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Abstract: This paper is dedicated to studying on-line routing decisions for exploring a disrupted
road network in the context of humanitarian logistics using an unmanned aerial vehicle (UAV) with
flying range limitations. The exploration aims to extract accurate information for assessing damage
to infrastructure and road accessibility of victim locations in the aftermath of a disaster. We propose
an algorithm to conduct routing decisions involving the aerial and road network simultaneously,
assuming that no information about the state of the road network is available in the beginning.
Our solution approach uses different strategies to deal with the detected disruptions and refueling
decisions during the exploration process. The strategies differ mainly regarding where and when the
UAV is refueled. We analyze the interplay of the type and level of disruption of the network with the
number of possible refueling stations and the refueling strategy chosen. The aim is to find the best
combination of the number of refueling stations and refueling strategy for different settings of the
network type and disruption level.

Keywords: disrupted road network; immediate response operations; on-line algorithm; refueling
strategies; online exploration strategies; network cutting procedure; labeled network

1. Introduction

In emergencies, humanitarian logistics plans and coordinates resources for providing
relief to vulnerable people in regions affected by a disaster [1]. The main objective of
humanitarian logistics is to mitigate the negative impacts of a disaster and manage a fast
response and recovery to the emergency. Response and recovery operations depend on
an initial assessment of the affected area. This paper focuses on the assessment operation,
which is executed during or immediately after the disaster, depending on the type of
disaster [2]. The objective of this operation is to determine the state of the infrastructure
and the needs of the affected population. Thus, response and recovery operations depend
on this assessment operation.

Recently, unmanned aerial vehicles (UAVs), or aircraft that operate without a human
onboard, have attracted significant attention in humanitarian logistics. UAV use offers an
increment of the speed and flexibility of humanitarian operations [3]. Based on the study
of Reyes-Rubiano et al. [4], we study the evaluation operation using a UAV with flying
range limitations. Reyes-Rubiano et al. [4] focus on the evaluation of the state of the road
network. The main objective of this operation is to determine the roads that can be used for
the distribution of humanitarian aid or evacuation of the affected population. We study
this operation as an on-line UAV routing problem. The routing decisions involve the road
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network and the aerial network of the affected area. Once a disaster occurs, some roads
cannot be used because they have been affected by a natural, man-made, or technological
hazard [5].

In current practice, organizations have been starting to include UAVs in response
and reconstruction operations [6]. The use of UAVs promises cost efficiency for assessing
destroyed road networks after a disaster. A UAV has a flying range that limits the number
of affected zones that can be explored. Flying range limitations add a real risk of route
failure because the UAV runs out of fuel mid-route [6–10]. UAV routing decisions in
response operations are inefficient and do not meet the needs of humanitarian logistics
due to uncertainty. As a result, several initiatives are aiming to develop tools to improve
the reliability of on the fly routing decisions and to improve the efficiency of response
operations [9].

The problem tackled in this paper is to assess the state of a post-disaster area using a
UAV with flying range limitations. Based on the principle that most humanitarian relief
operations are conducted using the road network, the main objective of our study is to
determine the road network that is still functioning after a disaster. We consider that the
only information available to start the exploration is the state of the road network in a
pre-disaster situation and the location of the sites where victims are located. We refer to the
road network in a pre-disaster situation as the known road network. The post-disaster road
network is denoted as the disrupted network. We deal with uncertainty regarding the state
of the road network by making routing decisions on the fly. The UAV starts at the Disaster
Management Center (DMC); here, refueling is always possible. As the UAV advances its
exploration, partial information regarding the state of the disrupted network is extracted,
and new routing decisions are made. The UAV flies over the road network with a camera
to transfer in real time a video to the DMC to determine if the explored edge is a functional
or disrupted road. The objective of this exploration is to assess the road network state
and evaluate the accessibility to the location of the victims, i.e., villages. The exploration
is conducted with a UAV with a limited flying range due to the capacity of the fuel tank.
During the exploration, functional roads and facilities detected determine the disrupted
network. Refueling stations at the victim locations can be used to refuel the UAV and avoid
a route failure. We assume that fuel stations that can be resupplied by road can be used
as refueling stations during the exploration. Thus, refueling stations can be supplied if a
functional path from the DMC to the refueling station exists. Thus, at the beginning of the
exploration, it is unknown which refueling stations could be used during the exploration.
Motivated by this problem, we intend to answer the following research question:

What are suitable strategies for refueling a UAV with a limited flying range under the
uncertainty of the status of a disrupted network?

To answer this research question, we use different networks, which are described next:

Known road network
The known road network refers to the road network of a rural region in pre-disaster
conditions (see Figure 1). All locations in the region are connected by the road network,
and there is at least one path between each pair of locations. The set of locations in
the known road network are the DMC, road crossings, and victim locations. In this
study, the DMC is the center of logistics operations, from where disaster information,
fuel, and other resources are managed and humanitarian aid is deployed. Therefore,
the DMC must be connected to the victim nodes by functional roads; otherwise, the
victims are unreachable using the road network, and it makes no sense to conduct an
exploration or plan a deployment.
Disrupted network
Functional parts of the known road network (see Figure 2). This network contains
the same locations as the known road network. In the disrupted network, refueling
stations at victim locations can be used for refueling the UAV, if they are connected to
the DMC by functional roads.
Aerial network
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The aerial network is a fully connected network. As shown in Figure 3, it contains
all the locations of the known road and the disrupted network. All locations are
connected to each other, including the disruption locations. The number of nodes
and arcs in the network increases each time a disruption is detected. In this aerial
network, the locations of the disruptions are included as disrupted locations. Thus,
the number of nodes and edges in the aerial network increases along with the progress
of the exploration.

We extend the algorithm presented in the study Reyes-Rubiano et al. [4]. We propose
three refueling strategies and different numbers of possible refueling station in the disrupted
network. Our solution approach aims to balance the cost of considering a safety fuel buffer
and the cost of performing a refueling operation every time it is needed. We extend the
algorithm of Reyes-Rubiano et al. [4] by adding the following procedures: (1) Detection
of refueling stations reachable by road from the DMC. This procedure determines which
refueling stations are operating at each time t of the exploration. (2) Dynamic safety buffer.
This procedure calculates the dynamic safety buffer in terms of distance. The dynamic
buffer represents the distance that the UAV has to fly to explore the next selected unexplored
road edge and then return to the closest reachable refueling station to the current UAV
location. The safety buffer depends on the current location of the UAV and the closest
refueling station, using an aerial edge. (3) A procedure that controls the UAV flying capacity.
Depending on the refueling strategy defined in advance, the current location of the UAV,
flying capacity, and the road network information, the algorithm makes two decisions: (a) it
decides whether or not to perform a refueling operation, and (b) it decides at which station
the refueling operation is most convenient. The refueling strategies under the different
numbers of potential refueling stations are compared in extensive numerical studies using
instances from the literature with different sizes and various disruption levels in the road
network. Thus, the paper extends the existing literature as follows:

• This paper extends the online algorithm of Reyes-Rubiano et al. [4] to conduct routing
decisions to explore a road network whose status and available resources are initially
unknown.

