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Abstract: Distributed machine learning is primarily motivated by the promise of increased computa-
tion power for accelerating training and mitigating privacy concerns. Unlike machine learning on a
single device, distributed machine learning requires collaboration and communication among the
devices. This creates several new challenges: (1) the heavy communication overhead can be a bottle-
neck that slows down the training, and (2) the unreliable communication and weaker control over the
remote entities make the distributed system vulnerable to systematic failures and malicious attacks.
This paper presents a variant of stochastic gradient descent (SGD) with improved communication
efficiency and security in distributed environments. Our contributions include (1) a new technique
called error reset to adapt both infrequent synchronization and message compression for communica-
tion reduction in both synchronous and asynchronous training, (2) new score-based approaches for
validating the updates, and (3) integration with both error reset and score-based validation. The
proposed system provides communication reduction, both synchronous and asynchronous training,
Byzantine tolerance, and local privacy preservation. We evaluate our techniques both theoretically
and empirically.

Keywords: distributed; SGD; communication; security; privacy

1. Introduction

Recent years have witnessed the increasing attention to distributed machine learning
algorithms [1–4]. The motivation to train machine-learning models in a distributed manner
arises from the rapid growth of the sizes of machine-learning models and datasets, the
increase in the diversity of the datasets, and the privacy concerns of centralized training
alternatives. On one hand, we can use multiple GPU devices to accelerate the training with
more computation power. On the other hand, training machine-learning models on the
local private data on the massive edge devices makes the models more informative and
representative. However, in both cases, the communication overhead between the devices
is the potential bottleneck of the performance. To make things worse, larger learning
systems with more devices are also more vulnerable to software/hardware failures, as well
as malicious (Byzantine) attacks.

In practice, different scenarios require different solutions. For example, when con-
ducting training tasks in a traditional datacenter, we do not require too much reduction
of the communication overhead, or too much asynchrony, since the communication is
relatively fast. In such a scenario, the requirement of privacy preservation and Byzantine
tolerance is lower. However, when there are remote devices that are geographically far
away from each other, the system should still work well with more limited communication.
Additionally, the system should also support an asynchronous mode, in case there are
stragglers. Furthermore, for edge devices, the system has to prepare for unreliable or
malicious entities and provide guarantees in preserving privacy for users of remote devices
(e.g., local differential privacy in sending messages to the central servers). The upshot
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of this is that any system must be flexible enough in order to fulfill the requirements of
different scenarios.

Besides the system-level concerns, a machine-learning system also needs to guarantee
the performance of model training. However, there are always trade-offs. Reducing the
communication overhead usually causes performance regression due to the inaccuracy
in training. Robustness or fault tolerance also causes additional noise in training. It is
essential to develop algorithms that satisfy the system requirements while guarantee
training performance by providing theoretical analysis to show the trade-offs.

An efficient, secure, and privacy-preserving distributed learning system benefits a
wide range of real-world applications. For example, communication compression can
reduce the time cost by training [5,6] for large-scale deep-learning models such as BERT [7]
and GPT-2 [8]. Federated learning [9] (FL) is another application that potentially ben-
efits from our proposed distributed learning system. FL is designed to train machine-
learning models on a collection of remote agents with their local private datasets, where
the communication is extremely slow or unreliable, thus requiring compression [10] and
protection [11]. For example, next-word prediction is a widely used feature on virtual
keyboards for touchscreen mobile devices, which is commonly supported by FL due to the
privacy concerns. However, the mobile devices are not always connected to high-speed
and free WiFi. To make things worse, nefarious users can easily feed poisoned data with
abnormal behaviors to attack the learning system. In that case, a distributed learning
system that integrates both communication efficiency and security is very useful. Industrial
machine-learning applications such as the ML-embedded energy sector [12,13] can also use
distributed learning systems to train a global model on the data placed on multiple sites that
are remote to each other, without transmitting the local training data, which are potentially
confidential. In such cases, the communication efficiency and robustness are substantial
due to the slow and unreliable networking of the remote sites located in suburban or even
offshore areas [14]. However, combining communication efficiency, security, and privacy
preservation is challenging in both theory and practice.

In this paper, we study distributed stochastic gradient descent (SGD) and its variants,
which are commonly used for training large-scale deep neural networks. We present a dis-
tributed learning system that trains machine-learning models with variants of distributed
SGD, which integrates several techniques in (1) communication reduction, (2) asynchronous
training, and (3) tolerance to Byzantine faults.

In contrast to previous works that focus on one of the aspects in communication
reduction [15], asynchronous training [16], and Byzantine tolerance [17–19], this paper
presents a distributed learning system, ZenoPS, with the following characteristics:

• Communication efficiency and security in a single system: In contrast to the previ-
ous works that focus on either communication efficiency or security in distributed
SGD, this paper presents algorithms that achieve communication reduction with both
message compression and infrequent synchronization, asynchronous training, and
Byzantine tolerance, simultaneously.

• Detached validation from the servers: In this paper, we present a new system ar-
chitecture with an additional component called the Validator, which decouples the
Byzantine tolerance from the server side. By doing so, the servers can focus on main-
taining the global model parameters, which requires less computation resources, while
the validators, which are more computation-intensive, are tasked with defending the
servers by verifying the anonymous updates.

• Local differential privacy: In this paper, we propose to randomly insert Byzantine
failures on the workers intentionally to produce noisy updates for the protection of
the private local data on the workers. Combined with the validators, the system
achieves both local differential privacy with limited regression in training convergence
and accuracy.

The contributions of this paper are as follows:
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• We present a distributed learning system, ZenoPS, that integrates the techniques of
communication compression, different synchronization modes, and Byzantine tolerance.

• We present a novel system design with implementation details of ZenoPS.
• We establish the theoretical guarantees for the convergence, Byzantine tolerance, and

local differential privacy of the proposed system.
• We show that the integrated system can achieve both communication efficiency and

security in the experiments.

The rest of this paper is organized as follows. In Section 2, we briefly discuss the
previous research related to our work. Section 3 formalizes the distributed optimization
problem solved in this paper, with the detailed definition of the parameter-server archi-
tecture, Byzantine failures in distributed SGD, and local differential privacy. In Section 4,
we present the algorithm and the system design of ZenoPS. The theoretical analysis of the
convergence, Byzantine tolerance, and privacy preservation can be found in Section 5, with
detailed proofs in Appendix A. We present the empirical results in Section 6. Finally, we
conclude the paper in Section 7.

2. Related Work

This paper leverages previous works providing communication reduction with er-
ror reset [15], asynchronous federated optimization [16], and Byzantine tolerance [17–21].
The authors of [15] presented a technique called error reset, which adapts arbitrary compres-
sors to distributed SGD and corrects for local residual errors, but the proposed algorithm
and the corresponding theoretical analysis are limited to the classic synchronous SGD
rather than the federated optimization. The authors of [16] presented a combination of
asynchronous training and federated optimization or local SGD, but it lacked guarantees
in security and privacy. For the security, we focus on the Byzantine failures [22] in this
paper. The authors of [17,20,21] presented Byzantine-tolerant SGD algorithms based on
robust statistics such as the trimmed mean. However, it is argued in [18] that these previous
approaches are not specially designed for gradient descent algorithms, which results in
the potential vulnerability to several specific types of attacks. To resolve the potential
issues of the previous approaches based on robust statistics, the authors of [19] presented
score-based approaches, which validated the updates with a standalone validation dataset,
but they used a definition of Byzantine tolerance similar to that in [21]. There are also
other approaches to Byzantine-tolerant SGD. For example, DRACO [23] uses redundant
workers as pivots to distinguish Byzantine workers, which provides strong guarantees
for Byzantine tolerance, at the cost of additional computation resources for the redundant
workers. To make things worse, adding redundant workers is infeasible in federated learn-
ing scenarios. While there are many different kinds of differential privacy (DP) [24–35], we
focus on local differential privacy when releasing the individual updates from the workers
to the servers, which is more important in the federated learning scenarios.

3. Preliminaries

In this paper, we focus on distributed SGD with a parameter aerver (PS) architecture,
and unreliable workers. In this section, we formally introduce the optimization problem,
distributed SGD, PS architecture, and the threat model of Byzantine failures.

3.1. Notations

First, in Table 1, we define some important notations and terminologies that are used
throughout this paper.
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Table 1. Notations and terminologies.

