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Abstract: As the world moves into the exciting age of Healthcare 4.0, it is essential that patients
and clinicians have confidence and reassurance that the real-time clinical decision support systems
being used throughout their care guarantee robustness and optimal quality of care. However, current
systems involving autonomic behaviour and those with no prior clinical feedback, have generally to
date had little focus on demonstrating robustness in the use of data and final output, thus generating
a lack of confidence. This paper wishes to address this challenge by introducing a new process mining
approach based on a statistically robust methodology that relies on the utilisation of conditional
survival models for the purpose of evaluating the performance of Healthcare 4.0 systems and the
quality of the care provided. Its effectiveness is demonstrated by analysing the performance of
a clinical decision support system operating in an intensive care setting with the goal to monitor
ventilated patients in real-time and to notify clinicians if the patient is predicted at risk of receiving
injurious mechanical ventilation. Additionally, we will also demonstrate how the same metrics can
be used for evaluating the patient quality of care. The proposed methodology can be used to analyse
the performance of any Healthcare 4.0 system and the quality of care provided to the patient.

Keywords: Healthcare 4.0; real-time alerts; dynamic prognostics; quality of care; performance
analytics; conditional survival analytics

1. Introduction

Process Mining is described as the body of work that focuses on the extraction of
knowledge and the analysis of processes from routinely collected data or that generated and
stored in corporate information systems [1]. Most broadly the attention of process mining
has been within business processes but more recently, in the past 10 years, this application
has been extended to healthcare. Rojas et al. [1] conducted a comprehensive literature
review of case studies and the main approaches used in the application of process mining
in the healthcare domain. In particular they highlight the benefits of process mining in
allowing healthcare providers the ability to better understand their systems, the execution
of their processes, their conformance checking of medical guidelines, and with this identify
opportunities for improvement. Out of the approaches listed in the literature, to date, none
have considered the use of conditional survival analysis approaches and it is with this in
mind that we propose the methodology in this paper.

When patients are in a critical state, they are admitted to the intensive care unit
(ICU) so that their vital signs can be carefully monitored and the most suitable treatment
provided to the patient in a timely manner. The patient vital signs are measurements used
to reflect the state of the patient’s essential body functions. The most commonly recorded
are patient body temperature, blood pressure, pulse, and respiration rate. Any change
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in these measurements suggests a change in the patient condition, or could indicate the
severity of patient illness and level of urgency for treatment [2].

The vast majority of instruments used for monitoring vital signs and providing organ
support in ICU settings, usually have the capability of emitting patients’ physiological
readings in the format that is compatible with the Health Level 7 (HL7) standards, which
define the guidelines for data exchange, the retrieval and the sharing of patient electronic
health information, all of which are important to ensure that the various systems integrate
seamlessly [2,3]. The data outputs from these devices are usually stored inside the Electronic
Medical Records (EMRs) for the purpose of monitoring and analysing the patients’ changing
conditions over time [4–6]. The complexity of having data flowing continuously from a
number of data sources in a dynamically changing environment drives the need to have
appropriate clinical responses in real-time. However, clinicians in ICUs normally have to
make thousands of decisions per day, resulting in between 80 to 200 interventions daily
per patient, only one of which is caring about providing adequate quality of mechanical
ventilation. Hence, too many data points and types can lead to information overload where
healthcare providers are faced with challenges in trying to make sense of the data in high
volumes, leading to clinicians’ cognitive overload. As a result, clinicians and healthcare
providers can have a slow and possibly inconsistent response [7], which in turn can impact
negatively on patient outcomes by for example reducing patient survival rates, or extending
the period of organ support for the patients.

One of the most often used devices for providing organ support are mechanical ven-
tilators, which provide breathing assistance to patients who develop respiratory failures.
Preclinical and clinical trials concerning ventilated animal and human subjects respectively
provide evidence that if ventilation is not correctly performed it may become a harmful
intervention, which can permanently damage a patient’s lungs [8]. This injurious ventila-
tion to the lungs is known as ventilator induced lung injury (VILI) and can be experienced
not just by patients with respiratory failures, but also by patients with healthy lungs [9].
Lung protective ventilation (LPV) strategies have been introduced to prevent such harmful
effects of ventilation, whereby it is recommended that patients should be ventilated with
low tidal volumes typically less than 8 mL/kg of ideal body weight (IBW) [10–12].

