 proto 15 sload 25 trans_depth 35 ackdat 45 ct_src_dport_ltm 

6 state 16 dload 26 res_bdy_len 36 is_sm_ips_ports 46 ct_dst_sport_ltm 

7 dur 17 spkts 27 sjit 37 ct_state_ttl 47 ct_dst_src_ltm 

8 sbytes 18 dpkts 28 djit 38 ct_flw_http_mthd 48 attack_cat 

9 dbytes 19 swin 29 stime 39 is_ftp_login 49 label 

10 sttl 20 dwin 30 ltime 40 ct_ftp_cmd   

The network attack traffic detection model experiments and comparison experiments 

presented in this paper were conducted on a 64-bit Windows Intel(R) Core (TM) i7-11700K 

CPU (3.60 GHz) with 32 GB RAM and a Python-based Nvidia GeForce GTX 3070 GPU (8 

GB), using Python’s TensorFlow library to write the UMAP-RF model for this paper. 

4.2. Experimental Results of Dimensionality Reduction Algorithm 

The pre-processed data are imported into the PCA algorithm [25], T-SNE algorithm 

[26] and UMAP algorithm, all of which are commonly used in machine learning to process 

the dimensionality reduction in high-dimensional datasets. The visualization plots and 

running times of the three-dimensionality reduction algorithms are derived by experi-

mental simulation, respectively. 

Figures 3 show the data structure visualization after being processed by the dimen-

sionality reduction algorithm PCA, T-SNE and UMAP, respectively. The purple color at 

the top of the color gradient bar on the right side of the figure to the eighth orange color 

from the top down are abnormal attack data. Different color blocks represent different 

types of attacks, and the rosy color at the bottom is normal data. The more concentrated 

points of the same color and the more separate issues of different colors indicate the ap-

parent effect of data clustering of each feature, thus reflecting the impact of dimensionality 

reduction algorithm clustering. The comparison from the figure shows that the UMAP 

algorithm has the best effect of dimensionality reduction on the dataset and effectively 

spreads out the data of different attack types. 

   
(a) (b) (c) 

Figure 2. Visualization of data structure after dimensionality reduction by three different algorithms. 

(a) PCA algorithm. (b) T-SNE algorithm. (c) UMAP algorithm. 
Figure 2. Visualization of data structure after dimensionality reduction by three different algorithms.
(a) PCA algorithm. (b) T-SNE algorithm. (c) UMAP algorithm.

As shown in Figure 2, although the principal component analysis (PCA) method
projects the high-dimensional data onto a two-dimensional plane after dimensionality
reduction, all features are crowded together without bothering to distinguish normal data
from abnormal data. Therefore, the principal component analysis (PCA) method is ineffec-
tive in dimensionality reduction for network attack traffic. As shown in Figure 3, T-SNE
can further distinguish between normal and abnormal data and preserve the data structure
after dimensionality reduction. However, T-SNE is not applicable to large samples and
cannot achieve the preservation of the global structure. Compared with T-SNE, the UMAP
algorithm can better reflect the high-dimensional data structure with better continuity.
As shown in Figure 4, the distinction between normal and abnormal data is more obvi-
ous in the two-dimensional plane, while the global structure is better preserved after the
dimensionality reduction.
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Figure 3. The confusion matrix by three different algorithms. (a) UMAP-RF algorithm. (b) LOF
algorithm. (c) Isolation Forest algorithm.
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This paper also compares the running time of three dimensionality reduction algo-
rithms, as shown in Table 2. Principal component analysis (PCA) has the shortest running
time and is much shorter than the other two methods, but it cannot show the relationship
between the data after dimensionality reduction. The network traffic dataset needs to retain
the structure of the reduced data as much as possible after dimensionality reduction, so
principal component analysis (PCA) cannot be applied to the study in this paper. Compared
with the running time of 695.31s of T-SNE algorithm, the running time of UMAP algorithm
is only 93.82s, which is much smaller than that of T-SNE algorithm, and UMAP algorithm
can better retain the data structure after dimensionality reduction.

Table 2. Running time of three-dimensionality reduction algorithms.