• By routing decisions in a network that is updated dynamically during the exploration
using a UAV with a limited flying range.

• This study presents refueling strategies based on a dynamic fuel buffer that avoids the
risk of having a route failure due to running out of fuel.

• We propose three criteria for refueling decisions based on the information available
from the road network and the flying capacity at each moment of the exploration.

• Our research considers that as long as a refueling station is detected, which is accessible
from the DMC, it can be used to refuel the UAV. Road accessibility is evaluated to
ensure that the station can be resupplied with fuel.

• Our research assesses the state of the road network, including refueling stations, and
maps the disrupted network to use in the humanitarian aid deployment operation.

• Our research provides information about which percentage of potential refueling
stations is best for different network sizes and disruption levels, and thus supports
tactical decision-making.

• We additionally provide information on the best refueling strategy when the number
of potential refueling stations is fixed, i.e., when a disaster hits for a certain network
size and disruption level.

The rest of this paper is structured as follows. In Section 2, a literature review is
presented. Section 3 provides a formal description of the problem addressed. The solution
approach is presented in Section 4. The numerical study and computational results are
provided in Sections 5 and 6. Finally, Section 7 presents the main conclusions and proposes
future work.
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Figure 1. Known road network.

Figure 2. Disrupted network.

Figure 3. Aerial network.
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2. Literature Review

This section is dedicated to the use of UAVs in humanitarian logistics operations.
Reyes-Rubiano et al. [4] present a consolidation of work dealing with disrupted networks
in the field of humanitarian logistics. The relevance of the use of UAVs in disaster situations
is important to achieve a rapid management of the situation. The reason is that UAVs have
abilities to perform some difficult or dangerous tasks, providing high mobility and safety,
as well as low cost [11]. In response, the number of studies focused on the integration of
UAVs into logistics and information systems has grown. Rejeb et al. [11] present a review
of works using UAVs and vehicles. One of the main fields of study focuses on technical
limitations such as payload capacity and flying range of UAVs. This section focuses on
the strategies that allow dealing with flying range limitations considering the maximum
amount of fuel that a UAV can carry in the tank.

2.1. Fuel Management Strategies of UAVs

UAVs can use an electric motor, internal combustion engine, or hybrid engine. The
advantage of electric UAVs is the flexibility in terms of size and weight: they are small
and light aerial vehicles. Electric UAVs can operate with a replaceable or rechargeable
battery. However, their flying range does not exceed 50 km [12], and the recharge time
of the batteries is very long. UAVs with an internal combustion engine are much heavier,
but the ratio between weight and flying range presents a good performance [13]. Another
advantage of internal combustion UAVs is the fast speed of the refueling operation [12,13].

One of the strategies to deal with the flying range limitation is to force the inclusion
of intermediate stops within the UAV route to perform refueling operations [14]. Another
strategy is to perform battery assignment and scheduling for the UAV based on the time
between charges and discharge time [15]. In the case of electric UAVs, battery management
involves battery charging and storage management, whereby recharging stations demand
a specialized type of infrastructure [16]. Boukoberine et al. [12] present a literature review
focusing on strategies to deal with the technical limitations of UAVs.

The refueling strategies and routing decisions reported in the literature involve refuel-
ing station design. Planning routes under collaborative environments is another strategy to
deal with flying range limitations. Zhang et al. [17] present an approach in which a fleet
of UAVs operates in collaboration with a fleet of trucks. The trucks operate as refueling
stations. The truck and drone routes are defined in advance, where intermediate stops to
recharge the drone battery are included in the routing problem. Alvarez et al. [18] tackle
the problem of determining the location of drone facilities. The problem is approached as a
p-median, where one wants to maximize the coverage of the stations by locating stations
that can quickly respond to the needs of UAVs. The authors recognize that the number
of stations and their location depend on the points that demand travel routes and the
network structure. The decision regarding the number of stations and where to locate
them is oriented toward minimizing the travel distance. The authors propose a heuristic
approach to solve a deterministic problem dealing with unmanned aerial vehicle station
location.

Dezan et al. [19] propose a Bayesian network to predict the environment in which the
drone will perform, based on a set of possible situations, which allows a failure mode and
effects analysis. This information is useful for the estimation of speed and fuel consumption.
Most studies focus on predicting fuel consumption and are based on stochastic travel
times to determine route reliability [17]. The contribution of our research is to develop
a systematic method that humanitarian relief agencies and decision-makers can use to
determine which type of refueling strategy is more convenient for their specific region.

2.2. Humanitarian Operations and Disrupted Road Networks

This subsection focuses on literature related to response operation in a disrupted road
network. Disruptions on a road network caused by a disaster deteriorate the accessibility
of affected areas [20]. Some studies relate the concept of disrupted networks to situations
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where there are shortages and accessibility issues of essential commodities such as water
and food [21]. Loree and Aros-Vera [22] recognize that the deployment of relief operations
depends on an assessment process immediately after the disaster. The authors focus on
determining the optimal location of distribution centers to minimize the social cost. The
authors propose a model that considers the deprivation cost to quantify the negative impact
of not reaching and providing rapid relief to victim locations. Rath and Gutjahr, as well
as Nolz et al. [21,23] aim to locate additional warehouses in the affected zone to deal with
disruptions associated with shortages of relief supplies. They focus on determining the
location and capacity of warehouses to deal with the scarcity of relief supplies. Hatefi
et al. and Elçi and Noyan et al. [24,25] develop a stochastic programming model with
several probable scenarios for determining the expected disrupted road network after an
earthquake. Similarly, Reza et al. [26] deal with a disrupted network in which demand,
travel time, travel distance, loading–unloading time, and costs are unknown. The authors
propose a solution method to solve the problem of locating a limited number of relief
centers and the problem of the distribution of perishable products based on expected
values. Nezhadroshan et al. [27] propose a stochastic programming model to deal with
the uncertainty in the supply chain. The authors consider that other repetitions of the
primary disaster may occur and worsen the humanitarian aid distribution network. The
authors solve a facility location problem and a product distribution problem considering
the presence of multiple disaster events. In addition, the authors consider the cost of
shortages or excess inventories.