Although there has been a significant volume of work in illustrating the positive
aspects of LPV, evidence suggests that at most only half of such ventilated patients undergo
LPV in a clinical environment [13–15]. The need for appropriate use of LPV, inspired our
earlier work on VILIAlert when we created a clinical decision support system (CDS) with
real-time smart alerting capabilities, and Healthcare 4.0 compliance. Its first deployment
has been in Belfast’s Royal Victoria Hospital, where the vision is to have a continuous
monitoring system of a patient’s tidal volume (TV), which is evaluated using a set of
thresholds from which appropriate real time alerts are triggered if there is a predicted risk
of VILI occurring. The ICU in which it was implemented has a maximum capacity for
20 patients and an aspect of earlier research has demonstrated the feasibility of adopting
VILIAlert to scale up to a hospital wide scenario [16].

When an alert is raised, it is a major challenge of such smart-alerting CDSs to be
able to determine whether the alert is considered to be genuine or not without expert
opinion. However, referring every case to the expert, has the potential of causing expert
alert fatigue or complacency for the alerts, undermining the whole purpose of the alerts
and value [17]. Because of this issue, and due to clinicians’ competing work demands, the
accuracy assessment is often performed at the end of the study, by manually inspecting each
generated alert so a decision can be made on whether they are genuine or not. The main
issue with this retrospective performance assessment approach is that it is a very difficult
and time consuming process, particularly if we take into account that over time, this can
lead to a huge number of generated alerts being accumulated, which highly depends on
the quality of alerting algorithm, the number of patients that are involved in the study, and
other CDS settings. Therefore, this raises a need for new accuracy assessment techniques,
which should accelerate development of novel smart alerting algorithms and lead towards
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minimising reliance on clinical assistance [6]. In our earlier work, we created the DM-
P approach to address this somewhat unsupervised learning challenge where the data
generated from the alerts is unlabelled and there is no further information as to whether
the alert is genuine or not. The DM in the approach refers to the new defects map method
of visualising the alerts, which is combined with p-charts, a type of statistical process
control (SPC) charts used in quality control of dichotomous processes, similar in nature to
the dichotomous variable of an alert being raised or not. This work had been inspired by
Bourdeaux et al. [18] who previously illustrated that if the alert was triggered for the TV
values greater than 8 mL/kg, these values continue to remain above this threshold until
there is clinical intervention. The DM-P approach can be used as a standalone independent
module or can be used in conjunction with other healthcare systems.

In this current paper, we use the same hypothesis as in our earlier work, that is, the
assumption that if the alert was triggered because the TV readings violated the 8 mL/kg
threshold, then it is expected that this threshold is going to be continuously violated for
some considerable time in the future until there is clinical intervention. We propose an
approach based on conditional survival analysis techniques that enables researchers to
dynamically estimate the probabilities that will describe for how long this hypothesis will
hold the ground truth, suggesting that the longer survival times indicates a better algorithm
performance and poorer quality of care. To the best of our knowledge, conditional survival
analysis techniques have never before been utilised in this context nor was it possible to
achieve this using the DM-P approach.

The paper is structured using the following sections. Section 2 describes the VILIAlert
system architecture, and establishes the theoretical fundamentals that are required when
using survival analytics to evaluate the performance of unlabelled datasets in real-time.
Section 3 provides the results of applying the techniques established in Section 2 to the
VILIAlert data set and Section 4 discusses the research outcomes illustrating the advantages
and disadvantages of the proposed survival analytics based evaluation techniques, and
the potential further research to follow. To conclude, Section 5 provides our final closing
statements on the research in this paper.

