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Abstract: Pulsed electromagnetic (EM) field transmission through a relatively small rectangular
aperture is analyzed with the aid of the Cagniard–deHoop method of moments (CdH-MoM).
The classic EM scattering problem is formulated using the EM reciprocity theorem of the time-
convolution type. The resulting TD reciprocity relation is then, under the assumption of piecewise-
linear, space–time magnetic-current distribution over the aperture, cast analytically into the form
of discrete time-convolution equations. The latter equations are subsequently solved via a stable
marching-on-in-time scheme. Illustrative examples are presented and validated using a 3D numerical
EM tool.

Keywords: computational electromagnetics; numerical analysis; electromagnetic transient scattering;
time domain; Cagniard-DeHoop technique; Cagniard–deHoop method of moments

1. Introduction

Apertures in conducting planes are frequently encountered in the form of windows,
cracks around doors, coupling slots in microwave devices, or imperfect seams between
two metallic plates (e.g., ([1], Chapter 4) and ([2], Sections 6.7 and 7.9)). In order to quantify
both intentional and undesired effects of such apertures, their EM scattering is a major
concern in applied electromagnetics.

Wavefield penetration through an aperture in a thin screen is a classical problem of
wavefield physics, solutions of which can be traced back to the work of Lord Rayleigh
(see [3] and ([4], § 6.1)). His solution applying to the plane-wave diffraction by a relatively
small (with respect to the wavelength) aperture was later extended by Bouwkamp and Van
Bladel [5–7]. Without restricting himself to the plane-wave excitation, Bethe [8] demon-
strated that the EM scattering by a small aperture can be, in certain circumstances (see ([5],
§ 9)), attributed to the action of equivalent electric and dipole moments [9,10]. Whenever
the maximum linear dimension of the aperture is not sufficiently small with respect to
the operating wavelength, however, the approximate aperture-diffraction models due to
Rayleigh and Bethe are no longer applicable and one has to resort to more general formula-
tions. A way out of the difficulty has been offered by Levine and Schwinger through their
variational formulation [11,12], thus extending the steady-state solution to a wide range
of frequencies.

The available rigorous solutions of the aperture diffraction problem were derived
under the assumption of sinusoidally in time-varying wavefields. However, owing to the
widespread use of communication and radar systems relying on the transmission, detection,
and subsequent interpretation of digital signals, the steady-state assumption may no longer
be computationally efficient and/or physically legitimate. Therefore, in the present work,
we remove the restriction and solve the diffraction wavefield problem in its (original) space–
time domain. The vast majority of previous works aiming at TD solutions rely more or less
on the pertaining steady-state results—exact, purely TD analytical solutions of the aperture
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diffraction are lacking in the literature on the subject. Indeed, the pertinent solutions can be,
broadly speaking, divided into two categories. The first line of reasoning employes purely
numerically approaches such as the inverse FFT algorithm [13,14] or the finite-difference
TD technique [15,16]. The second approach yields TD approximate field expressions based
on the use of Bethe’s model [17] or Kirchhoff’s approximation ([18], Section 5.5.1). To deal
with the issue, the classic CdH technique [19] (see also [20–23], for example) and the TD
EM reciprocity theorem of the time-convolution type ([24], Section 28.2) (see also ([25],
Section 5.2), ([26], Section 1.4.1), and [27]) are in the present work combined to introduce a
novel, rigorous TD integral-equation approach to analyzing the pulsed EM scattering by
a relatively small rectangular aperture in a PEC screen. The new solution strategy, to be
referred to as the CdH-MoM, has been previously applied to TD performance studies of
cylindrical and planar antennas [28] and, more recently, to the TD EM scattering analysis of
transmission lines in the presence of thin sheets [29] and EM metasurfaces [30,31].