Other studies focus on solving the problem of road accessibility to victims for the
provision of services such as medical assistance and evacuation. The authors affirm that
disrupted road networks induce inequality problems due to the limited accessibility of
victims. Kunz and Wassenhove [28] study the vehicle fleet required to reach the affected
areas and maximizing the coverage of humanitarian assistance to all victim locations using
the road network. Duque and Sörensen [29] develop a model to plan the recuperation
process of roads in an affected area. The authors focus on the repair of roads that improve
the accessibility to victim locations. Koch et al. [30] develop a study in which a network
disrupted by either traffic or disaster is simulated. The objective of this study is to determine
which roads are the least likely to be disrupted in order to include them in the pathways for
the provision of medical services. In this way, the authors intend to mitigate the negative
impact of network disputes. Noyan et al. [31] develop a two-stage model considering
different types of decision-makers. The authors address the problem of the distribution of
humanitarian aid aimed at minimizing the inequality of resources that reach the victims.
Hatefi and Jolai [32] propose a robust optimization model to minimize the operational
cost and to define the functional road network after a disaster. The authors also consider
disruptions related to the shortage of relief supplies at the DMC. Shahparvari et al. [33]
develop a MIP model and genetic algorithm to determine the number of vehicles needed
and travel routes to use to evacuate a disaster-affected area. The goal is to determine the
most reliable set of routes given a risk of encountering a fire-disrupted street. The authors
calculate all paths between pairs of nodes and given the risk to determine which route is
the most reliable. Safitri and Chikaraishi [5] recognize the vulnerability and importance of
the road network in emergency situations. The authors focus on studying the impacts of
disruptions on the performance of the transportation network and trip demand to provide
humanitarian assistance. The study concludes that highly disrupted networks require less
travel time due to disruptions disconnecting the DMC and the vehicle being unable to
move forward on the road network.

Table 1 presents a summary of the literature related to humanitarian operations that
rely on road networks that can be disrupted. Most works address the problem of unknown
information in a disrupted road network. They assume that disruptions and uncertainty
can be modeled by stochastic approaches. In a post-disaster situation or during a disaster,
the state of the area and the needs of the population are unknown [2,34]. Motivated by the
problem of disrupted networks in the deployment of humanitarian aid, our first research
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focuses on determining exploration strategies that lead to assessing the accessibility of the
victims [4].

This paper extends our previous research by considering flying range limitations
and including three different refueling strategies, as well as different numbers of possible
refueling stations.

Table 1. Summary of the literature related to humanitarian operations and disrupted road networks.

Authors (a) (b) (c) (d) Objective

[5] x x Measure impact of a disaster

[30] x x Maximize reliability of distribution routes

[20] x x (i) Maximize coverage
(ii) Maximize equity of relief supply

[21] x x (i) Minmax. tour length from depot to victims
(ii) Maximize coverage of victims

[22] x x Minimize social cost

[23] x x
(i) Minimize transport costs
(ii) Minimize fixed costs for depots and vehicles
(iii) Maximize coverage

[24] x Minimize operational costs

[25] x x (i) Minimize risk of a disaster
(ii) Minimize total shipping costs of relief supplies

[26] x x

(i) Minimize distance traveled
(ii) Minimize cost of opening and operating a relief center
(iii) Minmax. tour length from depot to victims
(iv) Minimize total quantity of perished items

[27] x x
(i) Minimize expected total cost
(ii) Minimize cost variability
(iii) Minimize customer satisfaction

[29] x x Minimize weighted sum of shortest paths from depot to victims

[31] x x Maximize equity of relief supply

[32] x x Minimize expected total cost

[33] x x Maximize number of people evacuated

This research x x Minimize time to assess road accessibility to victims

(a) complete information; (b) on-line information; (c) stochastic information; (d) deterministic information

3. Problem Description

The tackled problem consists of determining exploration and refueling strategies to
evaluate the accessibility of victims by road using a UAV. The evaluation of the known road
network is addressed as an on-line UAV routing problem with flying range limitations,
aimed at minimizing the evaluation time to determine the accessibility of all victim locations
by road.

The problem is described as a network G = (N, E), where N is the set of nodes
referring to road-crossings, victim nodes, and the DMC. E is the set of functional edges
that represent functional roads in the pre-disaster situation. Ĝt = (N̂t, Êt) represents the
disrupted road network. Êt refers to the set of functional edges and non-explored edges at
time t of exploration. N̂t is the set of nodes associated with road-crossings, victim nodes, the
DMC, and disrupted nodes. Now, let ÂGt = (Nt, At) be the fully connected aerial network
where At represents the set of edges connecting the set of nodes Nt in the aerial network
at time t. The number of nodes and edges of the aerial network grows as disruptions are
detected. The location of the disruption on the road becomes a disrupted node connected
to the aerial network. The routing problem involves both the disrupted network and the
aerial network simultaneously (see Figure 4).
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Figure 4. Example of the relationship between networks involved in the on-line UAV routing problem.

The problem of on-line routing with limited flying range involves the risk of having a
route failure because the UAV runs out of fuel. We assume that the UAV selected to perform
the exploration has a minimum flying range that allows it to go and return from the DMC
to the farthest node of the network. We define the flying range in terms of distance. An
example of a UAV used for exploration of small and medium instances is the Super Bat
UAV with a flying range of 643 km and a maximum flying speed of 83 km/h [35]. For
large instances, the U-Max UAV with a flying range of 1852 km and a maximum flying
speed of 160 km/h is suitable [35]. We assume a speed of 60 km/h for the UAVs to allow
for a good exploration of the road network.

Figures 5 and 6 show the difference a refueling station at a victim location can make.
Figure 5 shows the situation with only the DMC is working as a refueling station, while in
Figure 6, victim node 1 is a potential refueling station. This refueling station can be used
in case victim location 1 is connected to the DMC by functional roads. In Figures 5 and 6,
the UAV starts at the DMC. It first explores the road to road crossing 5 (0,5). Next, the
UAV tries to reach victim location 6 using (5,6). However, a disruption is detected, and
the UAV returns to the DMC directly using an aerial edge. Starting again at the DMC, the
UAV explores the edges (0,2) and (2,1). It has now reached victim node 1. It now wants
to explore the edge (1,3). However, there is not enough fuel left to reach road crossing 3
and return to the DMC. Figure 5 shows that the UAV returns directly to the DMC on an
aerial edge due to the fuel shortage. In Figure 6, there is a different solution to the fuel
shortage. Victim location 1 is a potential refueling stations. It is already established that
there are functional roads (0,2) and (2,1) connecting it to the DMC. Thus, the UAV can refuel
at victim node 1 and then continue by exploring (1,3).
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Figure 5. Example of the flying range limitation with only the DMC working as a refueling station.

Figure 6. Example of the flying range limitation with the DMC and victim location 1 working as a
refueling station.

For the tackled problem, we made the following assumptions:

1. The road and the aerial network are undirected networks.
2. Both the road and the aerial network are used: if an interruption is detected on a road,

the route of the UAV is redirected using the aerial network.
3. The UAV route starts and ends at the DMC.
4. In the pre-disaster stage, all roads of the known network work. No initial information

about the road network state after the disaster is given. The exploration of the road
network starts under this assumption.

