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Abstract: Sorting permutations with various operations has applications in genetics and computer
interconnection networks where an operation is specified by its generator set. A transposition tree
T = (V, E) is a spanning tree over n vertices v1, v2, . . . vn. T denotes an operation in which each edge
is a generator. A value assigned to a vertex is called a tokenor a marker. The markers on vertices u
and v can be swapped only if the pair (u, v) ∈ E. The initial configuration consists of a bijection from
the set of vertices v1, v2, . . . , vn to the set of markers (1, 2, · · · , n− 1, n). The goal is to sort the initial
configuration of T, i.e., an input permutation, by applying the minimum number of swaps or moves
in T. Computationally tractable optimal algorithms to sort permutations are known only for a few
classes of transposition trees. We study a class of transposition trees called a broom and its variation a
double broom. A single broom is a tree obtained by joining the centre vertex of a star with one of the
two leaf vertices of a path graph. A double broom is an extension of a single broom where the centre
vertex of a second star is connected to the terminal vertex of the path in a single broom. We propose
a simple and efficient algorithm to obtain an optimal swap sequence to sort permutations with the
transposition tree broom and a novel optimal algorithm to sort permutations with a double broom.
We also introduce a new class of trees named millipede tree and prove that D∗ yields a tighter upper
bound for sorting permutations with a balanced millipede tree compared to D′. Algorithms D∗ and
D′ are designed previously.

Keywords: sorting permutations; transposition trees; polynomial time algorithms; interconnection
networks; broom; optimal swap sequence; Cayley graphs

1. Introduction

Sorting permutations with various operations has applications in genetics and com-
puter interconnection networks [1–4] and is an active field of research.Reversals, transposi-
tions, prefix reversals, prefix transpositions have been extensively studied with respect to
upper bounds, lower bounds, exact distances for all permutations in Sn etc. Transposition
tree is one such operation which has applications in solving puzzles and robot motion
planning [5,6].

Hypercube architecture was a golden standard in 1980s for computer interconnection
networks. Later, Akers and Krishnamurthy [1] proposed a transposition tree called star, and
showed that the Cayley graph corresponding to star, called star graph can accommodate n!
nodes and has diameter sub-logarithmic in number of vertices. Star graphs surpass the then
topology Hypercube, both in scalability and diameter because the later can accommodate
only 2n vertices and has diameter logarithmic in number of vertices. Diameter is an im-
portant quality of service parameter deciding the latency of interconnection networks [7,8].
There is a natural trade-off between diameter and the cardinality of the generator set. That
is, a larger generator set decreases the diameter and vice-versa. The diameter of a Cayley
graph Γ, can be trivially reduced to 1 if the degree of each node in Γ is one less than the total
number of nodes. However, if the number of symbols, i.e., the label length of a vertex is n,
then this would require the degree to be n!− 1 and this is infeasible. Thus, a good balance is
sought. In this regard, the degree of Γ generated using any transposition tree is a relatively
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small value of n− 1 and for some trees the diameter can be small as well. For example,
for a star graph the diameter is 3/2n + O(1) [1]. Thus, Cayley networks were established
as a better topology than hypercubes for interconnection networks. Cayley networks also
possess other desirable features such as vertex symmetry and small diameter [1]. These are
detailed in Heydemann [3], Lakshmivarahan et al. [4], and Xu [8].

In this article we study the problem of sorting permutations under the operation
specified by specific transposition trees—single broom, double broom and millipede tree. A
transposition tree T = (V, E) is a spanning tree over n vertices v1, v2, . . . , vn. T denotes an
operation in which each edge is a generator [1]. A value assigned to a vertex is called token
or marker. The markers on vertices u and v can be swapped only if the pair (u, v) ∈ E. This
is equivalent to applying the corresponding generator and is referred to as making a move.
Since swap is symmetric, the edge (u, v) is undirected. The initial configuration consists of
a bijection from v1, v2, . . . vn to (1, 2, · · · , n− 1, n); i.e., from the set of vertices to the set of
markers over the alphabet {1, 2, · · · , n− 1, n}. That is, one can view each vertex vi as an
index i in an array where some marker j resides. Thus, input consists of a permutation. The
vertex vi is the home for the corresponding marker i and we seek to home all markers with
minimum number of moves. Note that if for all i, vi = i then the permutation is sorted.
Thus, the goal is to sort the initial configuration, i.e., an input permutation, by applying the
minimum number of generators (or swaps or moves) of T. In the remainder of the article,
‘sorting’ refers to transforming a given permutation into the identity permutation with a
minimum number of moves of T.

Example 1. Let T be a transposition tree with V = {1, 2, 3, 4, 5} and E = {(1, 2)(2, 3)(3, 4)
(4, 5)}. The generators are the permutations {(21345), (13245), (12435), (12354)}.

The computational complexity of sorting permutations with transposition trees is
unknown in general. However, computationally tractable optimal algorithms to sort
permutations are known for a few classes of transposition trees such as star [1], path [9],
broom [5,6,10], etc.

We study the problem of sorting permutations with a single broom and a double
broom transposition trees. A broom, also referred to as a single broom, is a transposition tree
obtained by joining the center vertex of a star with one of the leaf vertices of a path. Several
efficient optimal algorithms are known to sort permutations using a broom [5,10,11]. In
Section 3 we design a new efficient optimal algorithm for sorting permutations using single
broom. In Section 4 we design a novel efficient optimal algorithm for sorting permutations
using double brooms. This algorithm is designed by extending the algorithm for single
broom. The problem of sorting permutations using a new class of trees called millipede tree,
is studied in Section 5. Section 6 demonstrates the limitation of the proposed algorithms
when performed on an n-Broom providing a new direction for future research in the field
of sorting permutations using transposition trees.

2. Preliminaries and Background

In this article, we employ the alphabet {1, 2, · · · , n− 1, n} to generate the symmetric
group Sn. The permutation I = (1, 2, 3, 4, · · · , n− 1, n) is the identity permutation in Sn. An
operation G is specified by a generator set that is a subset of Sn; G ⊂ Sn. Each permutation
in the generator set is a generator. Let π be a permutation in Sn, and σ be a generator.
Applying σ on π yields another permutation, say γ ∈ Sn. We say that σ transforms π
into γ. Given two permutations α, β ∈ Sn, and an operation G, the minimum number
of generators of G required to transform α into β is called the distance from α to β under
G, denoted by dG(α, β) and in general, it is hard to compute the same if the number of
generators is two or more [12]. When G is symmetric, then dG(α, β) = dG(β, α). If the
target permutation is I, then dG(α, I) is succinctly denoted as dG(α), which is called the
distance of α. Transforming α into I is called as sorting α, and thus dG(α) is the number
of generators required to sort α parsimoniously. Let g1, g2, . . . gt be a shortest sequence of
generators such that α ◦ g1 ◦ g2 . . . gt = β. Then β−1 ◦ α ◦ g1 ◦ g2 . . . gt = β−1 ◦ β = I. That
is, the number of moves required to transform α into β is same as that of transforming
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β−1 ◦ α into the identity permutation I. Thus, the problem of finding minimum distance
between two given permutations reduces to the problem of sorting a related permutation.
If the target permutation is I, then dG(β−1 ◦ α, I) is denoted as dG(β−1 ◦ α), which is called
the distance of a single permutation β−1 ◦ α.