2. Problem Definition

The problem configuration under analysis is shown in Figure 1. The position in
this configuration is specified by the coordinates {x, y, z} with respect to an orthogonal,
Cartesian reference frame with the origin O and the three base vectors, {ix, iy, iz}, forming
in the indicated order a right-handed triad. The position vector is then written as r =
xix + yiy + ziz. The time coordinate is t, and the continuous time-convolution operator is
represented by ∗. The Heaviside unit-step function is denoted by H(t), and the Dirac-delta
distribution is δ(t). Partial differentiation is denoted by ∂, which is supplied with the
pertaining subscript. For instance, to differentiate with respect to x, we use ∂x.

×O
iz

iyix

×

D∞ {ǫ0, µ0}

2∆y

2∆x

S

PEC plane

Figure 1. Rectangular aperture in a PEC plane.

We shall analyze the EM-field penetration through a bounded aperture in an un-
bounded PEC screen. The PEC plane lies in z = 0, and the aperture occupies a rectangular
domain S = {−∆x < x < ∆x,−∆y < y < ∆y, z = 0} with ∆x,y > 0. In the present analysis,
it is assumed that the maximum dimension of the aperture is relatively small with respect
to the spatial support of the exciting EM pulse. The surrounding medium is assumed to be
linear, isotropic, and loss-free in its EM properties. It is described by (real-valued, positive
scalar) electric permittivity ε0 and magnetic permeability µ0. The corresponding EM wave
speed is c0 = (ε0µ0)

−1/2 > 0, and the wave admittance is denoted by Y0 = (ε0/µ0)
1/2 > 0.

The aperture is supposed to be irradiated by the (causal) incident EM wave field (de-
noted by superscript i), which is specified by its electric-field strength, Ei(r, t), and magnetic-
field strength, Hi(r, t). The incident EM field is not necessarily a plane-wave. To account
for the presence of the aperture, we next define the scattered EM wave field (denoted by
superscript s) as the difference between the total fields, {E, H}(r, t), and excitation EM
wave fields (denoted by superscript e), viz.

{Es, Hs}(r, t) = {E− Ee, H − He}(r, t), (1)

for all r ∈ R3 and t > 0, where the excitation fields have the meaning of total fields in the
absence of the aperture (i.e., with the “short-circuited aperture”). Since iz × Ee(r, t) = 0 over
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the entire z = 0 plane for all t > 0, the use of the explicit-type boundary condition applying
to the total EM field on the PEC screen in Equation (1) implies that iz × Es(r, t) = 0 on the
PEC screen for all t > 0.

3. Time Domain Problem Formulation

The EM scattering problem under consideration is formulated using the TD Lorentz
reciprocity theorem ([24], Section 28.2). To that end, the reciprocity theorem is applied to the
scattered EM wave fields and the (causal) testing EM wave fields (denoted by superscript T),
which are generated by the testing magnetic-current surface density, ∂KT(r, t), whose
spatial support is the surface of the aperture, supp(∂KT) = S . Then, upon applying the TD
reciprocity theorem to the upper half-space, z > 0, while enforcing the surface boundary
condition applying to (the tangential component of) the scattered field, ∂Ks = Es × iz,
on the PEC plane, we arrive at∫

r∈S+
[
HT(x, y, 0+, t)

∗· ∂Ks(x, y, t)

− Hs(x, y, 0+, t)
∗· ∂KT(x, y, t)

]
dA = 0,

(2)

where · represents the standard inner product of two vectorial quantities ([26], Equa-
tion (1.2)), ∗ denotes the continuous time-convolution operator ([26], Equation (1.11)),
and the superscript + indicates that we approach the surface of the aperture, S , from above
as z ↓ 0. Since both states are causal and each other’s adjoint, the contribution from the
bounding sphere “at infinity” vanishes ([26], Section 1.4.3). In the second step, the TD
reciprocity theorem is applied to the lower half-space, z < 0, which leads to a similar
relation: ∫

r∈S−
[
HT(x, y, 0−, t)

∗· ∂Ks(x, y, t)

− Hs(x, y, 0−, t)
∗· ∂KT(x, y, t)