5. The length of each edge on the road and the aerial network is known.
6. The disruptions are not known in advance and might occur on any edge of the road

network after the disaster.
7. We assume a constant speed of the UAV.
8. A pilot on the ground monitors the flight progress at the DMC.
9. The pilot determines if a road is disrupted or not.
10. Based on the extracted real-time information, it is determined if a victim location is

reachable by road or not.
11. The DMC and a certain percentage of the victim locations can operate as refueling

stations. Victim locations that can operate as refueling stations must be connected to
the DMC by road.

12. Staff to refuel the UAV are available at refueling stations.
13. The exploration duration is defined as the flying time and the refueling time of the

UAV.
14. The type of UAV to use depends on the characteristics of the known road network to

be explored. The flying range of the UAV should be at least the distance of the longest
aerial edge connecting the DMC to the farthest node in the network.



Algorithms 2022, 15, 217 10 of 21

Assumptions 11 to 14 extend Reyes-Rubiano et al. [4].

4. On-line Algorithm

This section presents the extension of the algorithm in [4]. We consider a conservative
exploration strategy that integrates an orientation strategy. The conservative exploration
strategy to deal with disruptions is a back and forward movement strategy. This strategy
redirects the UAV based on the connected edges and nodes that have been identified
up to the moment the interruption takes place. An aerial edge is used by the UAV to
return to the closest connected node with unexplored adjacent edges. The orientation
strategy determines how the priorities of edges are defined, while the movement strategy
changes the exploration route of the UAV when a disruption is detected. The on-line
algorithm considers one orientation criteria used to assign a priority to each edge that
needs to be explored. We consider a weighted orientation criterion that depends on the
edge connectivity and the edge length. The priority value of each edge is the weighted sum
of both criteria. The edges with the highest priority are those edges with shortest length
and highest connectivity values. The algorithm uses a cutting procedure, labeled network,
and sort insertion procedure [4]. The extension of the algorithm consists of the inclusion of
a buffer and additional refueling strategies to avoid route failure due to running out of fuel.

The algorithm stores the information of the relevant nodes and edges from the known
road network. The cutting procedure removes non-valuable nodes and edges from the
known road network. Thus, road edges and road crossings that do not belong to a path
from the DMC to at least one victim node are not relevant for the exploration. We use a pro-
cedure to cut the unnecessary parts of the road network such as sub-networks completely
disconnected from the network and cycles composed of redundant edges. We determine a
rooted spanning tree with the DMC as the root to detect the disconnected sub-networks.

The information from the road network at each time t of the exploration is used
to assess the accessibility to the victim locations, cut disrupted edges, and evaluate the
relevance of nodes and edges for reaching victim locations. The cutting procedure removes
non-valuable nodes and edges from the disrupted network at each time t of the exploration.

Cycles in the network are identified through the road network information at time
t of the exploration. The road network information is constantly updated, so the on-line
algorithm knows after each exploration which edges are still functional in the network and
which edges connect which nodes. Thus, the on-line algorithm detects which nodes are
reachable from the DMC using a set of functional road edges. In the on-line algorithm, we
denote connected nodes and connected edges whenever there is a set of functional and
explored edges connecting these nodes and edges to the DMC. Then, connected nodes
and connected edges are reachable from the DMC. Finally, the road network information
is updated after each cutting procedure. This cutting process is designed to save time by
avoiding non-valuable explorations.

4.1. Strategy for Dealing with Disrupted Road Networks

After the cutting procedure, the on-line algorithm labels each road edge with its
priority to be explored. The sets of edges and priorities define the labeled network. The
labeled network is used to guide the UAV to obtain the accessibility information of the
victim nodes within the shortest time.

This orientation criterion depends on the connectivity and the length of an edge. The
priority value of each edge is the weighted sum of the edge connectivity (edgeC) and the
edge length (edgeL). An importance level α in the co-domain [0.2, 0.8] is given to compute
the edge length criterion. Equation (1) computes the edge weight criterion (edgeW) for
each edge in the disrupted network [4]. The parameter longest denotes the length of the
longest edge, and the parameter highestC is the highest edge connectivity value. Initially,
the parameters edgeL and highestC are determined from the known road network; after the
first exploration, these values are calculated using the disrupted network as a reference.
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Thus, only the edges relevant for reaching victim locations are those that have an assigned
edge weight criterion.

edgeW := α · (1− edgeL
longest

) + (1− α) · edgeC
highestC

(1)

To apply the orientation criteria, the on-line algorithm uses a sort insertion procedure
to determine an efficient UAV routing.

The sort insertion procedure selects the best edge to be explored next, i.e., the edge
with the highest priority. The weight criterion is sorted in descending order; thus, the edge
with the highest value has the highest priority. In each iteration, the on-line algorithm
inserts the best edge into the exploration route of the UAV. Once a road edge is explored,
the labeled network has to be updated. The movement strategy is used when:

• A disrupted edge is detected;
• The node that is the current position of the UAV has no adjacent edges to visit.

Taking the edge weight criterion and the current location of the UAV as a reference,
the next-best edge to explore is selected. Initially, the UAV position is the DMC. If there is no
adjacent edge to explore, the back and forward strategy is applied. Otherwise, the adjacent
edge with the highest edge weight criterion is selected as the next-best edge to explore. Once
the next-best edge to explore is selected, the UAV explores it by flying over it. Then, the road
information of the last exploration is transferred to conduct the cutting procedure and
calculate the labeled road network. Thus, the road network information is updated for the
following routing decision. This procedure is repeated until the on-line algorithm has the
information on the road accessibility of all victim nodes from the DMC.

The back and forward strategy aims to redirect the UAV based on the edges and nodes,
reachable from the DMC, detected up to the moment the disruption takes place. An aerial
edge or a road edge, or a combination of both, is used by the UAV to return to the closest
reachable node with unexplored adjacent edges.

4.2. Strategy for Dealing with Flying Range Limitations

Based on [4], we consider a dynamic buffer that ensures that the UAV has enough
flying capacity to finish the exploration route at the DMC at any time. The dynamic buffer
represents the distance that the UAV has to be able to fly to explore the next selected
unexplored road edge edgeToInsert and and fly to the closest refueling station. For example,
Figure 7 exemplifies how the buffer is calculated, assuming that the DMC is the only
reachable refueling station and that the edgeToInsert is (4,2), so the aerial edge (2,0) refers to
the road edge connecting (4,2) with the reachable refueling station and the next selected
unexplored road edge. In Figure 7a, the current position of the UAV is a disruption location,
so the buffer is calculated as the sum of the distances of the aerial edge (disruption location,
4), road edge (4,2), and aerial edge (2,0). Similarly, in Figure 7b, the current location of the
UAV is a road crossing, whereby the buffer is calculated as the sum of the distance of the
road edge (4,2) and aerial edge (2,0).

The buffer depends on the current location (position) of the UAV and the location of the
closest refueling station. The buffer (bu f f er), the flying range ( f lyingRange), and the flying
capacity ( f lyingCapacity) of the UAV are expressed in units of distance. When the UAV
is fully fueled, it is assumed that the flying capacity of UAV is the flying range limitation.
After, the first exploration, the flying capacity is defined as the difference between the flying
range and the travel distance of the UAV since its last refueling operation.