Various operations have been studied in the past. Some of them are reversal, trans-
position, block interchange, etc. A block move operation moves a block; e.g., block trans-
position, suffix block transposition etc. A small sample of the research in this broad area
follows. Christie studied sorting permutations by transpositions and proved a tighter
lower bound based on the hurdles of the underlying cycle graph and designed a simpler
3/2-approximation algorithm [13]. The first non-trivial lower and upper bounds for prefix
transposition distance over permutations were given in [2]. Chitturi et al. [14] shows how
to compute the transposition distances of all permutations in Sn in an amortized time of
O(n3). Recently, subsets of permutations related to a certain type of block move operation
have been counted [15]. These results are varied in type that employ distinct techniques
such as dynamic programming and applications of graph properties, and constructs such
as cycle graphs and adjacencies in permutations.

A Cayley graph ΓT under the operation T over Sn is defined as follows. The vertex
set V of ΓT consists of all permutations in Sn. There is an edge from vertex u to vertex v
if there is a generator g ∈ T such that ug = v. The distance between two permutations α,
and β under the operation T, dT(α, β) is equal to the number of edges in the shortest path
between the corresponding vertices in ΓT . The diameter of ΓT , DT(n) = maxu,v∈Sn dT(u, v).
A transposition tree in turn gives rise to a Cayley graph (refer Figure 1).

Figure 1. A Transposition tree T and the corresponding Cayley graph ΓT .

The problem of sorting permutations using transposition trees is also known as token
swapping on trees [5,6,11,16–19]. Given a tree T consisting of n vertices {v1, v2, . . . vn} and
edge set E, a configuration of T is an assignment of n distinct markers or tokens {1, 2 . . . n}
to the vertices of T. Tokens can be moved along the tree edges only. Given an initial
configuration fi and a target configuration ft of a tree T, token swapping problem is to
transform T from fi to ft with minimum number of moves.

A transposition tree with vertex set {v1, v2 . . . vn} and edge set {(v1, v2), (v2, v3) . . . (vn−1,
vn)} is called a path of length n. An optimal algorithm for sorting permutations using path
requires k moves where k is the number of inversions in the given permutation [20]. The
reverse permutation (n, n− 1, n− 2 . . . 1) is the diametral permutation of Sn that requires
n(n− 1)/2 moves to sort. Another transposition tree studied in the past is star. A star
(with center, say v1) is a transposition tree with vertex set {v1, v2 . . . vn} and edge set
{(v1, v2), (v1, v3) . . . (v1, vn)}. Efficient optimal algorithms for sorting permutations using
a star are known [1,21,22]. The optimum number of moves required to sort permutations
using star is m + c, where m is the number of un-homed leaf markers, and c is the number
of permutation cycles of length ≥ 2, in the given permutation, consisting of un-homed
leaf markers only [5]. When all cycles in a given permutation are of length 2, it takes the
maximum number of moves to sort that permutation. Thus, the diameter of star graph is
b3/2(n− 1)c [1].

Generic algorithms to compute upper bounds (not necessarily tight) for sorting permu-
tations with any given transposition tree have been studied. Akers and Krishnamurthy [1]
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propose the first known such algorithm that require exponential running time. Ganesan [23]
proposed a method to compute an upper bound βmax in exponential time which is an esti-
mate of the upper bound by analyzing the structure of the transposition tree. Chitturi [24]
designed two polynomial (O(n2)) time algorithms, γ and δ′ for computing upper bounds.
The cumulative sum of upper bound values of γ and δ′ for all trees of a particular size
were found to be tighter than the values provided by earlier methods. Furthermore, these
algorithms solely analyzed the structure of the tree and were computationally efficient.
Kraft [25] proposed randomized algorithms with polynomial running time which were
looser than the other upper bounds. Uthan and Chitturi define a class of trees called
Sm,k [26] and prove an exact upper bound for the same.

3. Sorting Permutations with a Single Broom

In this section, we design a polynomial time optimal algorithm for sorting permuta-
tions using a single broom. A single broom is a tree obtained by joining the center vertex of a
star with one of the two leaf vertices of a path graph, using a new edge. A single broom
has n vertices, partitioned into two sets called star vertices v1, v2, . . . , vk, and path vertices
vk+1, . . . , vn, where 2 ≤ k ≤ (n− 3). Note that the center of the star, i.e., vk+1 is also a path
node. Similarly, markers are partitioned into two sets called star markers and path markers.
A star marker is a marker whose home is a star node, and a path marker is a marker whose
home is a path node. A new efficient optimal algorithm called Ab, for sorting permutations
using single broom is given in Section 3.1.

3.1. Algorithm Ab

Let Smin be the star marker that is closest to its home residing on the path and Pmax
be the largest path marker that is not homed. Our algorithm Ab for single broom that
transforms a given input configuration to a sorted configuration, consists of the following
3 steps in the given order.

1. While (∃ a Smin), efficiently home Smin;
2. While (∃ a Pmax), efficiently home Pmax;
3. Efficiently home the markers in the star that need to be homed.

An illustration of algorithm Ab for a single broom is given in Figure 2. In the initial
setup, we have two unhomed star markers on path, i.e., 3 on v7 and 2 on v8. Smin is 3 in the
first iteration and in the next it will be 2. Homing markers 3 and 2 take 5 swaps in total.
Then, there will be no star markers residing on the path. Thus, we can start with Step 2 of
our algorithm. Pmax is 8 and a swap with 7 homes both the markers. Only the star markers
5 and 4 at v4 and v5 respectively need to be homed. Our algorithm homes all markers in
total of 9 swaps, exactly the same number of swaps that are taken by the algorithms of
Biniaz et al. [5], Yamanaka et al. [6] and Vaughan [10].

