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Abstract: We show that the so-called motorcycle graph of a planar polygon can be constructed by a
randomized incremental algorithm that is simple and experimentally fast. Various test data are given,
and a clustering method for speeding up the construction is proposed.
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1. Introduction

The so-called straight skeleton is an internal tree structure for polygons. It is used
in computational geometry and also in other fields of science [1] as a piecewise-linear
alternative to the (potentially curved) medial axis of a polygon. The straight skeleton is
defined by a mitered offsetting process, where the boundary of the polygon gets moved
inwards in a self-parallel manner. Thereby, the polygon edges change in length and
eventually shrink to length zero and disappear, and the shrinking polygon may split at
various places. During the offsetting process, the vertices of the polygon move on internal
angle bisectors and trace out certain straight-line segments in the polygon’s interior that
build up a tree structure—the straight skeleton.

The reflex vertices of the polygon (i.e., those having an internal angle larger than π) play
a special role in the construction of the straight skeleton. The reason is that such vertices are
responsible for possible polygon splits, which are non-local events and therefore are (unlike
the disappearances of edges) costly to predict. The problem of dissolving the interaction of
the reflex polygon vertices was abstracted by Eppstein et al. [2] into a separate problem
which they called the motorcycle graph problem. Figures 1 and 2 give an example and
explanations. Consider r ’motorcycles’ starting from r given points in the plane (the reflex
polygon vertices), at different but constant speeds (given by the interior polygon angles)
and in different directions (following the respective angle bisectors). Each motorcycle
produces a trace where other motorcycles, when running into it, crash and end their
movement. The collection of all the motorcycle traces now define the motorcycle graph of
the polygon.

Computing the straight skeleton or at least the motorcycle graph efficiently has been
a topic in computational geometry over the years; see e.g., [2–5]. Indeed, precomputing
the motorcycle graph lead to the first straight skeleton algorithm with sub-quadratic
runtime. Typically, the behaviour of the motorcycles is tracked over time, handling all
motorcycles simultaneously—the simplest algorithm just computing all the intersections
between traces beforehand.

The goal of the present paper is to show that treating the motorcycles individually
(rather than simultaneously) leads to a simple and practical algorithm. We will apply
randomized insertion to the motorcycles and maintain a partial motorcycle graph during
this process. Our empirical results indicate competitiveness of our new method to other
implemented algorithms like in [6]. A conference version of this paper appeared in [7].
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Figure 1. Straight skeleton of a polygon. The dashed polygon offsets indicate its shrinking process.

w2

w1

m1
m2

Figure 2. The corresponding motorcycle graph is defined by two motorcycles, m1 and m2, that start
at the reflex vertices w1 and w2, respectively.

2. Insertion Algorithm
2.1. Preliminaries

In this work, P is always a simple polygon with n vertices, ∂P denoting its boundary.
Let W = {w1, . . . , wr} be the subset of all the reflex vertices of P , in some fixed order. With
each such reflex vertex wi ∈W we associate a constant velocity −→vi . (In the context of the
straight skeleton of the polygon P , this velocity is defined as the speed and direction of wi
during the shrinking process of P). Furthermore, let mi be the motorcycle moving from wi
with velocity −→vi . Then at time t > 0, the motorcycle mi is located at wi + t · −→vi . We assume
that mi leaves behind a straight trace, and when mi reaches the trace of another motorcycle
or the polygon boundary ∂P at some time t, then mi is said to crash: That is, for all t′ > t,
the position of mi remains at wi + t · −→vi . The union of all motorcycle traces generated in
this way is called the motorcycle graph of W, orM(W) for short.
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2.2. Localized Intersection Computations

In [4] Cheng and Vigneron introduced a partition of the polygon P (or more gener-
ally, of the entire plane) into convex cells, in order to reduce the number of intersection
computations between motorcycle traces. The positions of the motorcycles are tracked
over time, and intersections are only computed among motorcycle traces that are ‘active’
within the same cell. A motorcycle is called active in a cell C at time t when it was located
within C for some time t′ ≤ t. The set of active motorcycles is tracked for each cell as a
local arrangement of line segments A(C), initialized to the empty set at the start of the
algorithm. If a motorcycle m crashes at some time t, its ‘death time’ is recorded as d(m) = t;
initially d(m) is set to ∞, and m is called alive if it has not crashed yet. To track the state of
the motorcycles over time, three kinds of events are processed: collision events (two mo-
torcycle traces intersect within a cell; these events are called impact events in [4]), switch
events (a motorcycle crosses the cell boundary to enter the next cell), and boundary events
(the motorcycle crashes into the polygon boundary; these events are not considered in [4]
because the motorcycles are not restricted to a polygon there). The events are managed
by a time-ordered queue Q, initialized with switch events taking each motorcycle to its
starting cell (i.e., the cell adjacent to the reflex polygon vertex where the motorcycle starts).
The events are processed in the following way:

Boundary event of motorcycle m at time t, where m crashes into ∂P at some point q. If m
is alive at t, the motorcycle edge wq is reported. In addition, we put d(m) = t. If m
was already dead at time t there is nothing to do.