We propose three refueling strategies to deal with the flying range limitation:

• Extremely conservative refueling strategy (EConservative): refuel each time when at the
refueling station or refuel when the flying capacity is lower than the buffer needed at
that time.

• Moderately conservative refueling strategy (MConservative): refuel when the flying ca-
pacity is lower than 50% of the flying range.
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• Conservative refueling strategy (Conservative): refuel when the flying capacity is lower
than the buffer needed at that time.

The sort insertion procedure applies an additional function to control the flying
capacity of the UAV, which refueling stations are available at any given time t during the
exploration, in turn, to control the buffer depending on the current location of the UAV and
available refueling stations. Algorithm 1 presents the extension of the on-line algorithm
presented in [4].

Figure 7. Example of the dynamic buffer.

Algorithm 1 Control flying capacity procedure.

1: procedure APPLYINGREFUELINGSTRATEGY(connectedElements, refuelingStrategy, explorationRoute,
flyingRange, position, edgeToInsert, refuelingStations)

2: f lyingCapacity← computeFlyingCapacity( f lyingRange,explorationRoute)
3: re f uelingStation←closestStation(position, re f uelingStations, connectedElements)
4: bu f f er ← computeBuffer(position, re f uelingStation, edgeToInsert)
5: if f lyingCapacity < bu f f er then
6: explorationRoute← addAerialEdge(position, re f uelingStation)
7: f lyingCapacity←restartFlyingRange( f lyingRange) . refueling operation
8: explorationRoute← recoverRoute(re f uelingStation, edgeToInsert)
9: position← updateUAVPosition(explorationRoute)

10: end if
11: if re f uelingStrategy is EConservative then
12: if position ∈ re f uelingStations & position ∈ connectedElements then
13: f lyingCapacity←restartFlyingRange( f lyingRange) . refueling operation
14: end if
15: end if
16: if re f uelingStrategy is MConservative then
17: if position ∈ re f uelingStations & position ∈ connectedElements then
18: if f lyingCapacity < 0.5 · f lyingRange then
19: f lyingCapacity←restartFlyingRange( f lyingRange) . refueling operation
20: end if
21: end if
22: end if
23: if re f uelingStrategy is Conservative then
24: if position ∈ re f uelingStations & position ∈ connectedElements then
25: if f lyingCapacity < bu f f er then
26: f lyingCapacity←restartFlyingRange( f lyingRange) . refueling operation
27: end if
28: end if
29: end if
30: return explorationRoute
31: end procedure
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5. Computational Experiments

In the following, we present the computational experiments. We first introduce the
instances used in Section 5.1, then we discuss the parametrization of the experiments in
Section 5.2.

5.1. Instance

Taking the instances used in [4] as a reference, we randomly include refueling stations.
The duration of the refueling operations includes the time spent on landing and take-off.
For the landing and take-off of the UAV, a total time of 10 min is estimated, 5 min for each
operation [36,37]. The refueling operation is a parameter that varies depending on the
distance traveled by the UAV after its last refueling operation. We assume that the speed of
the UAV is 60 km per hour. It is assumed that the landing time, take-off time, and reloading
speed are the same for all UAVs. We consider the same UAV types as presented in [4].

Table 2 presents a characterization and clustering of the instances. To cluster the
instances, we calculated a relation factor for each instance, and the relation factor for
each instance is given by: number of nodes times longest aerial edge times Total distance of
road network (instance) divided by Total distance of road network (largest instance). The
relation factor allows us to determine a clustering criterion. In the last column of Table 2,
we indicate which instance belongs to which cluster. Instances in clusters A, B, and C are
classified as small-, large-, and medium-sized instances, respectively.

Table 2. Characteristics of instances and cluster type.

Instance Nodes Total Distance of
Road Network (km)

Longest Aerial
Edge * (km) Relation Cluster

p1.2.b 32 84,990.26 120.07 220 A
p2.2.a 20 24,710.51 126.84 42 A
p3.2.a 32 95,884.38 169.03 350 A

p4.2.a 99 1,481,730.60 257.97 25,539 B

p5.2.a 65 351,215.83 109.66 7128 C
p6.2.a 63 232,134.88 130.38 5533 C
p7.2.a 101 344,621.25 49.92 5042 C

* Longest aerial edge connecting to the DMC node

5.2. Problem Parametrization

Taking the results of [4] as a reference, the best exploration strategy corresponds to a
back and forward movement strategy and a weighted orientation criteria given by α = {0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. The experiments in this section are designed to determine the best
refueling strategy in terms of the exploration route duration. The parameterization of the
experiments is as follows:

• Ten random seeds.
• Different levels of disruption, given in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. Disruptions are

classified into three levels, low = {0.1, 0.2, 0.3}, medium = {0.4, 0.5}, and high = {0.6, 0.7}.
• Number of refueling stations available in the disrupted network: (1) only the DMC

as refueling station, (2) the DMC and 50% of the victim nodes operate as potential
refueling stations, or (3) the DMC and all victim nodes operate as potential refueling
stations.

• Three refueling strategies: extremely conservative refueling strategy (EConservative),
moderately conservative refueling strategy (MConservative), and conservative refuel-
ing strategy (Conservative).

This section presents the following experiments:

• Comparison of the refueling strategies: EConservative, MConservative, Conservative,
seven α values, low, medium, and high disruption levels.
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• Comparison of the performance of refueling strategies considering in the disrupted
network: (1) only the DMC operate as refueling station, (2) the DMC and 50% of the
victim locations as potential refueling stations and the DMC, and (3) the DMC and all
victim locations as potential refueling stations and the DMC.

• For each disruption level, 10 different disrupted road networks are evaluated per
instance (10 seeds).

6. Computational Results

In our first numerical study, we are interested in the best strategy. We computed
the exploration route for each instance and each seed with a fixed disruption level and α
value for all refueling strategies considering only the DMC as refueling station. Then, we
determined the best exploration route, i.e., the exploration route with the lowest total travel
time, for each instance, each seed, and each α value. This exploration route is compared to
all other routes of the same instance, seed, and each α value to determine the best refueling
strategy. In the next step, we count over all instance, seeds, and α values how many times
each strategy provides the best solution, i.e., the exploration route with the minimum
travel time. Strategy ties were added independently to each of the strategies involved.
Figure 8 presents the comparison between the strategies. The results indicate that with a
percentage around 6%, 49%, and 45%, the best solutions are obtained with a EConservative,
MConservative, and Conservative refueling strategy, respectively. Thus, the best refueling
strategy is MConservative, followed by Conservative, and the worst refueling strategy is
EConservative.

Figure 8. Global performance of refueling strategies.