Algorithm Running Time

PCA 3.59 s
T-SNE 695.31 s
UMAP 93.82 s

In this paper, the UMAP algorithm is introduced for the first time to reduce the
dimensionality of network traffic data, which can not only preserve the data structure to
the maximum extent for visualization and research but can be processed very fast when
facing massive network traffic data.

4.3. Experimental Evaluation Metrics

In this paper, the classification experiments evaluate the performance of the intrusion
detection model using four metrics, such as area under curve (AUC), accuracy (accuracy,
ACC), recall (recall) and F1 score (F1 Score).

The confusion matrix is a situation analysis table for summarizing the prediction
results of classification models in machine learning. As shown in Table 3, TP is the number
of correctly predicted positive cases, which is the number of connection records correctly
classified as attack class in network attack security detection. FN is the number of incorrectly
predicted positive cases, which is the number of connection records incorrectly classified
as normal class in the scenario of this paper. FP is the number of incorrectly predicted
negative cases, which is the number of connection records incorrectly classified as attack
class in the scenario of this paper. TN is the number of correctly predicted negative cases,
which in the scenario of this paper is the number of connection records correctly classified
as normal class.
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Table 3. Confusion matrix.

Projections

Attack Normal

Actual
Attack TP FN

Normal FP TN

The AUC metric and the ROC curve are introduced in binary classification because
they provide a more comprehensive assessment of a classifier’s, and in particular, the
classifier’s effectiveness in binary classification, where area under curve (AUC) is defined
as the area under the ROC curve.

Accuracy, Recall and F1 Score are defined as formulas (6)–(8), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall =
TP

TP + FP
(7)

F1 Score =
2× Recall× Precision

Recall + Precision
(8)

4.4. Random Forest Classifier Parameter Settings

For the random forest algorithm classifier, the larger the number of base evaluators
(n_estimators) in general, the better the classification effect of the algorithm, but all the
computation and memory required are also larger, which will lead to an increase in training
time. Due to many feature components in the UNSW-NB15 dataset, it is easy to overfit
in the process of classification. Overfitting can be prevented by limiting the maximum
number of leaf nodes (max_leaf_nodes).

In this paper, we perform parameter tuning on the validation set by manually tuning
the parameters and finally select the highest scoring set as the final hyperparameters of the
random forest algorithm. The scores of each hyperparameter group obtained by manual
tuning are shown in Table 4.

Table 4. Scores of each hyperparameter group obtained by manual tuning.

No. Score (n_estimators,
max_leaf_nodes)

1 83.7 (800, 30)
2 86.2 (1600, 40)
3 91.6 (1000, 10)
4 77.5 (500, 70)
5 81.1 (2000, 20)
6 85.4 (200, 10)

As shown in Table 4, the third set of hyperparameters scored the highest, so the
n_estimators best parameter is 1000, and the max_leaf_nodes best parameter is 10. The
random forest algorithm will build the optimal decision tree within the optimal set of
parameters set in this paper.

4.5. Analysis of Binary Classification Experimental Results

The confusion matrix derived from the hybrid algorithm UMAP-RF, isolated forest
(IF) [27] and local outlier factor (LOF) [28] on a test set is shown in Figure 3. Based on
the parameters in this result, several evaluation indices were experimentally calculated in
anticipation of obtaining a comprehensive performance report of the algorithm.
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In Figure 3, the upper left part of the confusion matrix shows the number of connection
records correctly classified as attack class, and the upper right part shows the number of
connection records of normal class. The lower left part shows the number of connection
records incorrectly classified as attack class. The lower right part shows the number of
connection records correctly classified as normal class. The accuracy rate of each algorithm
can be calculated from formula (6), the regression rate of each algorithm can be calculated
from formula (7), and the F1 score of each algorithm can be calculated from formula (8).

Based on the confusion matrix plots of the above three algorithms, the AUC, accuracy,
recall and F1 scores of the hybrid algorithm UMAP-RF hybrid, isolated forest algorithm
and LOF algorithm are derived and compared, and the comparison of the experimental
results is shown in Figure 4.

As shown in Figure 4, the accuracy, recall and F1 score of the hybrid algorithm UMAP-
RF based on binary classification experiments are significantly improved compared with
other machine-learning algorithms, with an accuracy of 92.6%, a recall of 91% and an F1
score of 90.5%, demonstrating that the hybrid algorithm UMAP-RF has a better detection
effect for distinguishing normal data from abnormal data.