2. Methods
2.1. The VILIAlert System Architecture

The VILIAlert system was deployed to operate in parallel with the EMR to monitor
the ventilation process in continuous time and is therefore relevant for process mining.
Its purpose is to notify clinicians when there is a high risk of VILI in ventilated patients.
Such risk is according to the configured settings of the system. Its design consists of two
components (Figure 1):
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Patient Data—patient information that is collected routinely and stored anonymously
including patient ID, gender, height, and ventilator readings received at minute inter-
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vals (TV). The time of alert generations is also recorded so that post-hoc analysis can be
performed on the system’s performance.

Analytics Kernel—the continual collection of data allows the analytics kernel to be
formed so that the patient TV can be continually monitored and the kernel generates an
alert in the event of a violation of the threshold metrics. A violation is considered to happen
when the average TV values, calculated for each 15 min interval (TV15) exceeds 8 mL/kg
for four consecutive intervals. This will initiate the analytics kernel, triggering an alert and
sending an SMS to notify the healthcare providers of the change in situation for that patient.
In order to ensure that there is no alert fatigue, the configuration of the analytics kernel
is designed to put the kernel into “sleep mode” once an alert occurs, thus stopping any
further alerts to be generated for this patient for the forthcoming 12 h or until the alert has
been considered by the clinician and dealt with. It is important to highlight, that to ensure
the optimum quality of care for the patient, it is the clinician’s responsibility to intervene
in a timely manner once they receive the alert. The VILIAlert system was introduced
in the Royal Victoria Hospital, Belfast in November 2015 to continually monitor patient
ventilation in ICU. For a period of 10 months, the system was allowed to operate, allowing
the entire system to be refined through a number of phases of tuning and refinement of the
data collection and process of alert generation. The data extracted in the period between
31 August 2016 and 26 October 2017 was used in this paper when operational experience
had been gained and the system was viewed as operating in a stable state. We use this
data in particular as it allows us to demonstrate the proposed process mining approach to
real process data taken from an environment in a healthcare setting where the clinicians
decisions are vital importance in preserving life.

2.2. Survival Analysis Approach for Performance Estimation and Quality of Mechanical
Ventilation Evaluation

Part of the challenge of building a Healthcare 4.0 system and assessing its performance
and use of process data is that it relies heavily on the validation of clinicians who do not
have time to exhaustively check every instance of an alarm to indicate whether it is genuine
or not. This paper overcomes the need for such a laborious process by determining if the
generated alerts are genuine or not by focusing on the data for the first six hours of time
after the alert generation has occurred. We denote the time window, as APA (Analysed
Post Alert Time-Window) and slice it into 24 consecutive blocks of 15 min time intervals.
As previously mentioned, the alert is raised if TV15 is greater than 8 mL/kg for four
consecutive 15 min blocks. We follow this convention based on the knowledge of when
previous studies of this nature were conducted, where the data is obtained at a sampling
frequency of 1 tidal volume reading per hour. The sampling frequency for the example in
this paper is one reading per minute and thus waiting for four consecutive average 15 min
intervals is the same as obtaining one hour’s worth of data, hence in keeping with common
clinical practice [18].

We add the assumption that if TV15 is above 8 mL/kg for 4 blocks, the TV15 is expected
to remain above 8 mL/kg throughout all 24 blocks of APA and such blocks are referred to
as “non-defective blocks” (NDB) as these are the genuine times when we expect the patient
at risk of VILI and when the alerts should be triggered. If they do not follow these criteria,
then they are referred to as “defective blocks” (DB) as these are the times when the alerts are
not considered genuine as the patient should indeed be receiving mechanical ventilation
and there is no risk of the patient experiencing VILI. The ideal situation is to have the
APA corresponding to a genuine alert that consists of only NDB. There are however many
external factors that can influence the effect of mechanical ventilation such as the clinicians
making a change to the patient’s treatment or a change occurring between control and
support modes of the VILIAlert system. With the 24 blocks collectively making up six
hours of time, it is possible that external factors can have an impact on the TV15 values and
result in lower than 8 mL/kg scores, which would result in having DBs occurring during
the APA.
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The coding of the data from continuous TV15 readings to a discrete variable in binary
form, opens up the opportunity to consider the implementation of survival analysis on
the data to estimate the performance of the VILIAlert system. Survival analysis is an
approach found in the statistical literature most commonly used to model time until an
event occurs (survival time). As the name suggests, the original use of survival analysis
was in medical research, where it was used to consider for example the event of interest for
patients recovering from a disease. The time until an event occurs is known as survival
time and on visual representation would typically be skewed in nature with graphs for
survival times generally showing a high peak at the beginning before a long tail to the
right, as fewer people experience the event as time progresses. Survival analysis is also
known to accommodate the scenario of censoring when the event of interest may not have
been observed for some of the individuals in the study. In such situations, survival analysis
considers all the information known up to the time when censoring occurs [20].