]
dA = 0,

(3)

where − indicates that we approach the surface of the aperture from below as z ↑ 0.
Recalling the definition of the excitation field, we may use Equation (1) with
iz×He(x, y, 0+, t) = 2 iz×Hi(x, y, 0, t) and iz×He(x, y, 0−, t) = 0 and with the continuity-
type condition iz × H(x, y, 0+, t) = iz × H(x, y, 0−, t) applying to all r ∈ S and t > 0,
to combine relations (2) and (3). This yields the desired TD reciprocity relation:∫

r∈S
HT(x, y, 0+, t)

∗· ∂Ks(x, y, t)dA

= −
∫

r∈S
Hi(x, y, 0, t)

∗· ∂KT(x, y, t)dA.
(4)

The final TD relation (4) will next be solved for the equivalent magnetic-current space–
time distribution, ∂Ks(x, y, t), as induced in the aperture. Owing to the relatively small
dimension of the aperture, we may assume that the magnetic-current spatial distribution
has the following form:

∂Ks
x(x, y, t) =

kx(t)
2∆y

Λ(x)Π(y), (5)

∂Ks
y(x, y, t) =

ky(t)
2∆x

Λ(y)Π(x), (6)

where kx(t) and ky(t) are the magnetic-current pulse shapes (to be computed),

Λ(x) =


1 + x/∆x, for {−∆x ≤ x ≤ 0}
1− x/∆x, for {0 ≤ x ≤ ∆x}
0, elsewhere

(7)
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is the triangular function, and

Π(x) =

{
1, for {−∆x ≤ x ≤ ∆x}
0, elsewhere

(8)

represents the rectangular function. The spatial distribution of the magnetic-current as
represented by Equations (5) and (6) is chosen such that the pertinent end conditions,
∂Ks

x = 0 and ∂Ks
y = 0 at x = ±∆x and y = ±∆y, respectively, are satisfied for all t > 0.

Along their transverse direction, the magnetic-current components are assumed to have
the uniform spatial distribution. Consequently, the magnetic-current flowing in parallel to
the edge does not exhibit the inverse-square-root singularity as required by the pertaining
edge condition ([1], Chapter 4). It can be expected, however, that this choice will have a
negligible impact on the estimation of far-field characteristics [32]. Finally, it remains to
specify the testing currents on the right-hand side of the TD reciprocity relation. To this
end, we may choose the “razor-type” testing functions

∂KT
x (x, y, t) = Π(2x)δ(y)δ(t), (9)

∂KT
y (x, y, t) = Π(2y)δ(x)δ(t). (10)

It is noted that the thus-chosen testing currents satisfy the end conditions, ∂KT
x = 0

and ∂KT
y = 0 at x = ±∆x and y = ±∆y, respectively.

4. Problem Solution

The problem will be solved via the CdH joint transform technique [19]. Accordingly,
we combine a unilateral Laplace transformation, i.e.,

Ĥ(x, y, z, s) =
∫ ∞

t=0
exp(−st)H(x, y, z, t)dt, (11)

for {s ∈ R; s > 0}, by virtue of Lerch’s uniqueness theorem ([26], Appendix), with the
wave slowness representation taken along the surface parallel to the PEC screen:

Ĥ(x, y, z, s) =
( s

2πi

)2 ∫ i∞

κ=−i∞
dκ
∫ i∞

σ=−i∞
exp[−s(κx + σy)]H̃(κ, σ, z, s)dσ, (12)

where κ and σ are (imaginary-valued) slowness parameters in the x- and y-direction,
respectively. As a matter of fact, Equation (12) is a two-dimensional Fourier inversion
integral, where the (real-valued and positive) Laplace-transform parameter, s, plays the role
of a scaling parameter. This representation entails the properties ∂x → −sκ and ∂y → −sσ.
Under the wave slowness representation, the TD reciprocity relation (4) can be written as( s

2πi

)2 ∫ i∞

κ=−i∞
dκ
∫ i∞

σ=−i∞

[
H̃T

x (κ, σ, 0+, s)∂K̃s
x(−κ,−σ, s)

+ H̃T
y (κ, σ, 0+, s)∂K̃s

y(−κ,−σ, s)
]
dσ

= −
( s

2πi

)2 ∫ i∞

κ=−i∞
dκ
∫ i∞

σ=−i∞

[
H̃i

x(κ, σ, 0+, s)∂K̃T
x (−κ,−σ, s)

+ H̃i
y(κ, σ, 0+, s)∂K̃T

y (−κ,−σ, s)
]
dσ.