The ROC curves for the hybrid algorithm UMAP-RF, isolated forest algorithm and
LOF algorithm are shown in Figure 5. The AUC value is the area under the ROC curve.
The calculation shows that the AUC value for the hybrid algorithm UMAP-RF is 85%, the
isolated forest algorithm is 54.4%, and the LOF algorithm is 52.7%. Based on the AUC
values, it can be seen that the hybrid algorithm UMAP-RF performs significantly better
compared to the isolated forest algorithm and the LOF algorithm.
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Figure 5. ROC curve of binary classification experiments.

To demonstrate the effect of the hybrid algorithm UMAP-RF classifier more visually, a
visualization study of the binary classification-based hybrid algorithm UMAP-RF classifier
was conducted. As shown in Figure 6, the purple part represents normal network traffic
data points, and the rosy part represents abnormal attack traffic data points. The purple
data points are clustered together and separated from the rosy data points in the figure,
which maximally restores the data structure after binary classification and demonstrates a
better clustering effect for visualization and research.

To demonstrate the applicability of the hybrid algorithm UMAP-RF in network at-
tack traffic detection, the normal and abnormal data in the dataset of KDDCUP99 and
NSLKDD were classified by the hybrid algorithm UMAP-RF, LOF algorithm and isolated
forest algorithm in the experimental part. The accuracy, recall and F1 score obtained after
classification were also compared, and the experimental results of different algorithms are
shown in Figures 7 and 8.
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Figure 7. Comparison histogram of experimental results of different algorithms for KDDCUP dataset.

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 18 
 

 

Figure 7. Comparison histogram of experimental results of different algorithms for KDDCUP da-

taset. 

 

Figure 8. Comparison histogram of experimental results of different algorithms for NSL-KDD da-

taset. 

As can be seen from Figures 7 and 8, the accuracy, recall and F1 score of the hybrid 

algorithm UMAP-RF after classifying normal and abnormal data in the KDDCUP99 da-

taset and USL-KDD dataset are significantly improved compared with LOF and isolated 

forest algorithms. The hybrid algorithm UMAP-RF still has good results in distinguishing 

normal and abnormal data in the KDDCUP99 dataset, proving that the hybrid algorithm 

UMAP-RF has good applicability in network attack traffic detection. 

The experimental comparison and analysis results above show that the hybrid algo-

rithm UMAP-RF is feasible in the study of the intelligent network attack traffic detection 

model. To further demonstrate the performance of the hybrid algorithm UMAP-RF, the 

differentiated anomalous data are classified again with specific network attack types to 

prove the feasibility of the hybrid algorithm UMAP-RF in multi-classification of network 

attack traffic. 

4.6. Analysis of Multi-Classification Experimental Results 

To evaluate the hybrid algorithm UMAP-RF in the multi-classification task of net-

work attack traffic detection, the results of the control experiments are used for compara-

tive analysis, and the algorithms used in the control experiments are the K-Means cluster-

ing algorithm [29], mini batch K-Means algorithm [30] and LSTM [31] neural network al-

gorithm. The confusion matrix derived from the hybrid algorithm UMAP-RF and the al-

gorithm used in the control experiment is shown in Figure 8. Based on the parameters in 

this result, several evaluation metrics were calculated for the experiment, and since the 

AUC metric does not apply to the multi-classification task, only the accuracy, recall and 

F1 score were used as evaluation metrics for the experiment in the expectation of obtain-

ing a comprehensive performance report of the algorithm. 

Figure 9 shows the multi-classification confusion matrix for the K-Means algorithm, 

mini batch K-Means algorithm, LSTM algorithm and hybrid algorithm UMAP-RF. The 

multi-classification confusion matrix is calculated in the same way as the binary confusion 

matrix. The accuracy rate, regression rate and F1 score of each attack type are calculated 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Accuary recall FP
UMAP-RF LOF Ioslation Forest

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

Accuary recall FP

UMAP-RF LOF Ioslation Forest

Figure 8. Comparison histogram of experimental results of different algorithms for NSL-KDD dataset.