In the context of the VILIAlert system, the event of interest is the occurrence of the
DB and our aim is to predict the survival time at the point (i.e., at which APA block
position) when the TV15 metric is going to drop to below 8 mL/kg upon alert generation.
Therefore, the time to event is the position of the first APA block, which is marked as
DB, with the longer times to event indicating better performance of the alerting algorithm.
The genuine alerts will be those cases where all APA blocks are marked as NDBs and
considered censored. It is important to highlight that although from the performance
analytics perspective the longer follow-up times indicate better performance of the alerting
algorithm, for the patient it means poorer quality of mechanical ventilation due to longer
exposure of the patient to high tidal volumes, thus increasing their risk of VILI.

The raw VILIAlert data is initially analysed using the very established Kaplan–Meier
(KM) method [21] to estimate the overall survival function. Let DFS(t) denote the overall
defect free survival probability at timestamp t, i.e., the probability that the APA consists
of NDB blocks only (i.e., having TV15 > 8 mL/kg) for up to at least the time of interest t,
where t = i× 15 min , and 1 ≤ i ≤ 24 is the position of the block in APA. Using the KM
method this probability is estimated as follows:

D̂FS(t) = ∏n:tn≤t

(
1− d(tn)

r(tn)

)
, (1)

where d(tn) denotes the number of APA with DB event occurrence at time tn and r(tn)
denotes the number of APA at risk prior to time tn (i.e., the number of APA that are not
censored nor containing DB prior to time tn).

The influence of other factors, the covariates, and their influence on the estimated
survival curves can also be investigated using KM methods. Previous studies reported
that female patients are under increased risk of receiving poorer ventilatory treatments in
comparison to males [22], hence the introduced KM approach can be used to investigate
the performance of the VILIAlert system in terms of these covariates. Gender can be
investigated using the KM methods where each gender is considered separately, and the
separate survival distributions compared for significant differences. The log-rank test may
then be used to test for statistical significance of the difference in survival distributions.
The results will provide information to help understand how, if at all, the patient gender is
associated with the risk of receiving injurious ventilation associated with VILI and if this is
an increased risk.

The KM approach described above can be seen as a static prediction as the overall
survival estimates are made using the time of diagnosis (the time of generating the alert
from the baseline reference) but it is unable to precisely capture how the prognosis changes
over time [23]. In order to overcome this issue and process mine the changing defect free
survival likelihood with increasing duration of follow-up after triggering the alert, we
use the conditional survival function. This estimates the probability that APA will remain
defect free until at least the time of interest ty given that it was previously defect free
until the time tx, where tx < ty. In the text to follow, we will refer to this probability as
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the conditional defect free survival probability (CDFS), estimated using the previously
described KM survival estimates (1), as follows [24,25]:

̂CDFS
(
ty
∣∣tx
)
=

D̂FS
(
ty
)

D̂FS(tx)
. (2)

The Greenwood method can be used to calculate the 95% confidence intervals (95%
CI) around the CDFS estimates [24,26,27]:

95% CI = ̂CDFS
(
ty
∣∣tx
)exp (±1.96

√
V̂[ ̂log (CDFS(ty |tx))])

, (3)

where
V̂
[

̂log
(
CDFS

(
ty
∣∣tx
))]

=
1

log
(

̂CDFS
(
ty
∣∣tx
)) ∑

k:x≤tk≤y

dk
rk(rk − dk)

.