Notation/Term Description

n The number of workers

k The number of active workers

T, t The number of iterations or server steps, and the current iteration t ∈ [T]

t′ Some previous iteration or server step, t′ ≤ t− 1

τ Maximum delay, t− 1− t′ ≤ τ

H The number of local iterations (worker steps), or synchronization interval

h The current local iteration (worker step), h ∈ [H]

d The number of model parameters, or the size of the model

[n] The set of integers {1, . . . , n}
St The set of randomly selected devices in the tth iteration

b Parameter of the trimmed mean

Hmin, Hmax Minimal/maximal number of local iterations

Hi,t The number of local iterations in the tth epoch on the ith device

xt The initial model in the tth iteration

xi,t,h Model updated in the tth server step and the hth worker step,
on the ith device

Di The training dataset on the ith device

D The entire training dataset D = D1 ∪ · · · ∪ Dn

Dr The validation dataset on the validators

zi,t,h Data (mini-batch) sampled in the tth server step and the hth worker step
on the ith device

σ2 The variance of the stochastic gradient of a single sample

f (x; z ∼ D), The stochastic function value and gradient on random sample z,
∇ f (x; z ∼ D) drawn from the dataset D (sometimes we use f (x) and ∇ f (x) for short)

F(x),∇F(x) F(x) = E[ f (x)],∇F(x) = E[∇ f (x)],
and the expectation is taken over the random samples

η Learning rate

α, ρ, γ, etc. Some positive constants or hyperparameters

δ The approximation factor of the compressor C,
where ‖v− C(v)‖2 ≤ (1− δ)‖v‖2

‖ · ‖ All the norms in this paper are l2-norms

V1, V2, V3, etc. Some constants defined in assumptions and used in theoretical analysis

q, m q is the number of Byzantine workers, m = n + q

Device Where the training data are placed

Worker The process that trains the model on the local datasets

Byzantine worker Worker with Byzantine failures

Server The process that maintains the global model parameters and
exchanges information with the workers and validators

Validator The process that validates the updates sent from the worker and
filters out the potentially malicious ones
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3.2. Problem Formulation

We consider the following optimization problem with n workers:

min
x∈Rd

F(x), (1)

where F(x) = 1
n ∑i∈[n] Fi(x) = 1

n ∑i∈[n] Ezi∼Di f (x; zi), ∀i ∈ [n], x ∈ Rd are the set of model
parameters, and zi is a mini-batch of data sampled from the local data Di on the ith device.
Each device can be a GPU, a machine with multiple GPUs, or an edge device such as a
smart phone, depending on the scenario and application.

3.3. Distributed SGD

In this paper, we use distributed SGD to solve the optimization problem (1). In each
iteration, a random mini-batch of data zi is sampled from the training dataset of any worker
i, which is used to compute the local stochastic gradient gi. We then rescale gi with the
learning rate η and update the model parameters x.

There are typically two strategies to execute distributed training with SGD: syn-
chronous and asynchronous. In synchronous training, the combination of the updates
aggregated from all workers are applied to the global model parameters in every step.
In contrast, for asynchronous training, the global model parameters are immediately up-
dated by any single worker without waiting for the other workers [36–38]. Typically,
synchronous training is more stable with less noise, but it is also slower due to the global
barrier across all workers. Asynchronous training is faster, but any asynchronous training
technique needs to address instability and noisiness due to staleness.

The detailed distributed synchronous SGD algorithm is shown in Algorithm 1. In each
iteration, every worker computes the stochastic gradient on a random mini-batch of data
and then takes the average over the gradients from all workers. The averaged gradient is
used to update the global model parameters in the same way as vanilla SGD. The global
averaging incurs communication overhead.

Algorithm 1 Distributed synchronous stochastic gradient descent (DS-SGD).

1: Initialize x0 ∈ Rd

2: for all iteration t ∈ [T] do
3: for all workers i ∈ [n] in parallel do
4: gi,t ← ∇ f (xt−1; zi,t)
5: end for
6: Synchronization: ḡt ← 1

n ∑j∈[n] gj,t
7: xt ← xt−1 − η ḡt
8: end for

The detailed distributed asynchronous SGD algorithm is shown in Algorithm 2.
In each iteration, the global model parameters are updated by the stochastic gradient
from an arbitrary worker. Note that such a stochastic gradient is based on the model
parameters from any previous iteration instead of the last iteration. There is a central node
that maintains the latest version of the global model parameters. Pushing the stochastic
gradient from any worker to the central node and pulling the model parameters from the
central node to any worker incur communication overhead.

In brief, if the same number of stochastic gradients are applied to the global model
parameters, then synchronous SGD and asynchronous SGD have the same communication
overhead. The main difference is that the global updates are blocked until all gradients are
collected for synchronous training, while for asynchronous training, the global updates
are executed whenever the stochastic gradients arrive. Furthermore, since the stochastic
gradients are potentially based on the model parameters previous to the latest version,
such staleness incurs additional noise to the convergence.



Algorithms 2022, 15, 233 6 of 31

Algorithm 2 Distributed asynchronous stochastic gradient descent (DA-SGD).

1: Initialize x0 ∈ Rd

2: for all iteration t ∈ [T] do
3: arbitrary worker i ∈ [n]:
4: gt ← ∇ f (xt′ ; zi,t′), t′ < t
5: xt ← xt−1 − ηgt
6: end for

3.4. Parameter-Server Architecture

For distributed SGD, there are various strategies and infrastructures that support the
communication and synchronization between the workers. In this research, we focus on
the parameter-server (PS) architecture [39–43], which is one of the most popular strategies
to enable distributed training.

The system is composed of the server nodes and the worker nodes, as illustrated
in Figure 1. Typically, the training data and the major workload of computation are
distributed onto the worker nodes. For cloud computing, the worker nodes are placed
on the cloud, where more worker nodes accelerate the training. For edge computing,
the worker nodes are placed on the edge devices, where more worker nodes bring more
training data. The server nodes, located on the cloud, are used for synchronization among
the worker nodes. In summary, the workers conduct computation on their local data,
and the resulting updates are then merged by the server. Such merge/synchronization
operations cause the communication overhead. Different algorithms send different types
of updates to the server, e.g., gradients or updated model parameters. Thus, the same PS
architecture could be used in different algorithms and scenarios.

4: Aggregation

2: Local computation

Server

Worker #1 Worker #2

3
: P

us
h

1
: P
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pd
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Figure 1. Parameter-server architecture.

3.5. Byzantine Failures

Byzantine failure, first introduced in [22], is a well-studied problem in the field of
distributed systems. In general, Byzantine failures assume a threat model where the failed
agents behave arbitrarily in a traditional distributed system. Such a threat model assumes
the worse cases of failures and attacks in the distributed systems.

Many failures and attacks can be viewed as special cases of Byzantine failures. For
example, the authors of [44] describe the vulnerability to bit-flipping attacks in the wireless
transmission technology, where the servers can receive data via such vulnerable commu-
nication media, even if the messages are encrypted. As a result, an arbitrary fraction of
the received values are corrupted. Furthermore, federated learning can be vulnerable to
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data poisoning attacks, where the users feed compromised or fabricated data such as fake
reviews [45] to the learning systems. A recent work [46] argues that data poisoning attacks
are equivalent to Byzantine failures under certain assumptions.

The authors of [47] introduced Byzantine failures to distributed synchronous SGD,
with some modifications to make the threat model fit the machine-learning scenario, in
which the Byzantine failures only happen on the worker nodes. In summary, workers with
Byzantine failures send arbitrary messages to other processes. We define the threat model
as follows.

Definition 1 (Threat Model). Additional to the n honest workers, there are q Byzantine workers
that send out arbitrary messages during communication. Furthermore, we assume that the workers
are anonymous to the other processes.

The existence of Byzantine workers prevents the distributed SGD from converging or
decreasing the loss value on the training data. We formally define the Byzantine failures
for synchronous training and asynchronous training as follows.

Definition 2 (Threat model for synchronous SGD). We assume that there are n honest workers
and q Byzantine workers. When the server receives a gradient estimator g̃i,t from the ith worker
in the tth iteration, it is either correct or Byzantine. If sent by a Byzantine worker, g̃i,t is assigned
arbitrary values. If sent by an honest worker, the correct gradient is∇ f (xt−1; zi,t), ∀i ∈ [n], t ∈ [T].
Thus, we have

g̃i,t =

{
arbitrary value, if worker i is Byzantine, i.e., i ∈ [n + 1, n + q],
gi,t = ∇ f (xt−1; zi,t ∼ Di), otherwise, i.e., i ∈ [n].

Definition 3 (Threat model for asynchronous SGD). We assume that there are n honest workers
and q Byzantine workers. When the server receives a gradient estimator g̃t from the ith worker in the
tth iteration, it is either correct or Byzantine. If sent by a Byzantine worker, g̃t is assigned arbitrary
values. If sent by an honest worker, the correct gradient is ∇ f (xt′ ; zi,t′), ∀i ∈ [n], t′ ≤ t− 1. Thus,
we have

g̃t =

{
arbitrary value, if worker i is Byzantine, i.e., i ∈ [n + 1, n + q],
gt = ∇ f (xt′ ; zi,t′ ∼ Di, t′ ≤ t− 1), otherwise, i.e., i ∈ [n].

Based on the definition of Byzantine failures above, we formally define the general
Byzantine tolerance for both synchronous and asynchronous SGD in the IID settings.