Figure 2. Illustration for Algorithm Ab. The star vertices are v1, v2, v3, v4, v5 and the path vertices are
v6, v7, v8. (a) (i) Smin = 3, Swaps = 2; (ii) Smin = 2, Swaps = 3. (b) Pmax = 8, Swaps = 1. (c) Unhomed
Markers are 5 and 4, Swaps = 3.

Step 1 and Step 2 of Ab have the following properties:
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1. Star markers residing on the path always move to the left in the increasing order of
their distances from their respective homes;

2. A path marker moves right to its home; thereby moving the smaller path markers
towards the center;

3. Swap involving two star markers will not take place on a path edge.

The next section covers the analysis and correctness proof of the algorithm Ab.

3.2. Analysis of Ab

We begin our analysis for the number of swaps with Step 1. Let D(Sp) be the distance
from Sp to its home, where Sp are the star markers residing on the path of the broom. Sp,
can reside either on the central node or on the rest of the nodes in the path. Note that
homing a marker from central node to a star leaf takes exactly a single swap. Ws is the
total number of swaps executed in Step 1. Since, we home the nearest markers first, the
distances of the markers that are homed subsequently do not increase. Thus, we have the
following expression.

Ws = ∑
Sp

D(Sp).

Observe that for Step 2, we are now left only with the path containing path markers.
The total moves required on the path to place the markers at their desirable vertices is same
as the number of inversions [9,27,28]. Let D(Pp) be the distance from the path marker Pp to
its home, where Pp is the path marker residing on the path of the broom. Wp is the total
number of swaps executed in Step 2. Then, for the reason stated for Ws in Step 1,

Wp = ∑
Pp

D(Pp).

For the final step in Ab, let LS be the number of permutation cycles not containing
the center vertex that have a length ≥ 2 and NS be the number of markers in these cycles.
These markers are not swapped in Step 1 or Step 2. So, as discussed before in Section 2, the
number of swaps to home the star markers is LS + NS.

Wb, the total number of swaps performed in Ab is :

Wb = ∑
Pp

D(Pp) + ∑
Sp

D(Sp) + LS + NS.

Step 1 of Ab takes a distance-based approach in which Smin is selected on the basis of
its distance from the leaf nodes in the star. Step 2 obeys a value-based approach in which a
maximum valued path marker is homed first. Biniaz’s, Kawahara’s and Vaughan’s algorithms
are strictly based on a value-based approach and work in O(n2) time. Figure 3 compares the
traversal of markers in Ab with the algorithms proposed by Biniaz and Kawahara.

Time complexity of Ab can be expressed in terms of number of moves. The total
number of Smin markers possible in Step 1 is min(S, P) where S is the number of star
vertices and P is the number of path vertices. The worst case of this step occurs when
all the path nodes are occupied by star markers and the homes of these star markers
are occupied by other star markers. The total number of moves required in Step 1 is
(P(P + 1)/2) + (S− P). The worst case of Step 2 occurs when all P path markers need
to be homed with a total swap count of P(P− 1)/2. Solving the star in step 3 requires a
maximum of b3S/2cmoves. Since P, S ∈ O(n), Algorithm Ab runs in O(n2) time.

As the number of edges in a single broom is n− 1, the tree requires O(n) space, and
the algorithm does not require any additional space.
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Figure 3. Comparison of algorithm Ab with Biniaz’s and Kawahara’s algorithms. (a) Smin = 3, Swaps
= 2; Smin = 4, Swaps = 3. (b) Maximum valued path token(Pmax) = 9, Swaps = 3; Pmax = 8, Swaps = 3.
(c) Maximum valued token(Tmax) = 9, Swaps = 3; Tmax = 8, Star tokens = {3}, Swaps = 4. (d) Smin = 5,
Swaps = 1; Smin = 2, Swaps = 4. (e) Pmax = 7, centered star chain = {4,5,3,7}, Swaps = 4. (f) Tmax = 7,
Star tokens = {4,5}, Swaps = 3. (g)Smin = 1, Swaps = 1; Pmax = 8, Swaps = 1, Total Swaps = 12. (h) Pmax

= 6, centered star chain = {2,1,6}, Swaps = 2, Total Swaps = 12. (i) Tmax = 6, Star tokens = {2,1}, Swaps
= 2, Total Swaps = 12.

3.3. Correctness of Ab

In this section, we prove that Ab finds an optimal swap sequence, Sopt, which always
follows some interesting properties. To show that, Sopt is optimal, we first prove that these
properties hold for a given marker on a broom and then apply induction on n.

Lemma 1. An optimal path sequence Sopt will obey following properties:

1. A pair of markers swap at most once.

Proof. We prove it using contradiction. Suppose the swap sequence S = S1, S2, S3 . . . Ss,
contains the swap of (x, y) twice at Si and Sj. Modify S by deleting Si and Sj. Then,
for each swap Sk where i < k < j, replace x with y and vice-versa. Resulting swap
sequence is shorter and achieves the same results.

2. Star markers that enter the star from path do so in the increasing order of their distance
from center.

Proof. Consider two star markers x and y residing on the path. Assume x and
y are at a distance d and d + c respectively from their home. Let S be the swap
sequence containing the swap Si which swaps y and x on the path. Marker y will be
homed after a swap with the marker residing on its home Hy, call this swap Sj where
j > i. Similarly x will be homed after a final swap Sk with Hx where k > j. Call this
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intermediate configuration of markers as S′. We show how S can be modified in order
to obtain an optimal sequence. To modify S, omit Si and carry out further swaps with
x & y and Hx & Hy exchanged, until the swap Sk. Observe that we have obtained the
same marker configuration as in S′ but with fewer swaps.

3. Two star markers will never swap on a path edge.

Proof. Let us take x and y to be the star markers that swap on the path edge in S.
We show how S can be modified to obtain a swap sequence with a lesser number of
swaps on the path. After the swap of x and y in S, at some point of time, both x and y
will get into the star. Let S′ be a sub sequence of S, where y resides on a star leaf and x
on the center node. To modify S, remove the swap of x and y and replace x with y and
vice versa for the following swaps. Iterate this till the point S′ is reached in S and add
a swap of x and y. We have achieved the same target state, but a swap carried out on
the path is removed and compensated by adding an additional swap in the star.

To illustrate the same, consider the swap sequence S = (1, 2), (2, 6), (2, 3), (1, 6), (1, 3),
(1, 4). Note that S′ = (1, 2), (2, 6), (2, 3), (1, 6), (1, 3), where we have 2 at star leaf (say
x) and 1 at the center (say y).

If we omit the swap move (1, 2) and exchange x = 1, y = 2 we get the modified swap
sequence as (1, 6), (1, 3), (2, 6), (2, 3) (refer Figure 4). Followed by a swap move of x
and y we achieve the same configuration as S′ but the swap of x and y on path edge is
replaced by a swap on star edge, resulting in lesser swaps on path edges.