Similar to the DFS, the use of the KM approach to estimate the CDFS allows us to
analyse the effect of the gender covariate on the conditional survival probabilities. As the
measure of effect size of conditional defect free survival differs, we use the standardised
difference (dFM) method by Cucchetti and co-workers [28] for our study defined as:

dFM =
PF − PM√
[P(1− P)]

, (4)

where PF and PM are the ̂CDFS
(
ty
∣∣tx
)

of the female and male patients, respectively, while
P represents their weighted mean [29]. To interpret the dFM values, the following guidelines
are used from the literature [28,30,31]:

• |dFM| < 0.1 suggests very small differences;
• 0.1 ≤ |dFM| < 0.3 suggests small differences;
• 0.3 ≤ |dFM| < 0.5 suggests moderate differences, and;
• 0.5 ≤ |dFM| suggests considerable differences between the two genders.

The use of survival analytics techniques for performance estimation is best illustrated
with the following use-case scenario.

Figure 2a portrays an overview of the tabular dataset, in its raw form, which corre-
sponds to 5 hypothetical APA having a length of 360 min each. Each row in this tabular
dataset represents one APA segregated into 24 blocks, with each block denoting one
15 min interval over which the TV15 values are calculated. Each block can be denoted
with either 0 or 1 depending on whether it represents NDB (i.e., TV15 > 8 mL/kg) or DB
(i.e., TV15 ≤ 8 mL /kg), respectively.

Assuming that the time to the event occurrence in APA is defined by the position
of the first block, which is marked as defective (DB), we can see that the lengths of the
follow-up time for the 1st, 2nd, 4th, and 5th APA are 15, 270, 150, and 90 min, respectively
(illustrated in Figure 2b). As defined earlier, the remaining 3rd APA belongs to a genuine
alert as it consists of NDB blocks only, and using survival analysis terminology, represents
a censored event. Using Equations (1) and (2) the DFS and CDFS estimations at any time
of interest t are a straightforward process, where t = i × 15 min, and 1 ≤ i ≤ 24 is the
position of the block in APA. For instance, using the example above, the probability that
the APA will remain defect free until the end of the follow-up period of 360 min, given that
it was previously defect free during the first 90 min, can be estimated using Equation (2)
as follows:

̂CDFS(360 min |90 min) =
̂DFS(360 min)
̂DFS(90 min)

=
0.2
0.6

= 0.33,

where DFS(360 min) and DFS(90 min) are estimated using Equation (1). In a similar
manner, using Equation (3), the CDFS 95% CI is estimated as [0.01, 0.79].
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Figure 2. A schematic overview of five analysed post alert time windows (APA) covering the period
of 6 h post-alert generation. (a) An illustration of the tabular dataset in its raw form, where 0 and
1 symbolise defective (DB) and non-defective (NDB) blocks, respectively. (b) An illustration of the
lengths of their follow-up times, where each length corresponds to the time to occurrence of the event
of interest, i.e., 1st DB block during APA. These lengths are used for the calculation of defect free and
conditional defect free survival probabilities.

The statistical data analytics used in this paper was performed using the R v3.5.0
programming language [32] with the survival and conditional survival models being
implemented using R’s survival library [33,34].

3. Results

There were 560 patients generating a total of 1450 alerts during the time in which the
VILIAlert system was observed for this study. Out of the 560 patients, 298 (53%) were male
patients generating 691 of the 1450 alerts (47.7%). The chi-square test of independence
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(χ2) and Cramér’s V (V) effect size coefficient indicate the existence of a strong association
between the gender and alert invocation (χ2

1 = 42.71; p = 0; V = 0.22). This suggests
that even though there were a higher proportion of males in the study, the female patients
are the ones who have a higher chance of triggering the alert upon starting mechanical
ventilation. An overview of the patient demographics of those involved in our VILIAlert
study is provided in our earlier work [6].