As can be seen from Figures 7 and 8, the accuracy, recall and F1 score of the hybrid
algorithm UMAP-RF after classifying normal and abnormal data in the KDDCUP99 dataset
and USL-KDD dataset are significantly improved compared with LOF and isolated forest
algorithms. The hybrid algorithm UMAP-RF still has good results in distinguishing normal
and abnormal data in the KDDCUP99 dataset, proving that the hybrid algorithm UMAP-RF
has good applicability in network attack traffic detection.

The experimental comparison and analysis results above show that the hybrid algo-
rithm UMAP-RF is feasible in the study of the intelligent network attack traffic detection
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model. To further demonstrate the performance of the hybrid algorithm UMAP-RF, the
differentiated anomalous data are classified again with specific network attack types to
prove the feasibility of the hybrid algorithm UMAP-RF in multi-classification of network
attack traffic.

4.6. Analysis of Multi-Classification Experimental Results

To evaluate the hybrid algorithm UMAP-RF in the multi-classification task of network
attack traffic detection, the results of the control experiments are used for comparative
analysis, and the algorithms used in the control experiments are the K-Means clustering
algorithm [29], mini batch K-Means algorithm [30] and LSTM [31] neural network algorithm.
The confusion matrix derived from the hybrid algorithm UMAP-RF and the algorithm
used in the control experiment is shown in Figure 8. Based on the parameters in this
result, several evaluation metrics were calculated for the experiment, and since the AUC
metric does not apply to the multi-classification task, only the accuracy, recall and F1
score were used as evaluation metrics for the experiment in the expectation of obtaining a
comprehensive performance report of the algorithm.

Figure 9 shows the multi-classification confusion matrix for the K-Means algorithm,
mini batch K-Means algorithm, LSTM algorithm and hybrid algorithm UMAP-RF. The
multi-classification confusion matrix is calculated in the same way as the binary confusion
matrix. The accuracy rate, regression rate and F1 score of each attack type are calculated
from formulas (6)–(8). The multi-classification metrics of each algorithm can be obtained
by averaging the metrics of all attack types.
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Based on the confusion matrix plots of the above four algorithms, the accuracy, recall
and F1 scores of the hybrid algorithms UMAP-R and K-Means algorithm, mini batch K-
Means algorithm and LSTM neural network algorithm are derived and compared, and the
experimental results are shown in Figure 10.
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As can be seen from Figure 10, the accuracy, recall and F1 score of the hybrid algorithm
UMAP-RF based on abnormal data classification are significantly improved compared with
other machine-learning algorithms, with an accuracy of 81.6%, a recall of 80% and an F1
score of 80%, respectively, demonstrating that the hybrid algorithm UMAP-RF still has a
better detection effect for the differentiation of anomalous data.

To demonstrate the effect of the hybrid algorithm UMAP-RF classifier more visually,
the hybrid algorithm classifier based on multi-classification of abnormal data was visualized
by the UMAP algorithm. As shown in Figure 11, the color bar on the right of the figure
denotes different attack types with different colors. The data points of the same attack type
are clustered together in the figure, while data points of different attack types are separated
from each other, which maximally restores the data structure after multi-classification and
demonstrates a better clustering effect to make it convenient for visualization research.
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The experimental comparison and analysis results above show that the hybrid algo-
rithm UMAP-RF is also effective for multi-classification of abnormal data.
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4.7. Comparison of the Running Time of UMAP-RF Hybrid Algorithm and Other Algorithms

Time is a critical factor in preventing and reducing the effects of the attack. The
network security connection data after dimensionality reduction by the UMAP algorithm
highlights key feature information and effectively clusters data with different features,
which significantly reduces the time required for subsequent detection of abnormal data
and directly improves the efficiency of network traffic attack detection. In the binary
classification experimental section, the running time of the hybrid algorithm UMAP-RF
(including the running time of UMAP dimensionality reduction) is compared with other
machine-learning algorithms, as shown in Table 5.

Table 5. Running time comparison of different algorithms.