Figure 4. (a) S = (1, 2), (2, 6), (2, 3), (1, 6), (1, 3), (1, 4). (b) Modified Swap Sequence = (1, 6), (1, 3), (2,
6), (2, 3).

4. In every swap on the path edge involving at least one path marker, the larger of the
markers will move to the right.

Proof. Considering the contradiction of the stated property, a bad swap involves
moving a smaller valued path marker to the right and larger valued path marker to
the left. Suppose S contains a bad swap. We show how S can be modified to obtain a
new swap sequence which contains fewer swaps on the path. Assume smaller marker
s is swapped to the right and larger marker l to the left. Property 1 restricts us from
directly swapping them again. Therefore, marker l will move to the star leaf, then
marker s to another star leaf and then l goes to the center of the star. Let us call this
intermediate placement as S′. Now, to modify S, remove the swap of s and l, and
continue with the preceding swaps with s and l exchanged until the state S′ is reached.
We have achieved the same target state, but a swap carried out on the path is removed
and compensated for by adding an additional swap in the star; hence, reducing the
swap count on the path edge.

5. No star marker moves past the first path edge from left to right.

Proof. Let S include a swap Si in which a maker x moves past the first path edge
to the right using a swap with a marker p. Let, Sj is a swap belonging to S where j > i
which results in x reentering the star with the help of a swap with q. Taking the least
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possible j into account, we first establish that the marker q was residing on the star
leaf during Si. Suppose q was on path node during Si, then q will lie on the right to x.
Swaps involving x between Si and Sj will only keep it on path nodes and not move it
past the first path edge as per our assumption. Marker q is restricted to swap twice
with x on the path edge as per Property 1, which proves that q lies on the right of x
during Sj, which is contradictory. We show how S can be modified to obtain a swap
sequence with a lesser number of swaps on the path. Before Si, carry out a swap of x
and q and continue with the following swaps till Sj − 1 with x replaced with y and
vice-versa. We have achieved the same target state but the swap on a path edge is
removed and replaced by a swap on a star edge, hence reducing the number of swaps
on the path edge.

Theorem 1. Algorithm Ab computes an optimal swap sequence, i.e., a sorting sequence with the
least possible number of swaps.

Proof. We prove that our algorithm obtains an optimal swap sequence by applying induc-
tion on marker n. The base case is just a star S. Depending on the position of Smin and
Pmax, we consider different cases and prove them individually. Moreover, for the general
induction step, we prove that swaps performed by Smin and Pmax are a part of an optimal
swap sequence.

Case (1): The initial position of Smin is any path vertex other than the center vertex.
Let S′opt be the optimal swap sequence. Property 2 and Property 3 ensures that n will never
encounter a star marker on the path and hence it will only swap path markers on its way
home. Let d be the distance from the initial position of marker n to its home vertex Hn.
So, S′opt contains d swaps which involves marker n. Let Si be the swap that homes marker
n, therefore S1, S2, . . . , Si contain d swaps which includes marker n and (i− d) swaps that
do not include marker n. Call this intermediate configuration T. Create a separate swap
sequence Sopt which homes n in first d swaps followed by i− d swaps that do not involve
n and then carry on with rest of the swaps from Si+1, . . . , Sk. Homing marker n does not
alter the relative order of the remaining markers. Clearly, we have attained the same
configuration state as in T, implying Sopt is an optimal swap sequence which is generated
by our algorithm Ab.

Consider S′ be an optimal swap sequence which brings n to the center vertex. Observe
that n can be placed on center in exactly d− 1 swaps, where d is the distance of n from
its home vertex Hn on the star leaf. Let Sc be the swap in S′ = S1, S2, . . . , Sc that places
marker n on the center and T be the intermediate configuration of the markers after Sc.
Create a swap sequence S that homes the marker n first in d− 1 swaps and carries out
the rest of the c− (k− 1) swaps, which does not include n. Clearly, you will get the same
resulting configuration as of T with the same number of swaps. Hence, S is an optimal
swap sequence.

Now, call Sh the swap that homes n from the center vertex by swapping it with an
arbitrary marker t residing on Hn. Aforementioned discussion assumes that no swaps
which involve star edges occur before Sh. Otherwise, when n is initially placed on the
center vertex or arrives at the center with the swap Sc, it suffices to show that Sopt is optimal
which does not alter the position of n before the swap Sh. We do some modifications in
Sopt to make this true. Split the subsequence S1, S2, . . . , Sh−1 into Spath and Sstar, where the
subsequence Spath contains the swaps that occur on path edges and the subsequence Sstar
contains the swaps that occur on star edges. Note that Spath does not move marker n from
its position and Sstar always places n back to the center. We can rearrange this subsequence
containing Sstar and Spath as there are no star markers moving towards the path and vice
versa as mentioned in Property 5. After Spath, carry out the swap Sh and then perform the
swaps in Sstar but with t and n exchanged. This results in the same placement of markers
with no change in the swap count on the star and path. Hence, Sopt is same as the optimal
sequence generated by our algorithm Ab.
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Case (2): After Step 1 of Ab, it is important to observe that we are now only left
with path markers as all the star markers are either homed or residing on star nodes (will
be homed in Step 3). So, lets consider marker n = Pmax is on a path vertex, except the
center vertex. According to the property proved before, Pmax will always move to the right,
swapping the lesser value marker to the left. Let S be the swap sequence which contains
swap moves for homing Pmax. Consider Sh to be the swap which slots Pmax in its home
and T be the configuration at that instance. Considering distance d between Pmax and its
home, we can say S1 . . . Sh will have d swaps involving Pmax and (i− d) not involving Pmax
(say S′ be that swap sequence). To modify S, we first make d swap moves which involve
Pmax, followed by S′ and then Si+1 . . . S f inal , call this swap sequence So. It is interesting to
observe that initial d swap moves will not change the relative order of the rest of the path
markers, post which, S′ swap moves can be performed, ultimately resulting in the same
configuration T; hence So is optimal.

Now, suppose n = Pmax is on the center vertex. Let Sp be the swap that marker n on
the first path edge e = (vk+1, vk+2) with an arbitrary marker t. If we assume there are no
swaps before Sp, we can just prove it with the above mentioned discussion in Case 2. Else,
it suffices to show that Sopt is optimal and does not alter the position of n before Sp. We
modify Sopt to make this true. Split the subsequence S1, S2, . . . , Sp−1 into Spath and Sstar,
where Spath contains the swaps that occur on path edges and Sstar contains the swaps that
occur on star edges. Note that Spath does not move marker n from its position and Sstar
always places n back to the center. Additionally, as per Property 5 we can rearrange the
subsequence containing Sstar and Spath as there are no star markers moving towards the
path and vice versa . To rearrange this subsequence, perform the swaps in Spath, then the
swap Sp followed by the swaps in Sstar. While performing the saps in Sstar replace the
marker n with marker t. This results in same placement of markers with no change in the
swap count on the star and path edges; hence, Sopt is optimal and is the same as the one
generated by our algorithm Ab.