(13)

The (tangential components of the) transform domain testing fields as generated
by the equivalent magnetic-current surface density, ∂K̃T, can be determined from the
transform domain counterparts of standard source-type representations for the electric-



Algorithms 2022, 15, 216 5 of 12

and magnetic-field strengths in a loss-free medium (cf. ([24], Equations (26.10–14) and
(26.10–15))) as

ẼT
x (κ, σ, z, s) = ∂K̃T

y (κ, σ, s)∂zG̃(κ, σ, z, s), (14)

ẼT
y (κ, σ, z, s) = −∂K̃T

x (κ, σ, s)∂zG̃(κ, σ, z, s), (15)

H̃T
x (κ, σ, z, s) = −(s/µ0)Ω2

0(κ)∂K̃T
x (κ, σ, s)G̃(κ, σ, z, s)

+ (s/µ0)κσ ∂K̃T
y (κ, σ, s)G̃(κ, σ, z, s), (16)

H̃T
y (κ, σ, z, s) = −(s/µ0)Ω2

0(σ)∂K̃T
y (κ, σ, s)G̃(κ, σ, z, s)

+ (s/µ0)σκ ∂K̃T
x (κ, σ, s)G̃(κ, σ, z, s), (17)

where Ω2
0(κ) = 1/c2

0 − κ2, and the transform domain Green’s function, G̃, follows as the
bounded solution of (

∂2
z − s2γ2)G̃ = 0 with lim

z↓0
∂zG̃ = −1. (18)

Using the limit from Equation (18) in Equations (14) and (15), it can be easily verified
that the transform domain testing fields satisfy the excitation conditions ẼT

x (κ, σ, 0+, s) =
−∂K̃T

y (κ, σ, s) and ẼT
y (κ, σ, 0+, s) = ∂K̃T

x (κ, σ, s). The (bounded) transform domain Green’s
function can be written as

G̃(κ, σ, z, s) = exp[−sγ(κ, σ)z]/sγ(κ, σ), (19)

for z > 0, where γ = γ(κ, σ) = (1/c2
0 − κ2 − σ2)1/2 with Re(γ) ≥ 0. Equation (19) can

be subsequently used in the transform domain expressions (16) and (17) to determine the
testing fields on the left-hand side of the reciprocity relation (13). The latter relation is
subsequently solved in the TD. To that end, we first expand the unknown pulses kx,y(t)
(see Equations (5) and (6)) in a piecewise linear manner:

kx(t) =
M

∑
k=1

vk;xΛk(t), (20)

ky(t) =
M

∑
k=1

vk;yΛk(t), (21)

where vk;x and vk;y are (yet unknown) coefficients and Λk(t) represents the temporal
triangular function:

Λk(t) =


1 + (t− tk)/∆t, for {tk−1 ≤ t ≤ tk}
1− (t− tk)/∆t, for {tk ≤ t ≤ tk+1}
0, elsewhere

(22)

along the discretized time axis {tk = k∆t; ∆t > 0, k = 1, 2, · · · , M}. Finally, upon substitut-
ing the transform domain images of Equations (5) and (6) with (20) and (21), (9) and (10)
in the reciprocity relation (13), we end up with a system of equations in the s domain.
Its constituent can be transformed to the original TD analytically via the CdH technique,
which yields the following system of discrete time-convolution equations:

m

∑
k=1

(
Ym−k+1 − 2Ym−k +Ym−k−1

) · V k = Im, (23)

where Y k = Y(tk) represents a [2 × 2] TD admittance array that is specified in
Appendix A. Furthermore, V k = [vk;x, vk;y]