Definition 4 (SGD Byzantine Tolerance). Without a loss of generality, suppose that, in any
iteration t on the server, the global model parameters are updated by xt = xt−1 − ηut, where ut is
the update vector (gradient estimator) produced by different approaches. An algorithm is said to be
SGD-Byzantine-tolerant if the following condition is satisfied where there are Byzantine workers in
the IID settings:

∃t′ ∈ T , s.t.〈∇F(xt′), E[ut]〉 ≥ 0,

where T = {t− 1} for synchronous training, and T = {t′ : t′ ≤ t− 1} for asynchronous training.

In brief, an SGD-Byzantine-tolerant algorithm must have a positive inner product
with the correct gradient. Note that SGD-Byzantine tolerance is a necessary condition of
SGD convergence under Byzantine attacks. To guarantee the convergence sufficiently, other
conditions such as smoothness, bounded variance, and `2-norm of gradients, as well as
sufficiently small learning rates are required, as we have shown in Section 5.3.
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3.6. Design Objectives

The goal of this research is to design an integrated system resolving the critical problems
in distributed machine learning: heavy communication overhead, system security, and client
privacy. To be more specific, we solve the distributed optimization problem defined in (1)
based on the parameter server architecture with the following additional features.

• Communication reduction: Optionally, the workers can reduce the communication
overhead via both infrequent synchronization and message compression. To be more
specific, every worker sends updates to the central server after every H local iterations,
and compresses the update with the error reset technique and an arbitrary compressor
C that satisfies δ-approximation: ‖C(v)− v‖2 ≤ (1− δ)‖v‖2, ∀v ∈ Rd, where v is the
message vector sent to the server.

• Synchronization mode: The system supports both synchronous and asynchronous training.
• Byzantine tolerance: The system supports Byzantine tolerance on the server side,

with multiple choices of defense methods, including a coordinate-wise trimmed mean
and score-based validation approaches.

• Local differential privacy: We show the theoretical guarantees that the local differen-
tial privacy of releasing updates from the workers to the servers can be achieved by
randomly replacing the correct values with arbitrary (Byzantine) values. To be more
specific, we use the following definition for local differential privacy (LDP).

Definition 5 (ξ-LDP [48]). Given the domain D of the datasets and a query function query :
D → Rd, a mechanismM with domain Rd is ξ-LDP if, for any S ⊆ Range(M) and two
arbitrary datasets D1, D2 ∈ D,

Pr[M(query(D1)) ∈ S ] ≤ exp(ξ)Pr[M(query(D2)) ∈ S ].

In the case of distributed SGD, the queries are the gradients or updates released by the
workers. Note here that the result does not refer to differential privacy of the full training
pipeline, but only to differential privacy of a single step with the following threat model:
We assume that the attackers are the curious servers, from which we want to protect the
workers and of which we want to avoid the servers recovering the private updates from
individual workers. There are various mechanisms or protocols that achieve LDP [49–56].
Furthermore, some LDP mechanisms can also provide ξ-DP guarantees [48,57] for the full
training process, at the expense of increased ξ for LDP.

4. Methodology

In this section, we present ZenoPS, which is a distributed learning system based on
the PS architecture. Our implementation is based on the cutting-edge PS implementation
called BytePS [42,43]. In the ZenoPS architecture, the processes are categorized into three
roles: servers, workers, and validators. Note that, compared to the original PS architecture,
ZenoPS has an additional role of nodes: validators, which read the update cached on the
servers and filter out the potentially malicious ones. The responsibilities of the three roles
are described as follows:

• Server: The server nodes maintain the global model parameters. ZenoPS also supports
multiple server nodes, where the model parameters are partitioned into several blocks
and are uniquely assigned to different server nodes via some hash functions. The
servers communicate to both the workers and the validators. On one hand, the servers
send the latest model parameters to the workers on request and cache the updates
sent from the workers. On the other hand, the servers send the cached updates to
the validators and collect the verified updates from the validators. Once verified,
the updates are supposed to be benign and safe for the servers to update the global
model parameters. In the synchronous mode, the servers will wait for all validators to
respond, take the average of the verified updates from all validators, and then apply
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the averaged updates to the global model parameters. In the asynchronous mode, the
servers update the global model parameters whenever a verified update arrives.

• Worker: The worker nodes take the main workload of computation in the ZenoPS
system. Periodically, the workers pull the latest model parameters from the servers,
run SGD locally for H steps to update the local models, and then send the accumulated
updates to the server. Optionally, the workers can compress the updates sent to the
servers and use error reset for biased compressors. Optionally, the workers can
randomly replace the updates sent to the servers with arbitrary noise, which helps
provide privacy preservation. We show that the adverse effects of adding noise are
managed by the robust aggregation.

• Validator: The validators are used for filtering out the potentially malicious updates.
Any update sent from the workers will be cached and rallied to a validator. The users
of ZenoPS can choose various algorithms for validation. In the synchronous mode,
the validators can use the coordinate-wise trimmed mean, Phocas [17], or score-based
approaches such as Zeno [19], or they can simply take the average. In the asynchronous
mode, the validators have two options: score-based approaches or no validation at
all (approving any received updates). Future robust training approaches can be
implemented using the same framework. Typically, we assume fast communication
between the servers and validators. A reasonable configuration is to co-locate the
servers and the validators. For example, when using the score-based approaches, a
validator node should have the computation power similar to a worker node. In that
case, we could put the server node and the validator node in the same machine, where
the server is assigned to the CPU, and the validator is assigned to the GPU.

The detailed algorithm is shown in Algorithm 3, where we only use the score-based
validation approach defined in Definition 6 for Byzantine tolerance.

The workers pull the model parameters from the servers and add the local residual
errors to the pulled model. After H steps of local updates, the workers obtain the accumu-
lated local update, which is the difference between the current version of local models and
the previously pulled models. The workers will then compress the local updates, update
the local residual errors, and send the compressed updates to the servers. To protect privacy,
the workers can randomly replace the messages with arbitrary values, which inserts some
noise in the released data, in order to achieve differential privacy.

The servers simply relay all updates sent from the workers to the validators and
respond to any pulling request from the workers and the validators. In the synchronous
mode, the servers will wait until the approved updates are received from all validators. In
the asynchronous mode, the servers will update the global model parameters whenever an
approved update is received from any validator. Note that the validators can send vectors
of all 0 values to the server, as a notification that an update fails the validation. The servers
will not move on to the next iteration until a non-zero approved update is received.

The validator uses the criterion defined in Definition 6 to validate the candidate
updates sent from the servers. If a candidate update passes the validation procedure, it will
be sent to the servers; otherwise the validator will send a vector of all 0 values to the server.
Periodically, the validators will pull the model parameters from the servers and update
the validator vector. Note that, in the synchronous mode, the validators always pull the
latest version of the global model; in the asynchronous mode, the pulled model can have
some delay.



Algorithms 2022, 15, 233 10 of 31

Algorithm 3 ZenoPS with score-based validation.

1: Server
2: Initialize x0 ∈ Rd

3: for all server step t ∈ [T] do
4: ut ← 0
5: while ut = 0 do
6: Send xt−1 to workers on request
7: Receive updates {ũi : i ∈ [n + q]} from workers, and relay to validators
8: if Synchronous then
9: ut ← 1

nv
∑i∈[nv ] ui, after all validators respond

10: else
11: ut ← ui, after receiving ui : i ∈ [nv] from a validator
12: end if
13: Update the parameters xt ← xt−1 + αut
14: end while
15: end for

1: Worker (honest) i = 1, . . . , n
2: Initialize ei ← 0
3: while until terminated do
4: Receive xt′ from the server, and initialize xi,t′ ,0 ← xt′ + ei
5: for all local iteration h ∈ [H] do
6: xi,t′ ,h ← xi,t′ ,h−1 − η∇ f (xi,t′ ,h−1; zi ∼ Di)
7: end for
8: Compute the accumulated update ui ← xi,t′ ,H − xt′
9: Compress u′i ← C(ui), and update the local residual error ei ← ui − u′i

10: Replace u′i by arbitrary value with probability pbyz (optional)
11: Send u′i to the server
12: end while

1: Validator j = 1, . . . , nv
2: Initialize counter = 1
3: while until terminated do
4: if mod (counter, n/nv) = 1 then
5: Pull xt′ from server, update for H SGD steps, and obtain xt′ ,H
6: Update the validation vector vt = xt′ ,H − xt′
7: end if
8: counter ← counter + 1
9: Wait until any update ũ arrives

10: u← ũ if the validation defined in Definition 6 is passed, else u← 0
11: Send u to the server
12: end while

To make the system design and the relationship between the three groups of nodes
clearer, we illustrate the ZenoPS architecture in Figure 2.

In the remainder of this section, we present more details of the optional features
provided by ZenoPS.
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1. Receive update from a worker
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3.1. If synchronous: average the updates from
all the validators, and update the global model
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    or score-based approaches
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Push approved update 
to server

Pull update from server

Figure 2. ZenoPS architecture.