Case (3): As discussed before, for Step 3 the optimal number of swaps are LS + NS
where LS be the number of permutations that have a length ≥ 2 not involving the center
vertex (say Vc) and NS be the number of markers that are in these permutations. In case of
star, consider a sequence P of length ≥ 2 and the star vertices (say Vs). If Vc /∈ P, then the
total swap count to sort P is Vs + 1. If Vc ∈ P, then the total swap count is Vs.As the cycles
in LS are not related to each other, LS + NS gives the optimal swap count.

4. Sorting Permutations with a Double Broom

A novel polynomial algorithm Adb is designed in this section for optimally sorting
permutations using a double broom. A double broom is a double star with their central
vertices joined with a path (also known as a stem) [24]. Suppose double broom has a total
of n vertices, v1, v2, . . . , vi on the left star, vi+1, . . . , vj residing on the path (or stem) and
vj+1, . . . , vn on the right star. Note that we consider the central vertices vi+1 and vj of the
stars as path vertices of the double broom.

Let SL and SR be the left and right stars respectively, with corresponding center vertices
CL and CR . Let SR

min and SL
min be the closest star marker residing on the path to SR and SL

respectively and Pmax be the maximum valued unhomed path marker.
Our algorithm Adb, that transforms a given input configuration to a sorted configura-

tion, is as follows:

1. While ∃ a SR
min marker, efficiently home SR

min;
2. While ∃ a SL

min marker, efficiently home SL
min;

3. (At this point, only the stem is left) While ∃ a Pmax marker, efficiently home Pmax;
4. Efficiently home the markers of SR and SL.

Note that any vertex to the right of CL (inclusive) will be considered as a path vertex
from the perspective of a marker residing in SL. Similarly, any marker to the left of CR
(including) will be a path vertex for markers in SR.
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Our algorithm places each marker at its respective vertex in 10 swaps (refer Figure 5).
It is also noteworthy to mention that the happy leaves are swapped in the process, hence
abiding to the Happy Leaves conjecture. Adb obeys following interesting properties which
we use to analyse the algorithm in the next section.

1. Swap of two star markers belonging to a same star will never take place on a path edge;
2. Stem marker moves right to its home, swapping smaller markers to the left.

Figure 5. Illustration for Algorithm Adb. (a) SR
min = 7, Swaps = 1. (b) SR

min = 8, Swaps = 4. (c) SR
min = 9,

Swaps = 1. (d) SR
min = 1, Swaps = 2. (e) SR

min = 3, Swaps = 1, SR
min = 2, Swaps = 1. (f) All markers are

homed. Total Swaps = 10.

4.1. Analysis of Adb

Let Tdb be the total number of swaps performed in Adb. We first consider step 4 of our
algorithm. For SL, let CSL

NT be the non trivial cycles and nSSL be the number of markers in
these cycles. Similarly, for SR, let CSR

NT be the non trivial cycles and nSR
S be the number of

markers in these cycles. As these markers retain their relative positions till Step 4 of our
algorithm, our total number of swaps TSR ,SL in Step 4 will be:

TSR ,SL = CSL
NT + nSL

S + CSR
NT + nSR

S .

Let TR and TL be the total number of swaps carried out in Step 1 and Step 2 respectively.
To analyse TR and TL, we allocate each of its swaps to closest star marker residing on the
path and involved in the swap. Then,

TR = ∑
SR

min

T(SR
min),

where T(SR
min) is the number of swaps allocated to closest star marker SR

min. For SR
min, define

D(SR
min) to be the distance from a star leaf to SR

min’s home. With reference to the initial
configuration state of the markers, let R(SR

min) be the number of markers smaller than SR
min

and on the right of SR
min.

TL = ∑
SL

min

T(SL
min).

Similarly, for SL
min, define D(SL

min) to be the distance from a star leaf to SL
min’s home

and let L(SR
min) be the number of markers greater than SL

min and on the right of SL
min.

Claim 1. T(SR
min) is the minimum of D(SR

min) and R(SR
min).

Proof. If T(SR
min) or SL

min are at star leaf of SL or SR respectively in the current configuration
of markers, we can say T(SR

min) = D(SR
min) implying D(SR

min) ≤ R(SR
min). T(SR

min) = D(SR
min),

where D(SL
min) ≤ L(SL

min) and thus validating our claims.

Claim 2. T(SL
min) is the minimum of D(SL

min) and L(SL
min).
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Proof. If SR
min is not at a star leaf of SL, we can say R(SR

min) < D(SL
min). Similarly, in case of

SL
min, L(SL

min) < D(SL
min), justifying the above mentioned claims.

Claim 3. In algorithm Adb, swapping Steps 1 and 2 does not alter the swap count.

Proof. In the initial configuration, let SL→R and SP→R to be the number of star markers
residing in SL and on the path, respectively, whose homes are in SR. Similarly, let SR→L
and SP→L be the number of star markers residing in SR and on the path respectively whose
homes are in SL. Path markers can be in SL, SR, or on the path. Let the total swaps required
for homing path markers be P = PP + PR + PL, where PP, PR, and let PL be the swap count
for homing markers residing on the path, SR and SL respectively.

Case (1): Perform Step 1 of Adb followed by Step 2. Moving SR
min towards the right,

shifts the markers it encounters on the way to the left. This shift decreases SR→L and SP→L.
Path markers entering into SL (say P

′
L) during a swap increase P and the number of path

tokens leaving SR, i.e., PR will result in the decrease of P.

TR + (TL − (SR→L + k)) + (P + P
′
L − PR), where 0 ≤ k ≤ SP→R. (1)

In Step 2, SL
min can encounter only path markers on the way home. SL

min shifts both P
′
L

markers which entered into SL in Step 1 and PL markers to the right.

(TL − (SR→L + k)) + ((P + P
′
L − PR)− (P

′
L + PL)). (2)

At this point, we are now left only with PP as all the path markers are now residing on
the path, for which the swap count will be the total number of inversions.

Case (2): Perform Step 2 of Adb followed by Step 1. Moving SL
min towards the left,

shifts the markers it encounters on the way to the right. This shift decreases SL→R and
SP→R. Path markers entering into SR (say P

′
R) during a swap increase P and the number of

path tokens leaving SL i.e., PL will result in the decrease of P.