T is the [2× 1] array of the unknown coef-
ficients (see Equations (20) and (21)), and finally, Ik = I(tk) = [Ix(tk), Iy(tk)]

T denotes a
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TD excitation [2× 1] array, which, as a matter of fact, corresponds to the interaction term
on the right-hand side of the TD reciprocity relation (4). Its specific form will be given in
Section 5. Once the admittance and excitation arrays are specified, Equation (23) can be
readily solved via the marching-on-in-time technique. This way leads to the following
step-by-step updating scheme:

V m = Y−1
1 ·

[
Im −

m−1

∑
k=1

(
Ym−k+1 − 2Ym−k +Ym−k−1

) · V k

]
, (24)

which yields the desired coefficients for all m = {1, 2, · · · , M}. Illustrative numerical
examples validating the TD solution (24) are presented in the following section.

5. Illustrative Examples

Throughout this section, it is assumed that the rectangular aperture is irradiated by a
uniform E-polarized TD plane-wave:

Ei(r, t) = αei(t− κ0x− σ0y + γ0z), (25)

where the unit vector in the direction of polarization, α, can be expressed via the azimuthal
angle, φ, as α = sin(φ)ix− cos(φ)iy. The pertaining slowness parameters are then described
by κ0 = cos(φ) sin(θ)/c0, σ0 = sin(φ) sin(θ)/c0 and γ0 = cos(θ)/c0, where θ denotes the
polar angle. The (causal) plane-wave signature, ei(t), has the property ei(t) = 0 for all t < 0.
With reference to the right-hand side of the TD reciprocity relation (4), the corresponding
tangential components of the magnetic-field strength at the plane of aperture, z = 0, then
follow as

Hi
x(x, y, 0, t) = −Y0ei(t− κ0x− σ0y) cos(φ) cos(θ), (26)

Hi
y(x, y, 0, t) = −Y0ei(t− κ0x− σ0y) sin(φ) cos(θ). (27)

To determine the corresponding TD excitation array I(t) (see Equation (23)), we may
use either Equations (9) and (10) with (26) and (27) on the right-hand side of Equation (4) or,
equivalently, evaluate the right-hand side of the transform domain reciprocity relation (13).
Both ways yield the following elements of the excitation array:

Ix(t) =
Y0

κ0

[∫ t+κ0∆x/2

τ=0
ei(τ)dτ −

∫ t−κ0∆x/2

τ=0
ei(τ)dτ

]
cos(φ) cos(θ), (28)

Iy(t) =
Y0

σ0

[∫ t+σ0∆y/2

τ=0
ei(τ)dτ −

∫ t−σ0∆y/2

τ=0
ei(τ)dτ

]
sin(φ) cos(θ). (29)

The limits pertaining to the normal incidence characterized by θ = 0, implying
κ0 = σ0 = 0, follow as

lim
θ→0

Ix(t) = Y0∆xei(t) cos(φ), (30)

lim
θ→0

Iy(t) = Y0∆yei(t) sin(φ). (31)

For the presented example, we take 2∆x = 0.10 m and ∆y = ∆x/2 with θ = 0 and
φ = π/4. Furthermore, the plane-wave signature has the shape of a bipolar triangle, which
can be described by

ei(t) = (2em/tw)
[
t H(t)− 2

(
t− tw/2

)
H
(
t− tw/2

)
+2
(
t− 3tw/2

)
H
(
t− 3tw/2

)
− (t− 2tw)H(t− 2tw)

]
,

(32)
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where we take em = 1.0 kV/m and c0tw = 1.0 m (see Figure 2). Consequently, c0tw =
10 max(2∆x, 2∆y), which implies that the aperture is relatively small, as assumed in
our analysis.

0 1 2 3 4 5

−1

−0.5

0

0.5

1

t/tw

ei
(t
)

(k
V
/
m
)

Figure 2. Incident plane-wave pulse shape.