4.1. Communication Reduction

When sending updates to the servers, the workers can choose to compress the message
using an arbitrary compressor C and use the technique of error reset to handle the residual
error of the compression. In the algorithm, we compress the locally accumulated update
ui and maintain the local residual error ei of worker i, in Line 9 in Algorithm 3 (in the
worker process). The local residual error will then be applied to the model parameters
pulled from the servers in the next time. Similar to CSER in [15], we assume δ-approximate
compressors: ‖C(v) − v‖2 ≤ (1− δ)‖v‖2, ∀v ∈ Rd, where δ ∈ [0, 1]. The choice of the
expected compression ratio δ depends on the sensitivity of the deep neural network and
the networking environment. When the number of workers increases, the network tends
to become congested and requires a larger compression ratio to maintain the efficiency of
training. However, larger compression ratios usually incur larger noise. Thus, case-by-case
hyperparameter tuning is typically required to find the optimal trade-offs.

4.2. Synchronization Modes

Besides the synchronous mode, ZenoPS also provides the asynchronous mode, where
the workers and validators can check in and send updates to the server at any time. The
servers launch multiple threads to handle the pushing and pulling request sent by the
workers and validators. In the synchronous mode, any pulling request from the workers
or the validators will be blocked until the global model parameters are updated. In the
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asynchronous mode, the servers respond to the pulling requests immediately without
any barrier.

If the workers have almost identical computation power and networking environ-
ments, the synchronous mode is recommended, which is more efficient and stable. How-
ever, there are also cases where the workers have heterogeneous capabilities and commu-
nication speeds, especially in the federated learning scenario. The heterogeneity results
in stragglers in the system, which then causes noisy or slow updates sent to the servers.
In that case, the asynchronous mode is recommended for efficiency. The noise caused
by the stragglers can be mitigated by tuning the mixing hyperparameter α and using the
validators to automatically filter out the extremely outdated updates.

4.3. Byzantine Tolerance

In ZenoPS, we use the following score-based approach for Byzantine tolerance.

Definition 6 (ZenoPS validation). Assume that, in the tth iteration, based on the model pa-
rameters xt′ (with latency) on the server, where t′ ≤ t − 1 (t′ = t − 1 in the synchronous
mode), the validator locally updates the model parameters for H steps using the validation data
and obtains the accumulated update for validation: v = −η ∑h∈H∇ f (xt′ ,h−1; zt′ ,h∼Dr), where
xt′ ,h = xt′ ,h−1 − η∇ f (xt′ ,h−1; zt′ ,h∼Dr), and xt′ ,0 = xt′ . An update u from any worker will be
approved and sent back to the server for updating the global model parameters if the following two
conditions are satisfied:

〈u, v〉 ≥ ρ‖v‖2 + ε,

‖u‖2 ≤ (1 + γ)‖v‖2 alternative: clip u to the maximum norm (1 + γ)‖v‖2 ,

where ρ, γ > 0 are some hyperparameters for the thresholds.

The above validation mechanism allows both the candidate update and the validation
vector to be the accumulation of multiple steps of SGD updates. Thus, such a validation
mechanism can be used for distributed SGD with infrequent synchronization, such as
federated optimization or local SGD.

4.4. Byzantine Mechanism and Privacy Preservation

In our implementation, we add a simulator on the worker side to simulate Byzantine
failures and send malicious values to the servers. It turns out that such a simulator can also
be used to generate random noises for privacy preservation. On the server side, the random
noises will then be treated as values from Byzantine workers. Formally, we introduce the
Byzantine mechanism as follows.

Definition 7. In the Byzantine mechanism denoted asMbyz, the ith worker sends the vector

ṽi =Mbyz(vi) =

{
vi with probability 1− pbyz;
noise ∼ Dnoise otherwise,

where vi is the correct vector. In other words, with probability pbyz, the worker sends the value noise,
which is randomly drawn from the distribution Dnoise instead of the correct value vi, to the server.

5. Theoretical Analysis

In this section, we show the theoretical guarantees of ZenoPS using the score-based ap-
proach in the validators. We theoretically analyze the Byzantine tolerance, the convergence,
and the differential privacy of the proposed system. The detailed proofs of the theorems
are in Appendix A.
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5.1. Assumptions

Assumption 1 (Smoothness). F(x) and Fi(x), ∀i ∈ [n] are L-smooth:

F(y)− F(x) ≤ 〈∇F(x), y− x〉+ L
2
‖y− x‖2, ∀x, y,

and

Fi(y)− Fi(x) ≤ 〈∇Fi(x), y− x〉+ L
2
‖y− x‖2, ∀x, y.

Assumption 2 (Variance). For any stochastic gradient gi = ∇ f (x; zi), zi∼Di, we assume
bounded intra-worker variance: E[‖gi − ∇Fi(x)‖2] ≤ V1 = σ2

s , ∀x ∈ Rd, where σ2 is the
variance of the gradient of a single data sample, and s is the mini-batch size per worker.

Assumption 3 (Bounded gradients). For any stochastic gradient∇ f (x; z), ∀x ∈ Rd, we assume
bounded expectation: ‖∇F(x; z)‖2 = ‖E[∇ f (x; z)]‖2 ≤ V′1, ∀i ∈ [n], t ∈ [T]. In some cases, we
directly assume the upper bound of the stochastic gradients: ‖∇ f (x; z)‖2 ≤ V3.

Assumption 4 (Global minimum). There is at least one global minimum x∗, where F(x∗) ≤
F(x), ∀x.

5.2. Byzantine Tolerance

In the following theorem, we show the Byzantine tolerance of score-based validation
approach defined in Definition 6.

Theorem 1 (SGD-Byzantine tolerance of ZenoPS). Assume that the validation data is close to
the training data ‖∇Fr(x)−∇F(x)‖ ≤ r, ∀x ∈ Rd where r ≥ 0 and Fr(x) = E[ fr(x; z ∼ Dr)]
(the expectation is taken with respect to z), and ε is large enough. Under Assumptions 2 and 3
(bounded gradients and variance, which is also applied to the validation gradients), for a verified
update u sent from the validators, there is a t′ ≤ t− 1 such that we have the positive inner-product:〈

−η ∑
h∈H
∇F(xt′ ,h−1),E[u]

〉
≥ 0,

where xt′ ,h = xt′ ,h−1 − η∇ f (xt′ ,h−1; zt′ ,h ∼ Dr), and xt′ ,0 = xt′ .

5.3. Convergence

Now we prove the convergence of the proposed algorithm in the synchronous mode.
For simplicity, we take α = 1 in the synchronous mode.

Theorem 2 (Error bound of ZenoPS in the synchronous mode without compression). In
addition to Assumption 1 (smoothness), Assumption 2 (bounded variance), Assumption 3 (bounded
gradients), and Assumption 4 (global minimum), we assume that the compressors are disabled and
that the validation data is close to the training data ‖∇Fr(x)−∇F(x)‖ ≤ r, ∀x ∈ Rd where r ≥ 0
and Fr(x) = E[ fr(x; z ∼ Dr)] (the expectation is taken with respect to z). Taking ε = cH2η2, we
have the following error bound for ZenoPS in the synchronous mode:

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ F(x0)− F(x∗)
THηρ

+
3 + 3γ + 4ρ

2ρ
LHηV3 +

(4 + 3γ + 4ρ)r
√

V3 + r2 − 2c
2ρ

+
(1 + γ)

√
V3σ

ρ
√

sr
.

Taking η = 1√
TH

, sr ∝ TH, we have
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∑t∈[T] E‖∇F(xt−1)‖2

T

≤ O
(

F(x0)− F(x∗)√
THρ

)
+O

(
H√
THρ

)
+O

(
σ√

THρ

)
+

(4 + 3γ + 4ρ)r
√

V3 + r2 − 2c
2ρ

.

The error bound of ZenoPS is composed of four parts: the gap to the initial value
[F(x0)− F(x∗)], the error caused and the infrequent synchronization that is proportional to
H, the noise caused by variance σ, and the validation error caused by Byzantine tolerance
(4+3γ+4ρ)r

√
V3+r2−2c

2ρ . A better validation dataset that is closer to the training dataset with a
smaller r decreases the validation error. Increasing c and ρ or decreasing γ decreases the
validation error, but also potentially decreases the chances that benign updates pass the
validation procedure, which can slow down the optimization progress. In short, stronger
security guarantees smaller validation error, but also slower convergence.

When the compressors are enabled, there is an additional error term with the approxi-
mation factor δ.