TL + (TR − (SL→R + k)) + (P + P
′
R − PL), where 0 ≤ k ≤ SP→L. (3)

In Step 2, SR
min can encounter only path markers on the way home. SR

min shifts both P
′
R

markers which entered into SR in Step 1 and PR markers to the left.

(TR − (SL→R + k)) + ((P + P
′
R − PL)− (P

′
R + PR)). (4)

At this point, we are now left only with PP, the same as what we arrived at in Case 1.
Markers traversing towards SR in Step 1 of Adb shift all the markers whose home is in SL to
the left. Similarly, markers traversing towards SL shift all markers to the right; hence, there
are no bad swaps and the properties of Adb are obeyed.

In Step 3, observe that we are now left only with the stem markers. The total number
of swaps on path are the same as the number of inversions required to place the markers
at their desirable vertex. Let D(Pmax) be the distance from the marker Pmax to its home.
Similarly, we can say:

TPmax = ∑
Pmax

D(Pmax),

where TPmax are the total number of swaps in Step 3 and Pmax are the markers residing on
the stem of the broom.

Lemma 2.
Tdb = TSR ,SL + T(SR

min) + T(SL
min) + ∑

Pmax

D(Pmax).
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Similar to algorithm Ab, time complexity of Adb is also expressed in terms of the
number of moves. The worst case of Step 1 occurs when all path vertices are occupied by star
markers of SR and the homes of these star markers are occupied by other SR markers. The
total number of moves required in this case is (P(P+ 1)/2) + (SL−>R) ∗ (P+ 1) + (S1− P),
where S1 and P are the number of vertices in SR and path respectively. The worst case of
Step 2 occurs when all the path vertices are occupied by star markers of SL and the homes of
these star markers are occupied by other SL markers. The total number of moves required in
this case is (P(P + 1)/2) + (S2 − P), where S2 is the number of vertices in SL. In the worst
case of Step 3, P(P− 1)/2 moves are required to home the P path markers. Step 4 requires
b3S1/2c+ b3S2/2cmoves at most. Since P, S ∈ O(n), Algorithm Adb runs in O(n2) time.
The tree requires O(n) space, and the algorithm does not require any additional space.

4.2. Correctness of Adb

In this section, we prove that our algorithm Adb generates an optimal swap sequence
on a double broom. Initially, we discuss some properties required to prove the correctness
of our algorithm. Section 1 covers the proof for properties 1 to 5.

1. Two same markers will not swap more than once;
2. Star markers belonging to the respective star enter into the star in the increasing order

of their distances from that star;
3. Star markers belonging to the respective star never swap with each other on the path

edges. Note that the star marker belonging to SL treats the edges of the SR as path
edges and vice-versa;

4. Swaps on the stem involving at least one stem marker—the larger of the markers will
move to the right’

5. No star marker residing on one if its star vertices moves past the first path edge;
6. In a swap s = (l, r) where l ∈ SL and r ∈ SR, l always moves to the left and r to

the right.

Proof. We prove it by contradiction. A badswap involves moving l to the right and r to the
left. Suppose S has a badswap on the path. We show how S can be modified to obtain a
new swap sequence which contains fewer swaps on the path. Property 1 restricts us from
directly swapping them again. Therefore, marker r will move to the star leaf of SL(or l
will move to the star leaf of SR), then marker l to another star leaf of SL (or r will move to
another star leaf of SR) and then l goes to the center of Sl (or r will move to the center of
SR). Let us call this intermediate placement of markers S′. To modify S, omit the swap of l
and r, and carry on with the preceding swaps with l and r exchanged until the state S′ is
reached. This results in the same swap count, though a swap on star replaces a swap on
path.

Theorem 2. Algorithm Adb generates an optimal swap sequence, i.e., a sorting sequence with the
least possible number of swaps.

Proof. We prove that our algorithm obtains an optimal swap sequence by applying induc-
tion on marker n. For the base case, the double broom has no path edges and it is only a star
(either SR or SL). It is interesting to note that, this algorithm Adb is equivalent to writing:

1. While ∃ a SR
min marker, home SR

min.
2. Run Adb
3. Solve SR

As discussed in the previous section, Ab obtains an optimal solution and we are now
left to prove only in case of SR

min. Depending on the position of SR
min, we consider different

cases and prove them individually. In the general induction step, we prove that swaps
performed by SR

min are part of the optimal swap sequence.
Case (1): Assume marker n = SR

min is initially placed on a stem vertex, except the center
node of SR. Let P′opt be the optimal swap sequence. Property 2 and Property 3 ensures
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that n will never swap with a star marker on its way home in SR. Let d be the distance
from the position of marker n to its home Hn. So, there are exactly d swaps in P′opt which
contain marker n. Let Si be the swap that homes marker n, therefore S1, S2, . . . , Si contain d
swaps which includes marker n and (i− d) swaps that do not include marker n. Let this
intermediate configuration be T. Create a separate swap sequence Popt which takes the
initial d swaps to homes n, followed by i− d swaps that do not involve n and then carry on
with rest of the swaps from Si+1, . . . , Sk. Initial d swaps leave the remaining markers in the
same relative order. We have attained the same configuration state as in T implying the
swap sequence Popt is optimal and is same as the one generated by our algorithm Adb.

Case (2): Consider S′ be an optimal swap sequence which brings n to the center vertex.
Observe that n can be placed on center in exactly d − 1 swaps, where d is the distance
of n from its home vertex Hn on the star leaf. Let Sc be the swap in S′ = S1, S2, . . . , Sc
that places marker n on the center and T be the intermediate configuration of the markers
after Sc. Create a swap sequence S that homes n first in d− 1 swaps and carries out the
rest of the c − (k − 1) swaps which does not include n. Clearly, you will get the same
resulting configuration as of T with the same number of swaps. Hence, S is an optimal
swap sequence.

Now, call Sh the swap that homes n from the center vertex of SR by swapping it with
an arbitrary marker t residing on Hn. Previous discussion assumes that no swaps occur
on the star edges before Sh. Otherwise, when n is initially placed on the center vertex or
arrives at the center with the swap Sc it suffices to show that Sopt is optimal and does not
alter the position of n before the swap Sh. We do some modifications in Sopt to make this
true. Split the subsequence S1, S2, . . . , Sh−1 into two subsequences Spath and Sstar. Spath
contains the swaps that occurs on path edges and Sstar contains the swaps that occurs on
star edges. Note that Spath does not move marker n from its position and Sstar always places
n back to the center. We can rearrange this subsequence containing Sstar and Spath as no
star markers move towards the path and vice versa, due to the aforementioned Property 5.
After Spath, carry out the swap Sh and then perform the swaps in Sstar but with t in place of
n. Note that we can use the same argument for n placed on SL and prove the optimality
of the subsequence as in Case 1. Clearly, this gives the same placement of markers with
same swap count on the star and path. Hence, Sopt is optimal and is same as the sequence
generated by our algorithm Adb.