In the second stage of the numerical study, we computed the average duration of the
exploration route for each instance and each disruption level for all α values and refueling
strategies. Then, we determined the average duration of the exploration route for each
instance and each disruption level. In the next step, for each instance and each refueling
strategy, we clustered the average duration of the exploration route by low, medium, and
high disruption level. Then, these values were taken to compare average values over all
instances. Figures 9–11 present for each refueling strategy the average duration of the
exploration route for each instance and disruption level cluster.
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The moderately conservative refueling strategy MConservative reports the best route
exploration. This is especially clear for situations where the road network has a disruption
level of up to 50%. For disruption levels of 50% and more, the performance of all strategies
is similar. The similar performance is due to the longer time it takes for the UAV to find
a functional edge connecting the DMC to the road network when disruption levels are
higher, so finding a refueling station in addition to the DMC also takes longer. Therefore,
many refueling operations are performed at the DMC. Depending on the characteristics
of the road network, the number of refueling operations required varies slightly between
refueling strategies.

Figure 9. Performance of refueling strategies: normalized travel time of exploration route for instance
cluster A. The standardized travel time 100% is equivalent to 21.56 h.

Figure 10. Performance of refueling strategies: normalized travel time of exploration route for
instance cluster B. The standardized travel time 100% is equivalent to 57.52 h.
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Figure 11. Performance of refueling strategies: normalized travel time of exploration route for
instance cluster C. The standardized travel time 100% is equivalent to 38.23 h.

The last numerical study is to determine the impact of having multiple refueling
stations: (1) only the DMC as refueling stations, (2) the DMC and 50% of the victim
nodes operate as potential refueling stations, or (3) the DMC and all victim nodes operate
as potential refueling stations. Remember that the victim locations operate as refueling
stations only if they are known to be reachable from the DMC using the road network.
We computed the average duration of the exploration route for each instance and each
disruption level for all α values and number of refueling stations. Then, we determined the
average duration of the exploration route for each instance and each disruption level. In
the next step, for each instance and refueling strategy, we clustered the average duration
of the exploration route by low, medium, and high disruption levels. Then, these values
were taken to compare average values over all instances. Figures 12–14 present for each
number of refueling stations the average travel time savings of the UAV for each refueling
strategy, disruption level, and instance cluster. We computed the worst exploration route
over all α values for each instance, seed, disruption level, and refueling strategy, i.e., the
time-longest exploration route. The worst solution of each instance, seed, disruption level,
and refueling strategy is compared to the other solutions of the same instance, disruption
level, refueling strategy, and number of refueling stations. In the next step, we calculated
the difference between the total travel time of the worst solution and the total travel time of
the other solutions. The difference is calculated for each refueling strategy; the difference is
conceived of as a savings in travel times that can be achieved depending on the number of
refueling stations in the disrupted network. Considering the clusters of instances in Table
2, we calculated the average savings for each level of disruption, refueling strategy, and
number of refueling stations over all instances, seed, and α values.

The following is the analysis of the results for each refueling strategy. The results
show that for road networks with a low, medium, and high level of disruption, using
the refueling strategy EConservative (Figures 12–14, EConservative), the worst exploration
route is achieved when considering 100% of the victim locations as refueling stations. These
results are argued on the fact that there is a high chance that victim nodes are accessible
in networks with a low level of disruption. Therefore, every time a disruption is detected,
the exploration route is redirected to the last accessible explored node in the disrupted
road network, being a victim node or road crossing. Thus, each route redirection can
lead to a refueling operation, increasing the exploration duration. Thus, the results show
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that for instances in cluster A and C with a low disruption level using refueling strategy
EConservative, the best solution is achieved when only the DMC operates as refueling
station. Similar for instances in cluster A and B with a medium disruption level, the best
solution is achieved when only the DMC operates as a refueling station.

The results for networks with a high disruption level using the EConservative refueling
strategy differ among the clustering of instances. The best solutions for instances in cluster
A are obtained when 50% of the victim locations operate as potential refueling stations. For
cluster B, the best solutions are also achieved when 50% of the victim locations operate as
potential refueling stations. For instances in cluster C with high disruption levels, the best
solution is achieved when only the DMC operates as a refueling station.

Similarly, we analyzed the results of the MConservative and Conservative refueling
strategies (Figures 12–14, MConservative and Conservative). The worst solution occurs
when only the DMC is considered as the refueling station for the MConservative and
Conservative refueling strategies. This is because every time a refueling operation is
needed, the UAV has to fly back to the DMC. The best solution for the EConservative
and Conservative refueling strategies is achieved when 100% of the victim locations are
considered as refueling stations.

In conclusion, the refueling strategy MConservative is the best strategy to deal with
flying range limitations for small and large instance clusters with a low disruption. For
small and large instance clusters with a high disruption level, the best refueling strategy is
the strategy Conservative. For medium-sized instances, the best refueling strategy varies
between strategy MConservative and strategy Conservative depending on the disruption
level of the road network and the number of refueling stations available. Furthermore,
for all instance clusters with a medium disruption level, the best refueling strategy can
be strategy MConservative or strategy Conservative depending on the number of refueling
stations available. The refueling strategies MConservative and Conservative have a better
balance between returning to a refueling station due to the need for a refueling operation
(the flying capacity is less than the buffer) and the cost of advancing on the exploration
route until the UAV visits a refueling station by coincidence.

Figure 12. Cluster A: impact of the number of refueling stations on the performance of refueling
strategies.
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Figure 13. Cluster B: impact of the number of refueling stations on the performance of refueling
strategies.

Figure 14. Cluster C: impact of the number of refueling stations on the performance of refueling
strategies.

The results regarding the best refueling strategy varies depending on the the number
of refueling stations, instance size, and disruption level. Table 3 presents a consolidation of
the results; the first two columns refer to the disaster situation, and the last two columns
present the best refueling strategy to reach the exploration routes with the lowest travel
time given the number of refueling stations in advance. We determined the best refueling
strategy for each instance cluster, each disruption level, and each number of refueling
stations.
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Table 3. Consolidation of the best combination of refueling strategies and number of refueling stations
available.

Disaster Situation Best Strategy

Instance
Size

Disruption
Level Number of Refueling Stations EConservative MConservative Conservative

Small

low

DMC x

50% of victim locations x

100% of victim locations x

Medium

DMC x

50% of victim locations x

100% of victim locations x

High

DMC x

50% of victim locations x

100% of victim locations x

Medium

low

DMC x

50% of victim locations x

100% of victim locations x

Medium

DMC x

50% of victim locations x

100% of victim locations x

High

DMC x

50% of victim locations x

100% of victim locations x

Large

low

DMC x

50% of victim locations x

100% of victim locations x

Medium

DMC x

50% of victim locations x

100% of victim locations x

High

DMC x

50% of victim locations x

100% of victim locations x

7. Conclusions

This paper investigated the exploration route of a UAV to explore a disrupted road
network, i.e., a road network after a disaster considering flying range limitations. The
study is based on a conservative exploration strategy called back and forward. After
each detected disruption, the UAV is redirected to the closest node connected to the
functional road network detected so far. We proposed three refueling strategies to deal
with the flying range limitation. The three refueling strategies were tested using a weight
orientation criterion. This orientation criterion aims to find the combination of strategies
that minimizes the duration of the exploration route to determine whether or not the given
victim locations can be reached via the road network.