Theorem 3 (Error bound of ZenoPS in the synchronous mode with compression). In
addition to Assumption 1 (smoothness), Assumption 3 (bounded gradients), and Assumption 4
(global minimum), we assume that the compressors are disabled and the validation data is close to
the training data ‖∇Fr(x)−∇F(x)‖ ≤ r, ∀x ∈ Rd where r ≥ 0 and Fr(x) = E[ fr(x; z ∼ Dr)]
(the expectation is taken with respect to z). Taking ε = cH2η2 and η = 1√

TH
, we have the following

error bound for ZenoPS in the synchronous mode:

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ O
(

F(x0)− F(x∗)√
THρ

)
+O

(
H√
THρ

)
+O

(
σ√

THρ

)
+

(4 + 3γ + 4ρ)r
√

V3 + r2 − 2c
2ρ

+
(1− δ)(1 + γ)L

√
HV3

2ρ
√

T
(

1−
√

1− δ
)2 .

Finally, we prove the convergence of the proposed algorithm in the asynchronous mode.

Theorem 4 (Error bound of ZenoPS in the asynchronous model with compression). In
addition to Assumption 1 (smoothness), Assumption 2 (bounded variance), Assumption 3 (bounded
gradients), and Assumption 4 (global minimum), we assume that the validation data is close to
the training data ‖∇Fr(x)−∇F(x)‖ ≤ r, ∀x ∈ Rd where r ≥ 0 and Fr(x) = E[ fr(x; z ∼ Dr)]
(the expectation is taken with respect to z). Furthermore, we assume that, in any server step t, the
approved update is based on the global model parameters in the server step t′, where t′ ≤ t− 1 has
bounded delay t− 1− t′ ≤ τ. Taking ε = cH2η2, we have the following error bound for ZenoPS
in the asynchronous mode:

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ F(x0)− F(x∗)
THαηρ

+
(2τ + 2 + α)(1 + γ) + 4(τ + 1)ρ

ρ
LHηV3

+
(2 + γ + 4ρ)r

√
V3 + r2 − 2c

2ρ
+

(1 + γ)
√

V3σ

ρ
√

sr
+

(1− δ)(1 + γ)L
√

HV3

2ρ
√

T
(

1−
√

1− δ
)2 .

Taking η = 1√
TH

, sr = TH, we have
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∑t∈[T] E‖∇F(xt−1)‖2

T

≤ F(x0)− F(x∗)√
THαρ

+

√
H
T
(2τ + 2 + α)(1 + γ) + 4(τ + 1)ρ

ρ
LV3

+
(2 + γ + 4ρ)r

√
V3 + r2 − 2c

2ρ
+

(1 + γ)
√

V3σ

ρ
√

TH
+

(1− δ)(1 + γ)L
√

HV3

2ρ
√

T
(

1−
√

1− δ
)2 .

5.4. Local Differential Privacy

Finally, we present the theoretical guarantee of the Byzantine mechanism in local dif-
ferential privacy. Denote pnoise(z) as the probability density function of the random variable
noise ∼ Dnoise. We show that the Byzantine mechanism is LDP in the following theorem.

Theorem 5 (LDP of Byzantine mechanism). Assume that the noise distribution Dnoise has
the support [a, b], and p− = minz∈[a,b] pnoise(z) > 0, where pnoise(·) is the PDF of the noise
distribution Dnoise (e.g., uniform distribution with support [a, b]). The Byzantine mechanism is
then ξ-LDP, where

ξ =
1− pbyz

pbyz p−
.

Thus, a larger pbyz makes the mechanism more differentially private, at the cost of
replacing more correct values with the random noise as well as a slowdown of the overall
optimization progress on the servers.

6. Experiments

In this section, we empirically evaluate the proposed ZenoPS system in various
simulated settings. We test the performance of ZenoPS in both the synchronous and asyn-
chronous mode, where the asynchronous experimental setting represents edge computing
with flexible workers, and the synchronous experimental setting represents a traditional
datacenter. Furthermore, we test the robustness of ZenoPS under various attacks in both
synchronous and asynchronous modes.

6.1. Evaluation Setup

We trained ResNet-20 on the CIFAR-10 [58] dataset. The mini-batch size was 32. In
this section, our experiments were conducted in real distributed environments with CPU
workers. We used η = 0.2 in the synchronous mode and η = 0.1 in the asynchronous mode.
In the epochs 100 and 150, the learning rate decayed by 0.1 in the synchronous mode and
0.2 in the asynchronous mode. We used a constant α = 1 in the synchronous mode. In the
asynchronous mode, we used an initial value α = 0.4, which decayed by 0.5 in the epochs
100 and 150.

The communication overhead was reduced by both message compression and in-
frequent synchronization. We used random block-wise sparsification to compress the
communication. Whenever a worker sent an update of a block of parameters to the server,
with the probability of 0.2, it ignored the communication and put the update into the local
residual error. Furthermore, the number of local steps H was 8.

For the validators, we set b = 3 for both the trimmed mean and Phocas. We set γ = 0.6,
ρ = −0.001, ε = 0 for Zeno validation in the synchronous mode. In the asynchronous
mode, we set γ = 0 (with clipping), ρ = −0.02, ε = 0 for Zeno validation.

We randomly and evenly partitioned the training data into the number of workers
plus one parts and assigned the additional part to every validator.

We evaluated ZenoPS in both the synchronous mode and the asynchronous mode.
In the synchronous mode, we used Mean, Trimmed mean, Phocas [17], and Zeno (the score-
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based validation defined in Definition 6) as the validators. In the asynchronous mode, we
used FedAsync (no validation) and Zeno as the validators.

In the experiments, we used the following two types of attacks:

• Sign-flipping attack: The worker multiplies the original updates by −ζ, i.e., flips the
sign and rescales the updates by ζ. We call this type of attack a “sign-flipping attack
rescaled by ζ”. The same type of attacks have also been used in previous work [20,23].

• Random attack: The worker uses Gaussian random values with a 0 mean to replace
the original values. If we use Gaussian random values with variance ζ, then we
call this type of attack a “random attack rescaled to ζ”. On the other hand, if we
use Gaussian random values and rescale the Byzantine vector, so that the `2 norm
of the Byzantine vector is ζ times the original one, then we call this type of attack
a “random attack rescaled by ζ”. The same type of attacks have also been used in
previous work [47].

We simulated the Byzantine attacks by randomly replacing the vectors sent from the
workers to the servers with a probability of 0.2.

6.2. Empirical Results

The result of ZenoPS in the synchronous mode is shown in Figure 3. We can see that,
when there are no Byzantine attacks, all algorithms have similar performance. When there
are Byzantine attacks, using a Zeno validator, ZenoPS converged almost as well as using
averaging without any attack. However, the trimmed mean had relatively bad results under
sign-flipping attacks, and both the trimmed mean and Phocas failed under the random
attacks rescaled to 1. In some cases, where the attacks were relatively weak, such as the
sign-flipping attacks rescaled by 6 and the random attacks rescaled by 8, Phocas also had
good convergence, which is an option that is cheaper than Zeno. However, in general,
using Zeno as the validator provided the best performance under all kinds of attacks.
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Figure 3. ZenoPS in the synchronous mode with various attacks and validators. In each experiment,
we launched 1 server, 1 validator, and 16 workers. In each iteration, each worker had a 50% probability
of being active. (a) No attacks. (b) Sign-flipping attack rescaled by 6. (c) Random attack rescaled to 1.
(d) Random attack rescaled by 8.
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Furthermore, we show that ZenoPS is capable of using multiple servers and validators.
Different servers are responsible for different blocks of the model parameters. The updates
sent to the servers will be evenly hashed to the validators, so that different validators are
assigned a similar workload. Figure 4 shows that, by using multiple validators, ZenoPS
has a similar performance compared to the case of using a single validator. Note that the
multiple validators send updates to the server independently and asynchronously. Such
asynchronicity causes additional noise compared to the case where there is only 1 Zeno
validator. Furthermore, without changing the hyperparameter b = 3 for the trimmed mean
and Phocas validators, adding more validators results in more potentially harmful updates
being dropped. Hence, the trimmed mean and Phocas validators have slightly better results
in Figure 4b than those in Figure 3c.
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Figure 4. ZenoPS in the synchronous mode with multiple validators. In each experiment, we
launched 2 servers, 2 validators, and 16 workers. In each iteration, all workers were active. (a) No
attacks. (b) Random attack rescaled to 1.

The result of ZenoPS in the asynchronous mode is shown in Figure 5. When there are
no Byzantine attacks, using Zeno as the validator provides good convergence similar to
FedAsync. Adding Byzantine attacks makes FedAsync performs much worse. Using Zeno
as the validator, ZenoPS converges as well as the cases where there are no attacks. We also
show the results where two servers and two validators are used in Figure 6.
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Figure 5. ZenoPS in the asynchronous mode with various attacks and validators. In each experiment,
we launched 1 server, 1 validator, and 8 workers. In each communication round, each worker had
a 50% probability of dropping the entire communication. (a) No attacks. (b) Sign-flipping attack
rescaled by 2. (c) Random attack rescaled to 1. (d) Random attack rescaled by 8.
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Figure 6. ZenoPS in the asynchronous mode with multiple validators. In each experiment, we
launched 2 servers, 2 validators, and 8 workers. (a) No attacks. (b) Random attack rescaled by 8.