In general, survival times are highly skewed and therefore best represented using the
median. The time to first DB follows this skewed nature, thus it is the median overall time
which is used to report time to the first DB block appearing in the APA (i.e., the median of
overall defect free survival time). This is 180 min. The corresponding KM estimates are
provided in Figure 3. which illustrates the estimated DFS curve for the VILIAlert data for
the time until the first DB for each patient. This is typical of the survival curve shape where
it is highly skewed in nature with the majority of patients experiencing the event quickly,
but some taking much longer to experience the event, hence featuring in the tails of the
distribution. It can be seen from Figure 3. that the probability of APA remaining defect free,
i.e., the probability that TV15 will remain above 8 mL/kg until the end of the 6 h follow-up
period, decreased over time, from 0.67 at the 60th minute to 0.37 at the 360th minute upon
triggering the alert.
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On the other hand, the probability of the APA continuing to be defect free, conditional
on it already having existed defect free in a specific time period, gradually increases. That
is to say, the estimated CDFS of APA being defect free at the end of the 6 h follow-up period
was more than twice lower for alerts than that which were just triggered, compared to the
alerts for which their APAs were defect free for 2 h (Table 1). For instance, if APA was
defect free at 60 min, the probability of it remaining defect free at the end of the follow-up
period is 0.56 whereas if APA was defect free at 300 min upon triggering the alert, the
probability of remaining defect free at the end of the follow-up period, from generating
the alert is 0.92. A detailed overview of estimated the CDFS

(
ty
∣∣tx
)

probabilities for the
various combinations of tx and ty timestamps in minutes, is provided in Table 1.
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Table 1. An overview of estimated overall conditional defect free survival probabilities, and their
corresponding 95% confidence intervals (CI), to various timestamps in minutes ty , conditioned on
APA being defect free until timestamps tx upon triggering the alert. Note: tx = 0 denotes the baseline
time, i.e., the time of alert generation.

̂CDFS (ty|tx) (95% CI)

ty

tx
60 120 180 240 300 360

Overall
(1450 alerts)

0 0.67
(0.64, 0.69)

0.55
(0.52, 0.57)

0.49
(0.47, 0.52)

0.44
(0.42, 0.47)

0.41
(0.38, 0.43)

0.37
(0.35, 0.4)

60 – 0.83
(0.8, 0.85)

0.74
(0.71, 0.77)

0.67
(0.63, 0.7)

0.61
(0.58, 0.64)

0.56
(0.53, 0.59)

120 – – 0.9
(0.87, 0.92)

0.81
(0.78, 0.84)

0.74
(0.71, 0.77)

0.68
(0.64, 0.71)

180 – – – 0.9
(0.87, 0.92)

0.83
(0.79, 0.85)

0.76
(0.72, 0.79)

240 – – – – 0.92
(0.89, 0.94)

0.84
(0.81, 0.87)

300 – – – – – 0.92
(0.89, 0.94)

The median survival times for male and female patients were 105 and 300 min, respec-
tively. Their corresponding KM estimated defect free survival curves, in Figure 4, illustrate
the first DB blocks in the APAs of the males occurring much sooner during their length of
stay in ICU than the female patients. The log-rank test is conducted to test whether there
is a significant difference between survival times for males and females. This indicates
a very highly significant difference between the male and female survival distributions
(χ2

1 = 65.8, p < 0.0001). The estimated DFS for male patients decreased at faster rates
compared to female patients, with estimated probabilities being in the range between 0.27
and 0.59 for the male patients compared to 0.47–0.74 for the female patients in the period
between 60 and 360 min from triggering the alert (Table 2). As can be seen in Figure 5
during this follow-up period (tx = 0, ty = [60, 360]), the previously introduced dFM metric
classifies these differences as moderate (dFM = [0.32, 0.41]).
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Table 2. An overview of the estimated conditional defect free survival probabilities stratified by
gender, and their corresponding 95% confidence intervals (CI) to various timestamps in minutes ty

, conditional onAPA being defect free until timestamps tx upon triggering the alert. Note: tx = 0
denotes baseline time, i.e., the time of alert generation.