Case (3): Assume n = SR
min is on the leaf vertex of SL. Let t be the marker on the center

vertex and Sh be the swap involving n and t. If there are no swaps before Sh, then just
perform Sh and use the argument from Case 2 to prove the optimality of the sequence Popt.
Otherwise, suppose there exists a cyclic permutation Ps of length Ls − 1 for the markers
residing in SL. Cycles which do not include n are not taken into consideration, as solving
those cycles will not alter the position of n. Similar to the argument used for star, we prove
that the Ps can be solved in Ls swaps. Each marker in C is far away by two swaps from its
home, so the total distance is 2(Ls − 1). However, as one swap helps us move two markers
near to their respective homes, our requirement is only Ls − 1 swaps. Interestingly, the
initial and the final swap of Ps moves only one marker which belongs to Ps. Adding the
swap of n and t results in a total of Ls + 1 swaps contradictory to Ls − 1 swaps to sort
Ps.

5. Analysis of Algorithm D* on Millipede Tree

The first known upper bound f (Γ), for sorting permutations using transposition trees,
was computed by Akers and Krishnamurthy [1] in 1989. The time complexity for calculating
f (Γ) is Ω(n!n2), since it performs pair wise distance computation of each of the possible
n! permutations. Subsequently, various polynomial time approximation algorithms were
designed [23–25,29,30]. Chitturi introduced algorithm D

′
in [24] which finds the upper

bound δ′ in polynomial time, which is the tightest known upper bound when the upper
bounds of all trees are summed together. Subsequently, algorithm D∗ which identifies
corresponding the upper bound δ∗ was designed in [29]. It was shown that δ∗ is tighter
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for balanced-starburst tree [29]. In [31], an analysis of both D
′

and D∗ was performed and
shows that δ∗ is tighter for full binary tree too. In this section we define a class of trees
called millipede tree for which δ∗ is tighter, compared to δ′.

A millipede tree Mk is obtained by connecting the centre vertices c1, c2, . . . ck of k path
graphs p1, p2, . . . pk arranged in the order, such that k is odd and the number of vertices in
pi is given by the following function:

n(pi) =

{
2i + 1 if 1 ≤ i ≤ dk/2e
2(k− i) + 3 Otherwise.

(5)

The diameter of Mk is (k+ 1) and the total number of vertices n = 2 ∗ [dk/2e ∗(dk/2e+
1)]− 1. vc = c(k+1)/2 is the center of the tree. The center has an eccentricity of (k + 1)/2.

We call the subtree above the vertex vc the upper millipede tree and the subtree below vc
the lower millipede tree(refer figure 6).

Figure 6. Millipede tree, M5.

5.1. Algorithm D∗

Throughout this section, we employ the terminology used in [1,24,29]. The eccentricity
of a node u in VT , denoted by ecc(u), is equal to the maximum value of the distance between
u and any other node v ∈ VT . The Center of a tree is a node with minimum eccentricity. The
Diameter of T denoted as diam(T) is the maximum among all the eccentricities. The set of
vertices in VT with maximum eccentricity is defined as S. S is a subset of the leaf nodes.
Algorithm D

′
deletes a set of leaf nodes L ⊂ VT , and calculates the upper bound required to

home markers destined to the vertices in L. This process is continued till the graph becomes
a star. The exact upper bound for a star is defined in [1], which is b3(n− 1)/2c. Let S be
divided into k clusters C1, C2, . . . Ck such that for any u, v in Ci, ∀i=1...k dT(u, v) < diam(T).
Let X be any one of the k clusters. When the vertices of S \ X are deleted, then the diameter
of the resultant tree decreases by one. The maximum distance a marker need to travel to be
homed is the diameter of the tree, diam(T). Thus, D

′
deletes all the vertices of S, except the

largest cluster C∗, so that minimum number of markers are homed at the current diameter
and then reduces the diameter by one. Since the markers homed to the leaves are not
required to move further, algorithm D

′
deletes such leaves from the tree. Two variants of

D
′
, named D

′
v1 and D

′
v2 were introduced. D

′
v1 removes the entire set S if |C| > 2

3 |S| and
D
′
v2 removes S if |C| ≥ 2

3 |S|, where C = S \ C∗. D∗, which calculates the upper bound
δ∗ [29] is an improved version of D

′
. If |S \ C∗| > |C∗|, then at most |C∗| markers need

diam(T) moves each to be homed. Algorithm D∗ works based on this idea. The proof can
be seen in [29,31]. D∗ deletes |C∗| nodes in diam(T) cost and the remaining nodes in the
cluster with (diam(T)− 1/2) cost. It is observed that the δ∗ is tighter than δ′ when |C∗| is
between one-third and half of the total size of set |S|.
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5.2. Analysis and Results

It is observed that D∗ would yield a tighter upper bound than D
′

for a millipede
tree. In the first iteration of D∗ on Mk, the set S contains all the leaf nodes and results in
two clusters—C1 and C2. C1 and C4 are of same size which contain the leaf nodes in the
upper and lower millipede trees respectively (refer Figure 7). The terminal nodes in the
path graph p(k+1)/2 are not part of any cluster. Note that, deleting C1 or C2 will result in
isomorphic trees (refer Figure 8). Since the size of the largest cluster C∗ (C1 or C2) is less
than half of the size of S, only |C∗| markers need to be homed in diam(T) cost and the
remaining markers in the set S can be homed at a cost of (diam(T)− 1/2). This results in
two steps x1 and x2 for calculating the total cost in the iteration:
x1 : δ∗ = diam(T) ∗ |C∗|
; x2 : δ∗ = (diam(T)− 1/2) ∗ |C− C∗|.