Algorithm Running Time

RF 379.23 s
LOF 1457.09 s

Isolation Forest 1027.12 s
UMAP-RF 243.39 s

As shown in Table 5, the UMAP algorithm reduces the dimensionality and then
classifies by the random forest algorithm compared to the direct random forest algorithm
in terms of running time by one-third, proving that the UMAP dimensionality reduction
algorithm can significantly reduce the subsequent time for detecting abnormal data. The
hybrid algorithm UMAP-RF is not only more accurate than the other two algorithms
in detecting abnormal data but also requires the lowest running time. By comparing
the running time and accuracy of different algorithms in dichotomous experiments, it is
demonstrated that the hybrid algorithm UMAP-RF can effectively detect abnormal data in a
shorter time and outperform the other algorithms in terms of comprehensive performance.

4.8. Time Complexity of the Hybrid Algorithm UMAP-RF

The main factors that determine the time complexity of the dimensionality reduction
algorithm UMAP include: the number of data points in the high-dimensional space is n,
the original dimension of the high dimension is D, and the target dimension of the low
dimension is d. The time complexity of the computational process of mapping the data
points in the high-dimensional space to the low-dimensional space is O(nD); therefore, the
time complexity of the UMAP algorithm is O(nD).

The main factors that determine the time complexity of the random forest algorithm
include: the size of sample is N, the number of features is M, and the depth of the tree is F.
When the cart grows, all the values within the feature are taken as split candidates, and
an evaluation index is calculated for them, so the time complexity of each layer is O(NM),
and the time complexity of the tree at layer F is O(NMF); therefore, the time complexity of
the random forest algorithm is O(NMF).

As shown above, the time complexities of the UMAP algorithm and the random
forest algorithm are of the same order of magnitude, so the time complexity of the hybrid
algorithm UMAP-RF is O(nD + NMF).

4.9. Comparison of the Detection Effect of UMAP-RF Hybrid Algorithm and other Algorithms

Because the algorithms used in the control experiments are traditional machine-
learning methods, the reference is insufficient. This paper also collects the latest results
on network attack traffic detection at home and abroad. To ensure the fairness of the
experimental comparison, the experimental results compared are used in the UNSW-NB15
dataset. The comparison between the hybrid algorithm UMAP-RF and the detection effect
of classification algorithms used by Guoyan Huang’s team [23], Fengjie Hu [26], Meftah [27],
Kasongo [28], Cao Bo [29] and Alzaqebah [30] is shown in Table 6 below.
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Table 6. Comparison of the detection effect of UMAP-RF hybrid algorithm and other algorithms.

Literature Algorithm ACC/%

Guoyan Huang [23] (LR-RFE) + DT 88.27%
Fengjie Hu [26] light GBM 85.78%

Meftah [27] SVM 82.00%
Kasongo [28] XGBOOST+DT 90.85%
Cao Bo [29] CNN-GRU 86.25%

Alzaqebah [30] GWO-ELM 81.00%
Proposed in this paper UMAP-RF 92.60%

Table 6 demonstrates that the hybrid algorithm UMAP-RF has a significant improve-
ment in accuracy compared to other algorithms, with optimal detection results, further
proving that the hybrid algorithm UMAP-RF is practical and feasible in network attack
traffic detection.

5. Conclusions

This paper applies machine-learning algorithms to network attack traffic detection and
proposes a hybrid algorithm UMAP-RF for binary and multi-classification network attack
detection tasks. The dataset used in this paper is the public dataset UNSW-NB15. This paper
uses the UMAP dimensionality reduction algorithm to reduce the dimensionality of the
high-dimensional dataset, which significantly accelerates the detection speed and accuracy
of the network attack traffic. Additionally, the random forest algorithm is improved based
on parameter optimization, using the base evaluator parameter and the maximum leaf node
parameter to prevent overfitting and improve the classification performance of the random
algorithm. At the same time, the hybrid algorithm UMAP-RF has significant advantage in
accuracy compared with the control experimental results and the research results in recent
years at home and abroad in the binary and multi-classification experiments.

The research in this paper also has some shortcomings because there are no conditions
to build a large data network center, so the solution proposed in this paper cannot be
experimentally analyzed in a practical application environment. We will make this part of
my work the focus of future research and will seek to cooperate with some large domestic
data network centers to further improve this research.
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