In the first step, the marching-on-in-time solution (24) is applied to calculate the
magnetic-current coefficients, vk;x and vk;y, which, through Equations (20) and (21) with
(5) and (6), determine the space–time distribution of the magnetic-current surface den-
sity induced throughout the aperture. Its tangential components can be expressed us-
ing the actual electric-field strengths in the aperture as ∂Ks

x(x, y, t) = Ey(x, y, 0, t) and
∂Ks

y(x, y, t) = −Ex(x, y, 0, t). The electric-field pulses at the center of the aperture as calcu-
lated with the aid of the CdH-MoM method and via the finite-integration technique (FIT)
as implemented in CST Microwave Studior are shown in Figure 3a,b. As can be seen,
the results agree very well. To quantify the deviation between the signals, we evaluated

the normalized root-mean-squared error according to ERR =
√

∑M
k=1( f̄k − fk)2/M/∆ f ,

where f̄k and fk represent the time samples of the FIT and CdH-MoM signals, respectively,
and ∆ f = fmax − fmin. The error corresponding to the Ex-field component (see Figure 3a)
is about ERR ' 1.5%, while ERR ' 3.2% for the Ey-field component (see Figure 3b).
The higher error in the Ey-field component can be attributed to the postulated magnetic-
current space–time distribution (see Equations (5) and (6)), which is less accurate along the
relatively longer side of the aperture.

Typical computational times to obtain the TD responses shown in Figure 3 are about
20 s using a non-optimized MATLABr CdH-MoM implementation and about 30 min using
CST Microwave Studior. An even more striking difference is in the number of required
unknowns and accompanying memory requirements. While our dedicated CdH-MoM
computational model solves the system for two unknown quantities only (see Equations (5)
and (6)), the FIT model consists of about 600 thousand discretization elements. The cal-
culations were conducted on a standard laptop with Intel(R) Core(TM) i7-10510U CPU @
1.80 GHz.

To indicate the range of applicability of the presented computational model, we in-
creased the aperture’s length along the x-direction such that 2∆x is now a fifth of the
excitation pulse’s spatial support c0tw, i.e., 2∆x = 0.20 m = c0tw/5. In addition, we took
∆y = ∆x/10, so that the model represents a relatively narrow slit in the PEC screen. The re-
maining parameters were kept the same. Figure 4 shows the corresponding pulse shapes
of the Ey-field at the center of the aperture. As the length of the slit is no longer sufficiently
small with respect to c0tw, discrepancies between the signals, quantified by ERR ' 5.8% are
apparent. While this result can still be useful for initial estimates, improving the accuracy
through the incorporation of the piecewise-linear spatial expansion of the axial current
density (e.g., ([28], Section 14.3)) is advisable in this case.
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Figure 3. Electric-field pulse shapes as induced at the center of the aperture with relative dimensions
2∆x/c0tw = 1/10 and 2∆y/c0tw = 1/20. (a) Ex-field component; (b) Ey-field component.
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Figure 4. Pulse shape of Ey-field as induced at the center of the narrow aperture with relative
dimensions 2∆x/c0tw = 1/5 and 2∆y/c0tw = 1/50.

Once the space–time distribution of the equivalent magnetic-current surface density
in the aperture is known, it can be used to evaluate the scattered and, hence, total EM-fields
via Equation (1). To that end, one may employ the pertaining EM wave field representations
(e.g., ([24], Section 28.12)). For example, the TD scattered far-field amplitudes, {Es;∞, Hs;∞},
defined via ([24], Section 26.12)
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{Es, Hs}(r, t) =
{Es;∞, Hs;∞}(ξ, t− |r|/c0)

4π|r|
[
1 + O(|r|−1)

]
, (33)

as |r| → ∞, with ξ = r/|r| = cos(φs) sin(θs)ix + sin(φs) sin(θs)iy + cos(θs)iz being the
unit vector in the direction of observation, can be approximately evaluated from

Es;∞
x (ξ, t) ' (2∆y/c0)ξz∂tky(t), (34)

Es;∞
y (ξ, t) ' −(2∆x/c0)ξz∂tkx(t), (35)