̂CDFS(ty|tx) (95% CI)

ty

tx
60 120 180 240 300 360

Female
(759 alerts)

0 0.74
(0.7, 0.77)

0.64
(0.6, 0.67)

0.58 (0.55,
0.62)

0.53
(0.49, 0.56)

0.49
(0.46, 0.53)

0.47
(0.43, 0.5)

60 – 0.87
(0.83, 0.89)

0.79
(0.75, 0.82)

0.72
(0.67, 0.75)

0.67
(0.63, 0.71)

0.63
(0.59, 0.67)

120 – – 0.91
(0.88, 0.94)

0.83
(0.79, 0.86)

0.77
(0.73, 0.81)

0.73
(0.69, 0.77)

180 – – – 0.91
(0.87, 0.93)

0.85
(0.81, 0.88)

0.8
(0.76, 0.84)

240 – – – – 0.94
(0.9, 0.96)

0.88
(0.85, 0.91)

300 – – – – – 0.94
(0.91, 0.97)

Male
(691 alerts)

0 0.59 (0.55,
0.62)

0.45
(0.42, 0.49)

0.4
(0.36, 0.43)

0.35
(0.32, 0.39)

0.31
(0.28, 0.35)

0.27
(0.24, 0.31)

60 – 0.77
(0.72, 0.81)

0.67
(0.62, 0.72)

0.6
(0.55, 0.65)

0.53
(0.48, 0.58)

0.46
(0.41, 0.51)

120 – – 0.87
(0.82, 0.91)

0.78
(0.72, 0.83)

0.69
(0.63, 0.74)

0.6
0(.54, 0.65)

180 – – – 0.89
(0.85, 0.93)

0.79
(0.73, 0.83)

0.69
(0.63, 0.74)

240 – – – – 0.88
(0.83, 0.92)

0.77
(0.71, 0.82)

300 – – – – – 0.87
(0.82, 0.91)

Similar to the overall representation, the gender stratified ĈDFS of APA being defect
free until the end of the 6 h follow-up period gradually increases for both male and female
patients as APA continues to be defect free upon triggering the alert and, as shown in
the Figure 6 the ĈDFS of female patients were constantly higher than those for the males.
However, results have also shown that with increased defect free survivals, the gender
covariate has less effect on the conditional probabilities (Figure 5). For example, the ĈDFS
of APA being defect free at the end of the 360 min follow-up period after being previously
defect free for 60, 120, 180, 240, and 300 min upon triggering the alert, were 0.63, 0.73, 0.8,
0.88, and 0.94 for female versus 0.46, 0.6, 0.69, 0.77, and 0.87 for male patients (Figure 6f)
and Table 2), respectively. As shown in Figure 5, with increased defect free survivorship
the differences between the genders decrease from moderate to small (dFM = [0.34, 0.24]).
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A complete overview of the ĈDFS stratified by gender and discretised by 60 min
intervals is provided in Table 2, while their distribution is illustrated in Figure 6. An
overview of their corresponding standardised differences (dFM) is illustrated in Figure 5.

4. Discussion

In this paper we presented a novel approach for analysing the performance of smart
alerting real-time Healthcare 4.0 systems for scenarios in which there is no prior information
that could indicate authenticity of the generated alert. The introduced technique is not a
summary statistic, like for example AUC, Precision/Recall or RMSE are, where the quality
of alerting algorithm is reported as a single number. Instead, the proposed approach
enables researchers to dynamically estimate the probabilities that will describe for how
long the patient physiological parameters exceed a certain threshold during the APA, and
suggests that longer survival times indicate a better algorithm performance.

In particular, in the VILIAlert use case scenario, we hypothesised that if the alert was
generated when the metric TV15 > 8 mL/kg for four consecutive 15 min intervals, then
this metric should continue to be above this threshold until the end of the 6 h long APA
follow-up period. Hence the motivation for the research presented in this paper, is to model
the time until the TV15 signal drops below 8 mL/kg (which we associate the clinical activity
that results in stabilisation of the patient’s health) using survival analysis methods.