As shown in Figure 7, we tested the sensitivity to the hyperparameter ρ, with fixed
ε = 0. We varied ρ in {0.1,−0.01,−0.001, 0, 0.001, 0.01, 0.1}. In most cases, the Zeno
validator was insensitive to ρ and converged to the same value. The only exception was
the case of ρ = 0.1, where the threshold was too large and made the convergence extremely
slow. Thus, while a grid search needs to be performed for hyperparameter tuning in
practice, for ρ we recommend using a negative value close to 0. Although the convergence
analysis shows that a larger ρ yields smaller error bounds, it will also decrease the number
of approved updates. As shown in Figure 7, when ρ = 0.1, only 16% of the updates passed
the validation. By decreasing the threshold, the approval rate approached the ideal value of
80% (20% of the updates are Byzantine). We also show the result of training the model only
using the validation data, which is referred to as “validation only.” Note that, in this case,
the training was not affected by the attacks. It is shown that, if we only use the validation
data, the testing accuracy will be very low. Thus, when using Zeno as the validator, the
models learn from the training data. However, if the threshold ρ is too large, the approved
updates will be extremely biased to the validation data, which causes the performance to
be close to the case of “validation only.” Another interesting observation is that “validation
only” has a slightly higher testing accuracy at the very beginning of the training. Thus, the
validation dataset is useful for training the model for several epochs as initialization.
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Figure 7. Sensitivity to ρ. ρ varies, with fixed ε = 0 and γ = 0.6. ZenoPS in the synchronous mode
with multiple validators. In each experiment, we launched 2 servers, 2 validators, and 16 workers.
Random attack is rescaled to 1.

7. Conclusions

We propose a prototype of a distributed learning system, ZenoPS, that integrates
message compression, infrequent synchronization, both asynchronous and synchronous
training, and score-based validation. The proposed system provides communication



Algorithms 2022, 15, 233 19 of 31

reduction, asynchronous training, Byzantine tolerance, and local differential privacy, with
theoretical guarantees, and was evaluated on an open benchmark.

This work also raises some open problems to be solved in future work. One limita-
tion of ZenoPS is the relatively high computation overhead of the score-based validation
algorithm, which gives improved protection from attacks at the cost of consuming more
computation resources. How the score-based validation can be more efficient remains to be
explored. The learning system could also be made to automatically and adaptively choose
the compression ratio and validation methods for different training tasks, to make the sys-
tem more user-friendly in practice. For theoretical analysis, it will be interesting to establish
theories for optimal values of hyperparameters such as ρ in score-based validation, and to
study how hyperparameters such as the learning rate η affect the optimal value of ρ.
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Appendix A. Proofs

Theorem A1 (SGD-Byzantine Tolerance of ZenoPS). Assume that the validation data is close to
the training data ‖∇Fr(x)−∇F(x)‖ ≤ r, ∀x ∈ Rd where r ≥ 0 and Fr(x) = E[ fr(x; z ∼ Dr)]
(the expectation is taken with respect to z), and ε is large enough. Under Assumptions 2 and 3
(bounded gradients and variance, which is also applied to the validation gradients), for a verified
update u sent from the validators, there is a t′ ≤ t− 1 such that we have the positive inner-product:〈

−η ∑
h∈H
∇F(xt′ ,h−1),E[u]

〉
≥ 0,

where xt′ ,h = xt′ ,h−1 − η∇ f (xt′ ,h−1; zt′ ,h ∼ Dr), and xt′ ,0 = xt′ .

Proof. Using ‖∇Fr(x)−∇F(x)‖ ≤ r, it is easy to check that 〈∇Fr(x),∇F(x)〉 ∈ [− r2

2 , r2

2 ].
The algorithm guarantees that there is a t′ ≤ t− 1 such that

〈
−η ∑h∈H∇ fr(xt′ ,h−1), u

〉
≥

ρ‖η ∑h∈H∇ fr(xt′ ,h−1)‖2 + ε. Taking expectation on both sides with respect to the random
data samples and re-arranging the terms, we have

https://www.cs.toronto.edu/kriz/cifar.html
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E
[〈
−η ∑

h∈H
∇ fr(xt′ ,h−1), u

〉]
≥ ρE‖η ∑

h∈H
∇ fr(xt′ ,h−1)‖2 + ε

≥ ρ‖η ∑
h∈H
∇Fr(xt′ ,h−1)‖2 + ε

≥ ρ‖η ∑
h∈H

[∇Fr(xt′ ,h−1)−∇F(xt′ ,h−1) +∇F(xt′ ,h−1)]‖2 + ε

≥ ρ‖η ∑
h∈H

[∇Fr(xt′ ,h−1)−∇F(xt′ ,h−1)]‖2 + ρ‖η ∑
h∈H
∇F(xt′ ,h−1)‖2

+ 2ρ

〈
η ∑

h∈H
[∇Fr(xt′ ,h−1)−∇F(xt′ ,h−1)], η ∑

h∈H
∇F(xt′ ,h−1)

〉
+ ε

≥ ρ‖η ∑
h∈H
∇F(xt′ ,h−1)‖2 − 2ρη2H2r

√
V3 + ε.

On the other hand, we have

E
[〈
−η ∑

h∈H
∇ fr(xt′ ,h−1), u

〉]

= E
[〈
−η ∑

h∈H
∇ fr(xt′ ,h−1) + η ∑

h∈H
∇Fr(xt′ ,h−1)− η ∑

h∈H
∇Fr(xt′ ,h−1), u

〉]

= E
[〈
−η ∑

h∈H
∇Fr(xt′ ,h−1), u

〉]
+E

[〈
−η ∑

h∈H
∇ fr(xt′ ,h−1) + η ∑

h∈H
∇Fr(xt′ ,h−1), u

〉]

≤
〈
−η ∑

h∈H
∇Fr(xt′ ,h−1),E[u]

〉
+ ηE

[
‖ − ∑

h∈H
∇ fr(xt′ ,h−1) + ∑

h∈H
∇Fr(xt′ ,h−1)‖ × ‖u‖

]

≤
〈
−η ∑

h∈H
∇Fr(xt′ ,h−1),E[u]

〉
+ η2H(1 + γ)

√
V3 ∑

h∈H
E‖ −∇ fr(xt′ ,h−1) +∇Fr(xt′ ,h−1)‖

≤
〈
−η ∑

h∈H
∇Fr(xt′ ,h−1),E[u]

〉
+

η2H2(1 + γ)
√

V3σ√
sr

=
1
2
‖ − η ∑

h∈H
∇Fr(xt′ ,h−1)‖2 +

1
2
‖E[u]‖2 − 1

2
‖ − η ∑

h∈H
∇Fr(xt′ ,h−1)−E[u]‖2

+
η2H2(1 + γ)

√
V3σ√

sr

=
1
2
‖ − η ∑

h∈H
∇Fr(xt′ ,h−1)‖2 +

1
2
‖E[u]‖2

− 1
2
‖ − η ∑

h∈H
[∇Fr(xt′ ,h−1)−∇F(xt′ ,h−1) +∇F(xt′ ,h−1)]−E[u]‖2 +

η2H2(1 + γ)
√

V3σ√
sr

=
1
2
‖ − η ∑

h∈H
∇Fr(xt′ ,h−1)‖2 +

1
2
‖E[u]‖2

− 1
2
‖ − η ∑

h∈H
[∇Fr(xt′ ,h−1)−∇F(xt′ ,h−1) +∇F(xt′ ,h−1)]−E[u]‖2 +

η2H2(1 + γ)
√

V3σ√
sr

≤
〈
−η ∑

h∈H
∇F(xt′ ,h−1),E[u]

〉
+ η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

.
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Combining these, we have〈
−η ∑

h∈H
∇F(xt′ ,h−1),E[u]

〉

≥ ρ‖η ∑
h∈H
∇F(xt′ ,h−1)‖2 + ε− 2ρη2H2r

√
V3 − η2H2 r2

2
− 2 + γ

2
η2H2r

√
V3

− η2H2(1 + γ)
√

V3σ√
sr

≥ 0,

if we take ε ≥ 2ρη2H2r
√

V3 + η2H2 r2

2 + 2+γ
2 η2H2r

√
V3 +

η2 H2(1+γ)
√

V3σ√
sr

.

Theorem A2 (Error bound of ZenoPS in the synchronous mode without compression). In
addition to Assumption 1 (smoothness), Assumption 2 (bounded variance), Assumption 3 (bounded
gradients), and Assumption 4 (global minimum), we assume that the compressors are disabled and
the validation data is close to the training data ‖∇Fr(x)−∇F(x)‖ ≤ r, ∀x ∈ Rd where r ≥ 0 and
Fr(x) = E[ fr(x; z ∼ Dr)] (the expectation is taken with respect to z). Taking ε = cH2η2, we have
the following error bound for ZenoPS in the synchronous mode:

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ F(x0)− F(x∗)
THηρ

+
3 + 3γ + 4ρ

2ρ
LHηV3 +

(4 + 3γ + 4ρ)r
√

V3 + r2 − 2c
2ρ

+
(1 + γ)

√
V3σ

ρ
√

sr
.