Es;∞
z (ξ, t) ' (2∆x/c0)ξy∂tkx(t)− (2∆y/c0)ξx∂tky(t), (36)

where kx(t) and ky(t) directly result from the TD solution (24) via Equations (20) and (21).
The corresponding magnetic-type far-field amplitudes simply follow from Hs;∞(ξ, t) =
Y0 ξ × Es;∞(ξ, t). It is further worth noting that Equations (34)–(36) are, as a matter of
fact, exact in the directions normal to the plane of aperture, θs = 0 and θs = π, and that
the scattered wave fields in z < 0 are equal to the total fields transmitted through the
aperture (cf. Equation (1)). For the sake of validation, the z-component of the far-field
electric-type amplitude at φs = π/4 and θs = 5π/6 was evaluated via Equation (36) using
the CdH-MoM solution (24) and with the help of a “far-field probe” in CST Microwave
Studior. Figure 5 shows the resulting pulse shapes. Again, the results correlate well with
ERR ' 6.2%.
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Figure 5. Electric far-field amplitude behind the aperture.

6. Conclusions

Using the EM reciprocity theorem of the time-convolution type and the CdH technique,
we introduced a fundamentally new solution to the transient EM-field penetration through a
relatively small aperture of a rectangular shape. It was demonstrated that for the postulated
piecewise-linear space–time distribution of the equivalent magnetic-current surface density
induced in the aperture, the pertaining TD admittance array can be derived analytically in
terms of elementary functions only. The presented TD solution can be hence viewed as an
exact “weak” solution of the EM aperture problem. Subsequently, the CdH-MoM solution
was implemented and successfully verified using a commercial 3D EM computational
tool. It turns out that the CdH-MoM solution is easy to implement and introduces huge
computational savings of several orders of magnitude with respect to general-purpose, TD
differential numerical approaches.
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EM Electromagnetic
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TD Time domain

Appendix A. Time Domain Admittance Array

Since the x- and y-components of the induced magnetic-current surface density are
in a small rectangular aperture mutually uncoupled, the TD admittance array has only
non-zero diagonal terms, viz.

Y(t) =
[

Yxx(t) 0
0 Yyy(t)

]
. (A1)

The elements of the admittance array can be for the piecewise-linear space–time distri-
bution of the induced magnetic-current density (see Equations (5) and (6) with (20) and (21))
obtained analytically in the following form:

Yxx(t) = Y0
c0∆t∆x∆y

[
Ψ(3∆x/2, ∆y, t)−Ψ(3∆x/2,−∆y, t)

−3 Ψ(∆x/2, ∆y, t) + 3 Ψ(∆x/2,−∆y, t)
+3 Ψ(−∆x/2, ∆y, t)− 3 Ψ(−∆x/2,−∆y, t)

−Ψ(−3∆x/2, ∆y, t) + Ψ(−3∆x/2,−∆y, t)
]
,

(A2)

and Yyy(t) is given by a similar TD expression that can be obtained upon replacing x with
y (and vice versa) in Equation (A2). The TD function, Ψ(x, y, t), follows as the inverse of
the complex-slowness integral (cf. ([28], (G.3))):

Ψ̂(x, y, s) =
c2

0
8π2

∫
κ∈K0

exp(sκx)
s3κ3 Ω2

0(κ)dκ
∫

σ∈S0

exp(sσy)
sσ

dσ

γ(κ, σ)
(A3)

for {s ∈ R; s > 0}, {x ∈ R; x 6= 0}, {y ∈ R; y 6= 0}, and recall that
γ(κ, σ) = (1/c2