Collision event of motorcycle m at time t, where m reaches the trace of another motorcycle
m′ at point q, with m′ having tentatively passed q at some time t′ < t. If d(m) < t (m
has already crashed) or if d(m′) < t′ (m′ has crashed before reaching q), then there is
nothing to do. Otherwise m crashes at q, and so we set d(m) = t.

Switch event of motorcycle m at time t, moving from cell C to cell C′. If d(m) < t there
is nothing to do. Otherwise the line segment representing the (tentative) track of
m through C′ is inserted into the arrangement A(C′). Collision events of m with
other motorcycles in C′ are computed via A(C′) and are inserted into the queue Q.
(Note that collision events between two motorcycles are always associated with the
motorcycle reaching the collision point last). Also, the next switch event for m, passing
from C′ to the next cell C′′, is computed and inserted into Q. If there is no such cell
C′′, i.e., when m crashes into ∂P , then the corresponding boundary event is inserted
into Q.

The running time of this algorithm is largely dependent on the chosen cell partition.
By using an 1√

n cutting, Cheng and Vigneron achieve a running time of O(n
√

n log n).

They also present a simpler randomized approach: choose randomly
√

n motorcycles, and
use the arrangement of the support lines defined by the chosen motorcycles as the partition.
This results in an expected running time of O(n

√
n log n). A slight variation of this idea

has been used in an implementation by Huber and Held in [6], where they partition the
plane using a

√
n times

√
n rectangular grid.

Common to these approaches is the simulateneous processing of all motorcycles over
time. By contrast, we shall consider each motorcycle at a time: We devise an insertion
algorithm for the motorcycles, which is based on a cell partition different from the ones
used before, and which is described below.

2.3. Motorcycle Insertion

Let Wk = {w1, . . . , wk} be a subset of the reflex vertices of P , and letM(Wk) be the
partial motorcycle graph, where only the k < r motorcycles of the vertices in Wk move. In
this section we show how the next motorcycle, mk+1, can be inserted intoM(Wk) in order
to obtainM(Wk+1).
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In the simplest case, mk+1 crashes at ∂P or at the first motorcycle trace inM(Wk) that
it reaches. Then we only need to add the motorcycle edge of mk+1 toM(Wk) to obtain
M(Wk+1). Otherwise, the insertion of mk+1 causes more complex structural changes. In
the worst case, all the edges ofM(Wk) can change, meaning that they either get shortened
or extended inM(Wk+1).

To compute these changes, we adapt the algorithm from [4]. However, we use the
(already computed) partial motorcycle graphM(Wk) as our cell partition of P . Initially,
there is only one moving motorcycle, mk+1. Q is initialized with a single event, the switch
event for mk+1 when it enters the cell adjacent to wk+1. As cell boundaries correspond to
motorcycle traces, switch and collision events can happen at the same time; in such a case
the collision event is processed first. The event processing is adapted in the following way:

Boundary events are handled as before.

Collision event of motorcycle m at time t, reaching the trace of motorcycle m′ at point q,
with m′ having tentatively passed q at some time t′ < t. This is handled as before,
and in case both motorcycles are alive at q (i.e., m actually crashes at q) and m 6= mk+1,
then we additionally need to ‘activate’ all motorcycles m̃ that got blocked by m (after
m passed q) and that have d(m̃) > t. See Figures 3 and 4 for illustrations. For all such
motorcycles m̃ we do the following: Put d(m̃) = ∞, and insert into Q a switch event
of m̃ crossing the edge defined by m to reach the next cell, say C′. (This switch event
will then add m̃ to A(C′).)

Switch events are handled as before.

w1

w2

w3

w4

Figure 3. Partial motorcycle graph before the insertion of motorcycle m4.
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w1

w2

w3

w4

Figure 4. Insertion of m4 makes m1 crash. This activates m3 which is now blocking m2.

Theorem 1. The motorcycle insertion algorithm is correct.