Algorithm 1 Algorithm D∗ [29]

1: δ∗ ← 0
2: if T is a star then
3: δ∗ ← δ∗ + b3/2(|VT | − 1)c and terminate.
4: end if
5: Identify S, the set of vertices with maximum eccentricity.
6: Compute clusters for S.
7: Identify C = S− C∗ where |C∗| is the max. If there are multiple such clusters, choose

the one with minimum distance sum.
8: Case 1: |C∗| ≥ |S|/2
9: δ∗ ← δ∗ + |C| ∗ diam(T) T ← T \VC

10: End Case 1
11: Case 2: |C∗| < |S|/2 //|C| ≥ |C∗|
12: δ∗ ← δ∗ + |C∗| ∗ diam(T); T ← T \VC
13: if |C| − |C ∗ | is even then
14: δ∗ ← δ∗ + (|C| − |C∗|) ∗ (diam(T)− 1/2);
15: else
16: δ∗ ← δ∗ + (|C| − |C∗|) ∗ (diam(T)− 1/2)− 1/2;
17: end if
18: End Case 2
19: if T is not a star graph then go to step 5.
20: else
21: δ∗ ← δ∗ + b3/2(|VT | − 1)c and terminate.
22: end if

In the case of D
′
, there is only one step and all the markers of C are homed in diam(T)

cost. Two nodes are homed in Step x2 resulting in an improvement of 1 in δ∗. As D∗ and
D′ delete all the vertices of S \ C∗, the resultant tree after the first iteration is same for
both. Similarly, every odd iteration generate two clusters and result in an improvement
of 1. The second iteration generates two clusters C1 and C2, which contain the leaf nodes
of the upper and lower millipede trees respectively. Even iterations do not result in any
improvement in δ∗, as both the algorithms remove |C| nodes in diam(T) cost. Refer Table 1,
where D

′
C(C∗) is the cost per node for homing |C∗| nodes in Algorithm D′, D′C(S− C∗)

is the cost per node for homing |S \ C∗| nodes in Algorithm D′, D∗C(C∗) is the cost per
node for homing |C∗| nodes in Algorithm D∗ and D∗C(S− C∗) is the cost per node for
homing |S \ C∗| nodes in Algorithm D∗. After (k− 1) iterations in Mk, the tree becomes a
star, which is the base case of both the algorithms.

As mentioned above, D∗Co = D′Co − 1 where D′Co is the cost computed in D′ and
D∗Co is the cost computed in D∗, for every odd iteration. Therefore after the ith iteration,
the total improvement is d(i + 1)/2e.
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Figure 7. Clusters in M3.

The upper bound value for all millipede trees with diameters up to 16 was computed
for both D′ and D∗. The results (refer Table 2) show that, δ∗ is smaller than δ′. δ∗ and δ′ are
deterministic for a millipede tree since the choice of vertices for deletion in each iteration
does not alter the upper bound. δ′ − δ∗ = (d/2)− 1 establishes the fact that δ∗ is tighter on
a millipede tree as the difference is directly proportional to the initial diameter d. In terms
of the number of path graphs k in the tree Mk, δ′ − δ∗ can also be written as bk/2c.

Figure 8. (a) When C1 is chosen as C∗. (b) When C2 is chosen as C∗.

Table 1. Cost of removing nodes in D′ and D∗ on millipede tree.

Iteration C∗ S− C∗ D′C(C∗) D′C(S− C∗) D∗C(C∗) D∗C(S− C∗)∗

1 (k − 1) 2 d d d (d − 1/2)
2 k 1 (d − 1) (d − 1) (d − 1) -
3 (k − 2) 2 (d − 2) (d − 2) (d − 2) (d − 2 − 1/2)
4 (k − 2) 0 (d − 3) - (d − 3) -
5 (k − 4) 2 (d − 4) (d − 4) (d − 4) (d − 4 − 1/2)
6 (k − 4) 0 (d − 5) - (d − 5) -
7 (k − 6) 2 (d − 6) (d − 6) (d − 6) (d − 6 − 1/2)
8 (k − 6) 0 (d − 7) - (d − 7) -

. . . . . . . . . . . . . . . . . . . . .
(k − 1) 3 0 3 - 3 -
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Table 2. Comparison of δ′ and δ∗ on millipede trees with various diameters.

Tree Diameter No:of Nodes δ′v1 δ′v2 δ∗ δ′− δ∗

M3 4 11 28 28 27 1
M5 6 23 92 92 90 2
M7 8 39 209 209 206 3
M9 10 59 396 396 392 4
M11 12 83 669 669 664 5
M13 14 111 1044 1044 1038 6
M15 16 143 1537 1537 1530 7

Theorem 3. δ
′ − δ∗ = Ω(k) for a millipede tree Mk.

6. Scope for Future Research

An n-Broom (where n ≥ 3) is a transposition tree where the terminal node of the paths
of n single brooms are connected to a common node. Figure 9 shows one of the possible
4-Brooms. Figures 10 and 11 show two different possible swap sequences for a 3-Broom,
where brooms B1, B2 and B3 are connected to the common node V3. Assume that all the
star markers are homed, and only the path markers are left to be homed. The figures
do not show the star markers, since these markers need not be swapped while homing
the path markers. Figures 10 and 11 n-Broom impacts the total swap count. Homing the
path markers in B3 before the path markers in B1 (Figure 11) resulted in a non-optimal
swap sequence which required more swaps than the swaps executed in Figure 10. Hence,
Adb does not guarantee an optimal swap sequence for an n-broom. Thus, designing a
polynomial time optimal algorithm for sorting permutations on n-brooms is open.

Figure 9. n-Broom with n = 4 and v22 as the connecting node.
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Figure 10. One possible swap sequence of path markers on a 3-Broom shown in (a). (a) Homing 1,
Swaps = 2. (b) Homing 5, Swaps = 2. (c) Homing 4, Swaps = 2. (d) Homing 7, Swaps = 2. (e) Homing
6, Swaps = 1. (f) All markers are homed. Total Swaps = 9.

Figure 11. Another possible swap sequence of path markers on the 3-Broom shown in Figure 10a.
(a) Homing 7, Swaps = 4. (b) Homing 6, Swaps = 3. (c) Homing 5, Swaps = 3. (d) Homing 4, Swaps = 1.
(e) Homing 1, Swaps = 2. (f) All markers are homed. Total Swaps = 13.
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7. Conclusions

Sorting permutations using various operations has applications in computer intercon-
nection networks and evolutionary biology. We designed a simpler O(n2) time algorithm
for sorting permutations using the transposition tree single broom. We designed a novel
O(n2) time algorithm for optimally sorting permutations with a double broom and proved
its correctness.

We defined a new class of trees that we call millipede. Among the existing generic
algorithms that sort with any given transposition tree, δ∗ and δ′ are the tightest and are
comparable to one another. We showed that δ∗ yields a tighter upper bound than δ′ for a
balanced millipede tree.

We also demonstrated how algorithm Adb does not yield an optimal swap sequence in
the case of n-Broom, concluding that a polynomial-time algorithm for n-broom can be a
subject of future research.
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