The refueling strategies were proposed to extend the coverage of the UAV flying
range. The algorithm was designed to save travel time by avoiding unnecessary network
explorations. We assumed that a certain portion of victim locations can operate as refueling
stations if they are connected by road to the DMC. This assumption is realistic as once a
victim location is found to be reachable, it is certain that a functional path from the DMC
to this victim location exists, and thus, the victim node can be resupplied with additional
fuel (for the refueling station). The results show that the refueling strategy MConservative,
where the refueling operation takes place when the flying capacity is lower than 50%,
provides the best exploration routes for all instance clusters with a low disruption level.
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The refueling strategy Conservative, where the refueling operation is performed only when
the flying capacity is equal to or less than the buffer, provides the best solution for small
and large instance clusters with a high level of disruption. The best strategy for all instances
with a medium disruption level varies, depending on the number of refueling stations
available, between MConservative and Conservative. The most significant impact on total
exploration time, apart from network size and disruption level, which cannot be influenced,
had the fuel buffer and the number of reachable refueling stations. Therefore, decision-
makers must establish criteria to decide when to refuel and where the refueling should
take place before a disaster hits.

Future research lines of this work can be established for reconstruction operations. We
are interested in studying the exploration of the disrupted network to make decisions on
road recovery to improve accessibility to the affected area. In addition, loading capacity
constraints can be considered to study the distribution of humanitarian kits while the UAV
explores the state of the disrupted network. Our solution approach can be extended by
considering a periodical exploration to capture the dynamism of the catastrophe.

Author Contributions: Conceptualization, L.R.-R., J.V., and P.H.; methodology, L.R.-R., J.V., and
P.H.; software, L.R.-R.; validation, L.R.-R., J.V., and P.H.; formal analysis, L.R.-R., J.V., and P.H.;
investigation, L.R.-R.; resources, L.R.-R., J.V., and P.H.; data curation, L.R.-R.; writing—original
draft preparation, L.R.-R.; writing—review and editing, L.R.-R., J.V., and P.H.; visualization, L.R.-R.;
supervision, P.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The files with the test instances and their detailed parameterization of
the on-line algorithm are available at short.boku.ac.at/instances (accessed on 17 June 2022).

Acknowledgments: We would like to thank Sven Müller for his support in the development of the
paper. Further, we would like to thank Klaus-Dieter Rest from the University of Natural Resources
and Life Sciences Vienna and Javier Faulin from the Public University of Navarra for their valuable
insights in the first phase of this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tomasini, R.M.; Van Wassenhove, L.N. From preparedness to partnerships: Case study research on humanitarian logistics. Int.

Trans. Oper. Res. 2009, 16, 549–559. [CrossRef]
2. Kovács, G.; Spens, K.M. Humanitarian logistics in disaster relief operations. Int. J. Phys. Distrib. Logist. Manag. 2007, 37, 99–114.

[CrossRef]
3. Wang, N.; Christen, M.; Hunt, M.; Biller-Andorno, N. Supporting value sensitivity in the humanitarian use of drones through an

ethics assessment framework. Int. Rev. Red Cross 2022, 104, 1–32. [CrossRef]
4. Reyes-Rubiano, L.; Voegl, J.; Rest, K.D.; Faulin, J.; Hirsch, P. Exploration of a disrupted road network after a disaster with an

online routing algorithm. OR Spectr. 2021, 43, 289–326. [CrossRef]
5. Safitri, N.D.; Chikaraishi, M. Impact of transport network disruption on travel demand: A case study of the July 2018 heavy rain

disaster in Japan. Asian Transp. Stud. 2022, 8, 100057. [CrossRef]
6. FSD. Drones in Humanitarian Actions. Technical Report, Fondation Suisse de Déminage (FSD), Geneve, Switzerland. 2019.

Available online: https://drones.fsd.ch/en/homepage/ (accessed on 30 May 2020).
7. Allianz. Rise of the Drones Managing the Unique Risks Associated with Unmanned Aircraft Systems. 2017. Available online:

https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/AGCS-Riseofthedrones-report.pdf (accessed
on 15 May 2022).

8. Murphy, R.R.; Tadokoro, S.; Kleiner, A. Disaster robotics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany,
2016; pp. 1577–1604.

9. PwC. A Drone’s Eye View. Technical Report, Companies Associated in PricewaterhouseCoopers (PwC) International Limited,
Belgium. 2018. Available online: https://www.pwc.be/en/documents/20180518-drone-study.pdf (accessed on 30 May 2020).

10. HOT. Disaster Management Through Geo-Spatial Data: DMI. Technical Report, Humanitarian OpenStreetMap Team (HOT).
2019. Available online: www.hotosm.org (accessed on 30 May 2020).

short.boku.ac.at/instances
http://doi.org/10.1111/j.1475-3995.2009.00697.x
http://dx.doi.org/10.1108/09600030710734820
http://dx.doi.org/10.1017/S1816383121000989
http://dx.doi.org/10.1007/s00291-020-00613-w
http://dx.doi.org/10.1016/j.eastsj.2022.100057
https://drones.fsd.ch/en/homepage/
https://www.agcs.allianz.com/content/dam/onemarketing/agcs/agcs/reports/AGCS-Riseofthedrones-report.pdf
 https://www.pwc.be/en/documents/20180518-drone-study.pdf
www.hotosm.org


Algorithms 2022, 15, 217 21 of 21

11. Rejeb, A.; Rejeb, K.; Simske, S.; Treiblmaier, H. Humanitarian drones: A review and research agenda. Internet Things 2021,
16, 100434. [CrossRef]

12. Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy manage-
ment: Solutions, strategies, and prospects. Appl. Energy 2019, 255, 113823. [CrossRef]

13. El-Sayed, A.F. Aircraft Propulsion and Gas Turbine Engines; CRC Press: Boca Raton, FL, USA, 2017.
14. Saha, B.; Koshimoto, E.; Quach, C.C.; Hogge, E.F.; Strom, T.H.; Hill, B.L.; Vazquez, S.L.; Goebel, K. Battery health management

system for electric UAVs. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011; pp. 1–9.
15. Park, S.; Zhang, L.; Chakraborty, S. Battery assignment and scheduling for drone delivery businesses. In Proceedings of the 2017

IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Taipei, Taiwan, 24–26 July 2017; pp. 1–6.
16. Swieringa, K.A.; Hanson, C.B.; Richardson, J.R.; White, J.D.; Hasan, Z.; Qian, E.; Girard, A. Autonomous battery swapping system

for small-scale helicopters. In Proceedings of the 2010 IEEE international conference on robotics and automation, Anchorage, AK,
USA, 3–7 May 2010; pp. 3335–3340.