Proof. Correctness of our approach mainly follows from the correctness of the Cheng-
Vigneron algorithm [4]. The only difference is that our algorithm avoids creating and
processing certain events becauseM(Wk) is used as the underlying polygon partition.

Consider all collision events for the motorcycle graphM(Wk), as well as all the switch
events for the motorcycles m1. . . . , mk+1. These events are precomputed in [4], as opposed
to our on-demand approach. Our algorithm processes the same events, except that we need
not process the collision events forM(Wk) because we already know the result of these
events (namely,M(Wk) itself)—if these events are relevant at all (motorcycles may crash
earlier in M(Wk+1)). Also, computing switch events on demand—when a motorcycle
enters a new cell—for mk+1 and for the unblocked motorcycles ofM(Wk) changes neither
the events nor their processing. Thus, our algorithm and the algorithm of [4] produce the
same result.

Clearly, the final result of our algorithms does not depend on the order in which the
motorcycles are inserted. While intermediate results (i.e., the partial motorcycle graphs
M(Wk)) might be different, the algorithm always ends up with constructingM(W). We
will exploit this fact and will insert the motorcycles in random order to reduce the running
time in the expected case.

2.4. Partition Maintenance

So far we discussed the insertion of a single motorcycle mk+1 intoM(Wk) to compute
M(Wk+1), but to obtain an algorithm for incrementally constructing the motorcycle graph
we need to maintain the partial motorcycle graph during the insertion steps. FromM(Wk)
toM(Wk+1) existing motorcycle edges can be shortened or extended. Shortening an edge
causes two adjacent cells to be merged, extending an edge causes a cell to be split (see
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Figure 5 for an illustration). During the event processing, the algorithm needs to compute
switch and boundary events—this can be done by using ray shooting queries within cells.
And when inserting a new motorcycle mk+1 it is necessary to find the adjacent cell of
M(Wk) for the initial switch event.

w1

w2C2

C1

(a) Before inserting m2.

w1

w2Ĉ2

Ĉ1

Ĉ3

Ĉ4

(b) C1 and C2 are split.

w1

w2C̃2

C̃1
C̃3

(c) Ĉ3 and Ĉ4 are merged.

Figure 5. Updating the cell structure of the motorcycle graph.

The data structure from Goodrich and Tamassia [8] supports all needed operations in
O(log2 n) time using O(n) space. In practice, if costly operations do not occur too often, it
may be efficient enough to organizeM(Wk) in a doubly-connected edge list data structure,
and to do simple boundary scans for all operations (see the Section 3 for data supporting
this approach). Also note that, while the cells ofM(Wk) are in general not convex, they
can be treated as such for in-cell ray shooting queries: Figure 6 explains how a cell can be
extended to a convex cell for this purpose.

C2
C1

C3

C4

s

Figure 6. Motorcycle cells (C1 to C4) induce (possibly infinite) convex polygons by extending their
bordering motorcycle edge segments. (The green area shows the induced polygon for the cell C2.).

3. Experimental Results

Analysing our insertion step, we can observe that Θ(k) structural changes can happen
fromM(Wk) toM(Wk+1). This basically amounts to a complete recomputation of the
partial motorcycle graph. Figure 7 gives an example. Assuming this worst case for all
iterations, we end up with a running time that is a factor of n worse than the algorithm
from [4].

The construction given in Figure 8 has as many as Θ(n) structural changes in the
last insertion step, averaged over all reflex vertices. This shows that, even when using
randomized insertion, the expected runtime of a single step can be as large as Θ(k). As
a consequence, applying the backwards analysis technique for randomized incremental
insertion (as in [9]) does not provide any improved runtime bounds.
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Figure 7. The insertion of one motorcycle can block all the others.

Figure 8. Polygon angles can be adjusted such that removal of any of the Θ(n) blue motorcycles
unblocks its associated red motorcycle, which in turn blocks the Θ(n) green motorcycles.

Deriving theoretical bounds on the expected overall runtime thus seems to be intricate,
and we instead explored the practical performance of our randomized insertion algorithm
on large sets of polygons of different shapes and characteristics. We observed the occurring
number of structural changes—for each already inserted motorcycle a modification counter
for its associated edge in the partial motorcycle graph is maintained.

The polygons considered can be divided into three categories: Random polygons
from the Salzburg Database of Geometric Inputs [10] (like in Figure 9), polygonal country
outlines taken from Natural Earth [11] and DIVA-GIS [12] (see Figure 10 for examples), and
specifically constructed polygons (see Figures 8 and 11). Many more details on the used
data and their exploration can be found in Ladurner’s Master thesis [13].