0 − κ2 − σ2)1/2. Furthermore, K0 and S0 are integration paths that run
along the imaginary axes in the complex-slowness κ- and σ-planes, respectively, and
that are indented to the right around their origins with small semi-circular arcs of van-
ishingly small radii (cf. ([28], Figure G.1)). The inversion of Ψ̂(x, y, s) can be carried
out using the CdH procedure as closely described in ([28], Appendix G). First, the in-
tegrand in the integral with respect to σ is continued analytically into the complex σ-
plane, while keeping Re(γ) ≥ 0. This implies the horizontal branch cuts extending along
{Im(σ) = 0, Ω0(κ) < |Re(σ)| < ∞}. Consequently, using Jordan’s lemma and Cauchy’s
theorem [24] (p. 1054), path S0 is replaced with the loop around the branch cut, a parametric
form of which is σ(u) = −uΩ0(κ)sgn(y)± i0 for all {1 ≤ u < ∞} with sgn(y) = |y|/y.
In addition, the contribution from the simple pole at σ = 0 must be accounted for when
y ≥ 0. In the integral around the branch cut, we introduce the new variable of integration,
u, while the integration around the pole is readily carried out analytically. The thus-
transformed inner integral with respect to σ is next substituted back in Equation (A3).
Proceeding further in a similar manner with the integration in the complex κ-plane, we,
after some lengthy, yet straightforward algebra, arrive at integral expressions that can be
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evaluated analytically. Transforming finally the result of integration to the TD via standard
tables ([33], Section 29), we end up with the TD original of Equation (A3) in the following
form ([28], (cf. Equations (G.24), (G.25), and (G.30)):

Ψ(x, y, t) =
sgn(x)sgn(y)

12π

∫ c0t
v=r(c0t− v)3 f (x, y, v)dv

+
sgn(y)H(x)

4π

{
|y|
(

c2
0t2 − x2 + y2

3

)
cosh−1

(
c0t
|y|
)

−c0t
(

c2
0t2

6 − x2
)

tan−1

[(
c2

0t2

y2 − 1
)1/2

]

− 7
6 c0ty2

(
c2

0t2

y2 − 1
)1/2

}
H(c0t− |y|)

+
sgn(x)H(y)

4π

{
|x|
(

c2
0t2 − x2

6

)
cosh−1

(
c0t
|x|
)

−c0t
(

c2
0t2

6 − x2
)

tan−1

[(
c2

0t2

x2 − 1
)1/2

]

− 5
3 c0tx2

(
c2

0t2

x2 − 1
)1/2

}
H(c0t− |x|)

+ c0t
4

(
c2

0t2

6 − x2
)

H(x)H(y)H(t),

(A4)

where we used r = (x2 + y2)1/2 > 0 with

f (x, y, v) = 1
2v

[
1

(v2/x2−1)1/2 +
1

(v2/y2−1)1/2

]
− 1

16
y4

x2v3
1

(v2/y2−1)5/2

[
3 v8

y8 + 6 v6

y6

(
x2

y2 − 1
)

+ v4

y4

(
15 x4

y4 − 10 x2

y2 + 3
)
+ 4 v2

y2
x2

y2

(
1− 5 x2

y2

)
+ 8 x4

y4

]

− 1
2

x2

v3
1

(v2/x2−1)1/2 − 3
16

v
x2

1
(v2/y2−1)5/2

(
3 v4

y4

+2 v2

y2

(
x2

y2 − 3
)
+ x2

y2

(
3 x2

y2 − 2
)
+ 3

)
+ 3

4
v
x2

1
(v2/y2−1)3/2

(
v2

y2 +
x2

y2 − 1
)

.

(A5)

The calculation of the convolution integral in Equation (A4) is computationally the
most exacting task. An efficient way to remedy the issue is the recursive-convolution
technique ([28], Appendix H). Alternatively, one may apply integration by parts and write∫ c0t

v=r
(c0t− v)3 f (x, y, v)dv = −(c0t− r)3∂−1

v f (x, y, r)

− 3(c0t− r)2∂−2
v f (x, y, r)− 6 (c0t− r)∂−3

v f (x, y, r)

− 6 ∂−4
v f (x, y, r) + 6 ∂−4

v f (x, y, c0t),

(A6)

where ∂−n
v denotes the n-th integration with respect to v. Thanks to the relatively simple

form of f (x, y, v) (see Equation (A5)), the required integrals can be readily found analyti-
cally, thus enabling exact and fast computation of the TD admittance array elements via
Equations (A1), (A2), and (A4).
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