17. Zhang, G.; Zhu, N.; Ma, S.; Xia, J. Humanitarian relief network assessment using collaborative truck-and-drone system. Transp.
Res. Part E Logist. Transp. Rev. 2021, 152, 102417. [CrossRef]

18. Fernandez, S.A.; Carvalho, M.M.; Silva, D.G. A Hybrid Metaheuristic Algorithm for the Efficient Placement of UAVs. Algorithms
2020, 13, 323. [CrossRef]

19. Dezan, C.; Zermani, S.; Hireche, C. Embedded Bayesian Network Contribution for a Safe Mission Planning of Autonomous
Vehicles. Algorithms 2020, 13, 155. [CrossRef]

20. Noyan, N.; Balcik, B.; Atakan, S. A stochastic optimization model for designing last mile relief networks. Transp. Sci. 2015,
50, 1092–1113. [CrossRef]

21. Nolz, P.C.; Doerner, K.F.; Gutjahr, W.J.; Hartl, R.F. A bi-objective metaheuristic for disaster relief operation planning. In Advances
in Multi-Objective Nature Inspired Computing; Springer: Berlin/Heidelberg, Germany, 2010; pp. 167–187.

22. Loree, N.; Aros-Vera, F. Points of distribution location and inventory management model for Post-Disaster Humanitarian
Logistics. Transp. Res. Part E Logist. Transp. Rev. 2018, 116, 1–24. [CrossRef]

23. Rath, S.; Gutjahr, W.J. A math-heuristic for the warehouse location–routing problem in disaster relief. Comput. Oper. Res. 2014,
42, 25–39. [CrossRef]

24. Hatefi, S.M.; Jolai, F.; Torabi, S.A.; Tavakkoli-Moghaddam, R. A credibility-constrained programming for reliable forward–reverse
logistics network design under uncertainty and facility disruptions. Int. J. Comput. Integr. Manuf. 2015, 28, 664–678. [CrossRef]

25. Elçi, Ö.; Noyan, N. A chance-constrained two-stage stochastic programming model for humanitarian relief network design.
Transp. Res. Part B Methodol. 2018, 108, 55–83. [CrossRef]

26. Abazari, S.R.; Aghsami, A.; Rabbani, M. Prepositioning and distributing relief items in humanitarian logistics with uncertain
parameters. Socio-Econ. Plan. Sci. 2021, 74, 100933. [CrossRef]

27. Nezhadroshan, A.M.; Fathollahi-Fard, A.M.; Hajiaghaei-Keshteli, M. A scenario-based possibilistic-stochastic programming
approach to address resilient humanitarian logistics considering travel time and resilience levels of facilities. Int. J. Syst. Sci. Oper.
Logist. 2021, 8, 321–347. [CrossRef]

28. Kunz, N.; Van Wassenhove, L.N. Fleet sizing for UNHCR country offices. J. Oper. Manag. 2019, 65, 282–307. [CrossRef]
29. Duque, P.M.; Sörensen, K. A GRASP metaheuristic to improve accessibility after a disaster. OR Spectr. 2011, 33, 525–542.

[CrossRef]
30. Koch, Z.; Yuan, M.; Bristow, E. Emergency Response after Disaster Strikes: Agent-Based Simulation of Ambulances in New

Windsor, NY. J. Infrastruct. Syst. 2020, 26, 06020001. [CrossRef]
31. Noyan, N.; Meraklı, M.; Küçükyavuz, S. Two-stage stochastic programming under multivariate risk constraints with an

application to humanitarian relief network design. Math. Program. 2022, 191, 7–45. [CrossRef]
32. Hatefi, S.; Jolai, F. Robust and reliable forward–reverse logistics network design under demand uncertainty and facility

disruptions. Appl. Math. Model. 2014, 38, 2630–2647. [CrossRef]
33. Shahparvari, S.; Abbasi, B.; Chhetri, P.; Abareshi, A. Fleet routing and scheduling in bushfire emergency evacuation: A regional

case study of the Black Saturday bushfires in Australia. Transp. Res. Part D Transp. Environ. 2019, 67, 703–722. [CrossRef]
34. Daud, M.S.M.; Hussein, M.; Nasir, M.; Abdullah, R.; Kassim, R.; Suliman, M.; Salu-din, M. Humanitarian logistics and its

challenges: The literature review. Int. J. Supply Chain Manag. 2016, 5, 107–110.
35. CNAS. The Drones Database. Technical Report, Center for a New American Security, Proliferated drones, United States. 2022.

Available online: http://drones.cnas.org/drones/ (accessed on 17 June 2022).
36. BMDV. Operation of Drones in German Airspace. Technical Report, Federal Ministry for Digital and Transport, Germany. 2019.

Available online: https://www.bmvi.de/SharedDocs/EN/Documents/G/operation-drones-german-airspace.html (accessed on
9 May 2022).

37. NIST. Unmanned Aerial Vehicle System User Manual. Technical Report, National Institute of Standards and Technology (NIST),
Federal Ministry for Digital and Transport, United States. 2015. Available online: http://dx.doi.org/10.6028/NIST.GCR.15-982
(accessed on 9 May 2022).

http://dx.doi.org/10.1016/j.iot.2021.100434
http://dx.doi.org/10.1016/j.apenergy.2019.113823
http://dx.doi.org/10.1016/j.tre.2021.102417
http://dx.doi.org/10.3390/a13120323
http://dx.doi.org/10.3390/a13070155
http://dx.doi.org/10.1287/trsc.2015.0621
http://dx.doi.org/10.1016/j.tre.2018.05.003
http://dx.doi.org/10.1016/j.cor.2011.07.016
http://dx.doi.org/10.1080/0951192X.2014.900863
http://dx.doi.org/10.1016/j.trb.2017.12.002
http://dx.doi.org/10.1016/j.seps.2020.100933
http://dx.doi.org/10.1080/23302674.2020.1769766
http://dx.doi.org/10.1002/joom.1013
http://dx.doi.org/10.1007/s00291-011-0247-2
http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000565
http://dx.doi.org/10.1007/s10107-019-01373-4
http://dx.doi.org/10.1016/j.apm.2013.11.002
http://dx.doi.org/10.1016/j.trd.2016.11.015
http://drones.cnas.org/drones/
https://www.bmvi.de/SharedDocs/EN/Documents/G/operation-drones-german-airspace.html
http://dx.doi.org/10.6028/NIST.GCR.15-982

	Introduction
	Literature Review
	Fuel Management Strategies of UAVs
	Humanitarian Operations and Disrupted Road Networks

	Problem Description
	On-line Algorithm
	Strategy for Dealing with Disrupted Road Networks
	Strategy for Dealing with Flying Range Limitations

	Computational Experiments
	Instance 
	Problem Parametrization 

	Computational Results
	Conclusions
	References