Figure 9. Examples of random polygons from Salzburg Database of Geometric Inputs [10].
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Figure 10. Examples of country-based polygons from Natural Earth [11].

Figure 11. Polygon with Θ(n2) motorcycle intersections.

For each of the tested polygons without exception, the following interesting and
encouraging fact could be observed: The number of structural changes, averaged over all
insertion steps, is bounded by a small constant. The plots in Figures 12 and 13 give some
details. We conclude that in practice our randomized insertion algorithm performs very
well; O(1) structural changes per insertion leads to an expected overall running time of
O(n log2 n).
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Figure 12. Average number of structural changes per insertion step. (For polygons from [10] with up
to 7000 reflex vertices).

Figure 13. Average number of structural changes per insertion step, for specifically constructed
polygons.

4. Structural Aspects

In this section we take a closer look at a structural property of polygons that has a
direct impact on the performance of our insertion algorithm.

The most challenging configuration for the insertion algorithm is when all motorcycles
of a polygon interact with each other, that is, when there are Θ(n2) intersections among
motorcycle traces to consider. However, for many types of polygons this will not be the case.
The set of motorcycles then can be divided into subsets that can be processed independently
by the insertion algorithm. If the sizes of these subsets are sufficiently small, much better
theoretical running times can be achieved. In particular, for constant sizes a running time
of O(n log2 n) is obtained.
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4.1. Motorcycle Crews

Let us formalize the notion of interacting motorcycles. For this purpose we represent
each motorcycle by a pair (p, q) of its starting point and its potential crashing point on
the polygon boundary ∂P . Since we are only interested in whether these potential traces
have intersection points within P , we can simply model P by a disk and the traces by arcs
within this disk. See Figure 14 for an example.

m2

m3m1

m2

m3
m1

Figure 14. Polygon with motorcycles (left) and its abstraction on a disk (right).

In this way we obtain what is called the model of a circle graph (or chord intersection
graph) in graph theory [14]. We are interested in the connected components of this graph,
which we shall call motorcycle crews in our context. Each motorcycle crew can be processed
independently by our insertion algorithm.

To compute these crews, we perform a counterclockwise walk along ∂P from an
arbitrary initial point. A list L is kept containing all currently encountered but not yet
completed crews. When the starting point p of a motorcycle trace (p, q) is encountered, we
add it to L and assign this motorcycle to a new crew. When the endpoint q of a trace (p, q)
is encountered, we locate its starting point p in L and merge all motorcycles between p and
q into a common crew. If this crew is complete (meaning that each member has both its
starting and its endpoint in L), the crew is reported and removed from L. Note that L can
be implemented as a union-find data structure [15], such that all necessary operations can
be carried out in O(n log n) overall time.

4.2. Experimental Data

The algorithm for computing the motorcycle crews has been run on polygons with up
to 30.000 vertices from the Salzburg Database of Geometric Inputs [10], as well as on polygons
based on country outlines taken from Natural Earth [11] and DIVA-GIS [12].

Figure 15 shows the distribution of crew sizes in relation to the number of reflex
vertices of a polygon. The smallest crew sizes strongly dominate all the others combined (a),
which promises a speed-up of our insertion algorithm for most instances. A closer look at
the remaining crew sizes (b) shows that there are a few hundred polygons (out of around
2700) that have one very large crew containing almost all motorcycles. For these polygons
our insertion algorithm does not get a benefit for processing crews separately. For polygons
based on country outlines the situation is less favorable; see Figure 16. Most polygons have
crews of size O(n), that is, most motorcycles interact with each other.



Algorithms 2022, 15, 225 11 of 12

(a) All crew sizes. (b) Smallest crew sizes excluded.

Figure 15. Histogram of motorcycle crew sizes in relation to the number of reflex vertices. Data for
2700 polygons with at least 100 reflex vertices from Salzburg Database of Geometric Inputs [10].

(a) All crew sizes. (b) Smallest crew sizes excluded.

Figure 16. Histogram of motorcycle crew sizes in relation to the number of reflex vertices. Data
for 380 country outline based polygons with at least 100 reflex vertices from Natural Earth [11] and
DIVA-GIS [12].

5. Conclusions

In summary, the insertion strategy enables a quick and simple construction of motorcy-
cle graphs in practice. Together with the simple motorcycle-graph-based skeleton merging
algorithm in [16], we obtain a new practical method for computing straight skeletons.
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