Taking η = 1√
TH

, sr ∝ TH, we have

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ O
(

F(x0)− F(x∗)√
THρ

)
+O

(
H√
THρ

)
+O

(
σ√

THρ

)
+

(4 + 3γ + 4ρ)r
√

V3 + r2 − 2c
2ρ

.

Proof. Using smoothness, we have

F(xt)− F(xt−1)

≤ 〈∇F(xt−1), ut〉+
L
2
‖ut‖2

≤ 〈∇F(xt−1), ut〉+
L(1 + γ)

2
‖vt‖2

≤ 〈∇F(xt−1), ut〉+
L(1 + γ)

2
η2H2V3,

where xt = xt−1 + ut, vt is the validation vector. Taking the expectation on both sides,
we have
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E[F(xt)− F(xt−1)]

≤ 〈∇F(xt−1),E[ut]〉+
L(1 + γ)

2
η2H2V3

≤ 1
Hη
〈Hη∇F(xt−1),E[ut]〉+

L(1 + γ)

2
η2H2V3

≤ 1
H

η〈Hη∇F(xt−1)−E[vt] +E[vt],E[ut]〉+
L(1 + γ)

2
η2H2V3

≤ − 1
Hη
〈E[vt],E[ut]〉+

1
Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3.

Using the results in the proof of Byzantine tolerance, we have

E[F(xt)− F(xt−1)]

≤ − 1
Hη
〈E[vt],E[ut]〉+

1
Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3

≤ − 1
Hη

ρ‖η ∑
h∈H
∇F(xt′ ,h−1)‖2

+
1

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε]

+
1

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3

≤ − ρ

Hη
‖η ∑

h∈H
∇F(xt′ ,h−1)‖2 + ηH

r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

+
1

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη

≤ − ρ

Hη
‖η ∑

h∈H
[∇F(xt′ ,h−1)−∇F(xt−1) +∇F(xt−1)]‖2

+
1

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη

+ ηH
r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

≤ − ρ

Hη
‖η ∑

h∈H
∇F(xt−1)‖2 +

2ρ

Hη

∥∥∥∥∥η ∑
h∈H

[∇F(xt′ ,h−1)−∇F(xt−1)]

∥∥∥∥∥×
∥∥∥∥∥η ∑

h∈H
∇F(xt−1)

∥∥∥∥∥
+

1
Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη

+ ηH
r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

≤ −Hηρ‖∇F(xt−1)‖2 + 2ρη
√

V3

∥∥∥∥∥∑
h∈H

[∇F(xt′ ,h−1)−∇F(xt−1)]

∥∥∥∥∥
+

1
Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη

+ ηH
r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

,

where t′ = t− 1.
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It is easy to check that ∥∥∥∥∥∑
h∈H

[∇F(xt′ ,h−1)−∇F(xt−1)]

∥∥∥∥∥
≤ ∑

h∈H
‖∇F(xt′ ,h−1)−∇F(xt−1)‖

≤ ∑
h∈H

L‖xt′ ,h−1 − xt−1‖

≤ LH2η
√

V3.

Thus, we have

E[F(xt)− F(xt−1)]

≤ −Hηρ‖∇F(xt−1)‖2 + 2ρη
√

V3

∥∥∥∥∥∑
h∈H

[∇F(xt′ ,h−1)−∇F(xt−1)]

∥∥∥∥∥
+

1
Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη

+ ηH
r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

≤ −Hηρ‖∇F(xt−1)‖2 + 2ρLH2η2V3

+
1

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη

+ ηH
r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

≤ −Hηρ‖∇F(xt−1)‖2 +
1

Hη
‖Hη∇F(xt−1) +E[vt]‖ × ‖E[ut]‖

+
L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη
+ 2ρLH2η2V3

+ ηH
r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

.

To finish the upper bound, we have

‖Hη∇F(xt−1) +E[vt]‖
= ‖ ∑

h∈[H]

η[∇F(xt−1)−∇Fr(xt−1,h−1)]‖

≤ η ∑
h∈[H]

‖∇F(xt−1)−∇Fr(xt−1,h−1)‖

≤ η ∑
h∈[H]

[‖∇F(xt−1)−∇F(xt−1,h−1)‖+ r]

≤ η ∑
h∈[H]

[L‖xt−1 − xt−1,h−1‖+ r]

≤ η ∑
h∈[H]

[LHη
√

V3 + r]

≤ ηH[LHη
√

V3 + r].

On the other hand, we have
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‖E[ut]‖
≤ E‖ut‖
≤ (1 + γ)E‖vt‖
≤ (1 + γ)Hη

√
V3.

Thus, we have

E[F(xt)− F(xt−1)]

≤ −Hηρ‖∇F(xt−1)‖2 +
1

Hη
‖Hη∇F(xt−1) +E[vt]‖ × ‖E[ut]‖

+
L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη
+ 2ρLH2η2V3

+ ηH
r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

≤ −Hηρ‖∇F(xt−1)‖2 + (1 + γ)LH2η2V3 + (1 + γ)Hηr
√

V3

+
L(1 + γ)

2
η2H2V3 + 2ρηHr

√
V3 −

ε

Hη
+ 2ρLH2η2V3

+ ηH
r2

2
+

2 + γ

2
ηHr

√
V3 +

ηH(1 + γ)
√

V3σ√
sr

.

By re-arranging the terms, telescoping, and taking the total expectation, we have

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ E[F(x0)− F(xT)]

THηρ
+

3 + 3γ + 4ρ

2ρ
LHηV3 +

4 + 3γ + 4ρ

2ρ
r
√

V3 +
r2

2ρ
− ε

H2η2ρ

+
(1 + γ)

√
V3σ

ρ
√

sr
,

which concludes the proof.

Theorem A3 (Error bound of ZenoPS in the synchronous mode with compression). In
addition to Assumption 1 (smoothness), Assumption 3 (bounded gradients), and Assumption 4
(global minimum), we assume that the compressors are disabled and the validation data is close to
the training data ‖∇Fr(x)−∇F(x)‖ ≤ r, ∀x ∈ Rd where r ≥ 0 and Fr(x) = E[ fr(x; z ∼ Dr)]
(the expectation is taken with respect to z). Taking ε = cH2η2 and η = 1√

TH
, we have the following

error bound for ZenoPS in the synchronous mode:

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ O
(

F(x0)− F(x∗)√
THρ

)
+O

(
H√
THρ

)
+O

(
σ√

THρ

)
+

(4 + 3γ + 4ρ)r
√

V3 + r2 − 2c
2ρ

+
(1− δ)(1 + γ)L

√
HV3

2ρ
√

T
(

1−
√

1− δ
)2 .

Proof. We only need to add the additional error caused by ei,t to the previous error bound.
We already have ei,0 = 0. For any t ≥ 1, we can bound the local error:
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E‖ei,t‖2

= (1− δ)E

∥∥∥∥∥∥ei,t−1 − η ∑
h∈[H]

gi,t−1,h−1

∥∥∥∥∥∥
2

≤ (1− δ)(1 + a)E‖ei,t−1‖2 + (1− δ)(1 + 1/a)E

∥∥∥∥∥∥η ∑
h∈[H]

gi,t−1,h−1

∥∥∥∥∥∥
2

≤ (1− δ)(1 + a)E‖ei,t−1‖2 + (1− δ)η2(1 + 1/a)E

∥∥∥∥∥∥ ∑
h∈[H]

gi,t−1,h−1

∥∥∥∥∥∥
2

≤ (1− δ)(1 + a)E‖ei,t−1‖2 + (1− δ)H2η2(1 + 1/a)V3

≤ (1 + 1/a)(1− δ)H2η2V3

+∞

∑
t′=0

[(1 + a)(1− δ)]t
′

≤ 1 + 1/a
1− (1 + a)(1− δ)

(1− δ)H2η2V3,

for any a > 0, such that (1 + a)(1− δ1) ∈ (0, 1). The bound above is minimized when we
take a = 1√

1−δ
− 1, which results in

E‖ei,t‖2 ≤ (1− δ)H2η2V3(
1−
√

1− δ
)2 .