The technique presented in this paper is an enhancement of our previous work [19]
in which we used the KM method in collaboration with the shared-frailty time to event
methods (SF) to model this phenomenon. The best resulting model was the lognormal
shared-frailty model, which had patients’ height as a covariate. This showed that shorter
patients are under increased risk of receiving poorer ventilation treatments, as the overall
defect free probability of survival was reduced by a factor of 0.058 for each centimetre of
increment in height. The motivation for an improvement from this previous work lies in
the fact that both of these techniques (KM and SF) estimate the probability that TV15 is
going to stay at a value above 8 mL/kg threshold until at least the time t in APA (i.e., defect
free survival probability) using the time of generating the alert as a baseline reference.
Hence, previously, it was unable to dynamically predict the changing defect free survival
likelihood with increasing duration of follow-up after triggering the alert. In this paper
we address this issue by complementing the KM approach with the conditional survival
function, which is able to estimate the probability that APA will continue to be defect free
(i.e., probability that TV15 > 8 mL/kg) until at least the time of interest ty given that it was
previously defect free until the time tx, where tx < ty.

Using this technique, we compared the quality of the alerts generated by the system
for the two genders, and discovered that the alerting algorithm had better performance in
the female patients compared to the male patients. This is according to the higher defect
free and conditional defect free survival probabilities. However, it is important to put this
into the survival time context. The median survival times for females is almost three times
longer than that for male patients, which would actually suggest that the female patients
receive poorer ventilation treatment than male patients due to them being exposed to the
higher risk of injuriously high TVs (>8 mL/kg) for a much longer period of time, thus
having a higher risk of developing VILI. The longer that patients remain on the ventilator
event free, the more potential there is for damage, which could be construed as the lesser
quality of care. In addition to our earlier findings [19], the results presented in this paper
have confirmed that they are consistent with discoveries from the literature, which suggests
that the female patients, as well as those patients who in general are a shorter height, receive
poorer quality of mechanical ventilation treatments. In particular, previous findings have
shown that the female patients and whose height is of less than 165 cm are at an increased
risk of receiving injurious ventilation [22].

Despite getting increased popularity in healthcare [35–40], to our knowledge this is
the first time the technique presented in this paper has been used for dynamic modelling
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of the performance of real-time Healthcare 4.0 alerting systems, as well as for the indirect
evaluation of the quality of received care.

The approach introduced and demonstrated in this paper could be implemented
during the development of any new algorithm in this setting, allowing for a comparison
to be made across many algorithms. In evaluating the performance of the VILIAlert
system, we provided a framework (guidelines) that is applicable to any real-time system
capturing non-labelled data, not just the use case included for illustration purposes in
this paper. Indeed, the approach could be used for developing a better understanding
of the systems behaviour in addition to the new algorithm development and the cross
comparison of algorithm performances for use in areas such as biosensor driven healthcare
monitoring [41,42].

5. Conclusions

In this paper we have introduced a novel process mining technique based on the
principles of survival and conditional survival analysis for estimating the performance
and the evaluation of the quality of care of real-time Healthcare 4.0 systems. The approach
has been successfully demonstrated using a real-time system that receives data flows from
ventilators in a hospital setting. The work has also highlighted further developments that
can be considered using recurrent survival analysis and the incorporation of further visual
data analytics into the approaches.
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Abbreviations

APA Analysed Post Alert Time Window
AUC Area Under the receiver operator characteristic Curve
CDFS Conditional Defect Free Survival probability
CDS Clinical Decision Support System
CI Confidence Interval
DB Defective Blocks
DFS Defect Free Survival probability
EMR Electronic Medical Record
HL7 Health Level 7
IBW Ideal Body Weight
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ICU Intensive Care Unit
KM Kaplan-Meier
LPV Lung Protective Ventilation
NDB Non-Defective Blocks
RMSE Root Mean Square Error
SF Shared Frailty
SPC Statistical Process Control
TV Tidal Volume in ml/inspiration units
TV15 Averaged TV values, calculated over 15 min time intervals
VILI Ventilator Induced Lung Injury
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