Theorem A4 (Error bound of ZenoPS in the asynchronous model with compression). In
addition to Assumption 1 (smoothness), Assumption 2 (bounded variance), Assumption 3 (bounded
gradients), and Assumption 4 (global minimum), we assume that the validation data is close to
the training data ‖∇Fr(x)−∇F(x)‖ ≤ r, ∀x ∈ Rd where r ≥ 0 and Fr(x) = E[ fr(x; z ∼ Dr)]
(the expectation is taken with respect to z). Furthermore, we assume that, in any server step t, the
approved update is based on the global model parameters in the server step t′, where t′ ≤ t− 1 has
bounded delay t− 1− t′ ≤ τ. Taking ε = cH2η2, we have the following error bound for ZenoPS
in the asynchronous mode:

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ F(x0)− F(x∗)
THαηρ

+
(2τ + 2 + α)(1 + γ) + 4(τ + 1)ρ

ρ
LHηV3

+
(2 + γ + 4ρ)r

√
V3 + r2 − 2c

2ρ
+

(1 + γ)
√

V3σ

ρ
√

sr
+

(1− δ)(1 + γ)L
√

HV3

2ρ
√

T
(

1−
√

1− δ
)2 .

Taking η = 1√
TH

, sr ∝ TH, we have

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ F(x0)− F(x∗)√
THαρ

+

√
H
T
(2τ + 2 + α)(1 + γ) + 4(τ + 1)ρ

ρ
LV3

+
(2 + γ + 4ρ)r

√
V3 + r2 − 2c

2ρ
+

(1 + γ)
√

V3σ

ρ
√

TH
+

(1− δ)(1 + γ)L
√

HV3

2ρ
√

T
(

1−
√

1− δ
)2 .
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Proof. Using smoothness, we have

F(xt)− F(xt−1)

≤ 〈∇F(xt−1), αut〉+
Lα2

2
‖ut‖2

≤ α〈∇F(xt−1), αut〉+
Lα2(1 + γ)

2
‖vt‖2

≤ α〈∇F(xt−1), ut〉+
Lα2(1 + γ)

2
η2H2V3,

where xt = xt−1 + ut, and vt is the validation vector. Taking the expectation on both sides,
we have

E[F(xt)− F(xt−1)]

≤ α〈∇F(xt−1),E[ut]〉+
Lα2(1 + γ)

2
η2H2V3

≤ α

Hη
〈Hη∇F(xt−1),E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

≤ α

H
η〈Hη∇F(xt−1)−E[vt] +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

≤ − α

Hη
〈E[vt],E[ut]〉+

α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3.

Using the results in the proof of Byzantine tolerance, we have

E[F(xt)− F(xt−1)]

≤ − α

Hη
〈E[vt],E[ut]〉+

α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

≤ − α

Hη
ρ‖η ∑

h∈H
∇F(xt′ ,h−1)‖2

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε]

+
α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

≤ − αρ

Hη
‖η ∑

h∈H
∇F(xt′ ,h−1)‖2

+
α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε]

≤ − αρ

Hη
‖η ∑

h∈H
[∇F(xt′ ,h−1)−∇F(xt−1) +∇F(xt−1)]‖2

+
α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε]

≤ − αρ

Hη
‖η ∑

h∈H
∇F(xt−1)‖2 +

2αρ

Hη

∥∥∥∥∥η ∑
h∈H

[∇F(xt′ ,h−1)−∇F(xt−1)]

∥∥∥∥∥×
∥∥∥∥∥η ∑

h∈H
∇F(xt−1)

∥∥∥∥∥
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+
α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε]

≤ −Hαηρ‖∇F(xt−1)‖2 + 2αρη
√

V3

∥∥∥∥∥∑
h∈H

[∇F(xt′ ,h−1)−∇F(xt−1)]

∥∥∥∥∥
+

α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε],

where t′ ≤ t− 1.
Using (t− 1)− t′ ≤ τ, we have∥∥∥∥∥∑

h∈H
[∇F(xt′ ,h−1)−∇F(xt−1)]

∥∥∥∥∥
≤ ∑

h∈H
‖∇F(xt′ ,h−1)−∇F(xt−1)‖

≤ ∑
h∈H

L‖xt′ ,h−1 − xt−1‖

≤ ∑
h∈H

L[‖xt′ ,h−1 − xt′‖+ ‖xt′ − xt−1‖]

≤ 2(τ + 1)LH2η
√

V3.

Thus, we have

E[F(xt)− F(xt−1)]

≤ −Hαηρ‖∇F(xt−1)‖2 + 2αρη
√

V3

∥∥∥∥∥∑
h∈H

[∇F(xt′ ,h−1)−∇F(xt−1)]

∥∥∥∥∥
+

α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε]

≤ −Hαηρ‖∇F(xt−1)‖2 + 4α(τ + 1)ρLH2η2V3

+
α

Hη
〈Hη∇F(xt−1) +E[vt],E[ut]〉+

Lα2(1 + γ)

2
η2H2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε]

≤ −Hαηρ‖∇F(xt−1)‖2 +
α

Hη
‖Hη∇F(xt−1) +E[vt]‖ × ‖E[ut]‖

+
Lα2(1 + γ)

2
η2H2V3 + 4α(τ + 1)ρLH2η2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε].

To finish the upper bound, we have
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‖Hη∇F(xt−1) +E[vt]‖
= ‖ ∑

h∈[H]

η[∇F(xt−1)−∇Fr(xt′ ,h−1)]‖

≤ η ∑
h∈[H]

‖∇F(xt−1)−∇Fr(xt′ ,h−1)‖

≤ η ∑
h∈[H]

[‖∇F(xt−1)−∇F(xt′ ,h−1)‖+ r]

≤ η ∑
h∈[H]

[L‖xt−1 − xt′ ,h−1‖+ r]

≤ η ∑
h∈[H]

[2(τ + 1)LHη
√

V3 + r]

≤ ηH[2(τ + 1)LHη
√

V3 + r].

On the other hand, we have

‖E[ut]‖
≤ E‖ut‖
≤ (1 + γ)E‖vt‖
≤ (1 + γ)Hη

√
V3.

Thus, we have

E[F(xt)− F(xt−1)]

≤ −Hαηρ‖∇F(xt−1)‖2 +
α

Hη
‖Hη∇F(xt−1) +E[vt]‖ × ‖E[ut]‖

+
Lα2(1 + γ)

2
η2H2V3 + 4α(τ + 1)ρLH2η2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε]

≤ −Hαηρ‖∇F(xt−1)‖2 + 2α(τ + 1)(1 + γ)LH2η2V3 + α(1 + γ)Hηr
√

V3

+
Lα2(1 + γ)

2
η2H2V3 + 4α(τ + 1)ρLH2η2V3

+
α

Hη
[2ρη2H2r

√
V3 + η2H2 r2

2
+

2 + γ

2
η2H2r

√
V3 +

η2H2(1 + γ)
√

V3σ√
sr

− ε].

By re-arranging the terms, telescoping, and taking the total expectation, we have

∑t∈[T] E‖∇F(xt−1)‖2

T

≤ E[F(x0)− F(xT)]

THαηρ
+

(2τ + 2 + α)(1 + γ) + 4(τ + 1)ρ
ρ

LHηV3

+
(2 + γ + 4ρ)r

√
V3 + r2

2ρ
− ε

H2η2ρ
+

(1 + γ)
√

V3σ

ρ
√

sr
.

Similar to the synchronous mode, we then add the additional compression error to
obtain the final result.

Theorem A5 (LDP of the Byzantine mechanism). Assume that the noise distribution Dnoise
has the support [a, b], and p− = minz∈[a,b] pnoise(z) > 0, where pnoise(·) is the PDF of the noise
distribution Dnoise (e.g., uniform distribution with support [a, b]). The Byzantine mechanism is
ξ-LDP, where
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ξ =
1− pbyz

pbyz p−
.

Proof. Denote qv(z) as the probability density function of the output of the Byzantine
mechanism, given the input v. For an arbitrary output z ∈ Range(Mbyz), we have

qv(z) = 1{Mbyz(v) = z}[(1− pbyz)1{v = z}+ pbyz pnoise(z)] + 1{Mbyz(v) 6= z}pnoise(z). (A1)

Using 0 ≤ 1{v = z} ≤ 1, we have

qv(z)

≤ 1{Mbyz(v) = z}[(1− pbyz)(1− pnoise(z))] + pnoise(z)

≤ (1− pbyz)(1− pnoise(z)) + pnoise(z),

and

qv(z)

≥ 1{Mbyz(v) = z}pbyz pnoise(z) + 1{Mbyz(v) 6= z}pnoise(z)

≥ 1{Mbyz(v) = z}pbyz pnoise(z) + 1{Mbyz(v) 6= z}pbyz pnoise(z)

≥ pbyz pnoise(z).

Thus, for any pair of inputs v, v′, we have

qv(z)
qv′(z)

≤
(1− pbyz)(1− pnoise(z)) + pnoise(z)

pbyz pnoise(z)

=
(1− pbyz) + pbyz pnoise(z)

pbyz pnoise(z)

≤ exp

(
1− pbyz

pbyz pnoise(z)

)
. 1 + x ≤ exp(x)

≤ exp

(
1− pbyz

pbyz p−

)
,

which concludes the proof.
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