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Abstract: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized primarily
by social impairments that manifest in different severity levels. In recent years, many studies have
explored the use of machine learning (ML) and resting-state functional magnetic resonance images
(rs-fMRI) to investigate the disorder. These approaches evaluate brain oxygen levels to indirectly
measure brain activity and compare typical developmental subjects with ASD ones. However,
none of these works have tried to classify the subjects into severity groups using ML exclusively
applied to rs-fMRI data. Information on ASD severity is frequently available since some tools used
to support ASD diagnosis also include a severity measurement as their outcomes. The aforesaid is
the case of the Autism Diagnostic Observation Schedule (ADOS), which splits the diagnosis into
three groups: ‘autism’, ‘autism spectrum’, and ‘non-ASD’. Therefore, this paper aims to use ML and
fMRI to identify potential brain regions as biomarkers of ASD severity. We used the ADOS score
as a severity measurement standard. The experiment used fMRI data of 202 subjects with an ASD
diagnosis and their ADOS scores available at the ABIDE I consortium to determine the correct ASD
sub-class for each one. Our results suggest a functional difference between the ASD sub-classes
by reaching 73.8% accuracy on cingulum regions. The aforementioned shows the feasibility of
classifying and characterizing ASD using rs-fMRI data, indicating potential areas that could lead to
severity biomarkers in further research. However, we highlight the need for more studies to confirm
our findings.

Keywords: ABIDE; ASD; autism spectrum disorder severity classification; fMRI; machine learning

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized
mainly by social impairments, commonly followed by communication challenges or re-
stricted and repetitive patterns of behavior [1]. ASD is a substantially heterogeneous
disorder in which two diagnosed subjects may have a completely different set of symptoms.
Some researchers estimated that approximately one in 44 children aged eight years are in
the spectrum [2]. Despite a possible gender bias regarding diagnosis, ASD seems to be
a sex-related disorder, with a male-to-female ratio close to 3–4:1 [2–4]. Current research
points to ASD as a primarily hereditary disorder. Approximately 80–83% of ASD cases are
due to genetic inheritance. Close to 17–20% are due to environmental risk factors, including
problems during the gestation period and the parents’ age [5–7].

Children and adolescents with an ASD diagnosis have medical expenses up to 6.2 times
greater than those with typical development (TD), with general costs from 8.4 to 9.5 times
greater than the average [8]. In addition to medical expenses, intensive behavioral inter-
ventions needed for ASD treatment have costs from USD 40,000 to USD 60,000 per child
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per year [9]. Moreover, most ASD individuals live in low- or middle-income countries
and receive no proper support from health or social care systems, suffering from the high
costs of (1) proprietary tools for diagnosis; (2) evidence-based intervention techniques, and
(3) training of parents and professionals to conduct the ASD treatment process [10].

Early diagnosis and proper interventions are critical factors in reversing the impair-
ments generated by ASD in children. Unfortunately, there are no low-cost automated
tests to identify the disorder. Instead, the ASD diagnosis is performed through clinical
observation, which is challenging to accomplish in young children, especially in the early
years of life [11]. Early treatments may result in improved cognitive, behavioral, and
social functioning, allowing, for a subset of people, an evolution that may lead to healthy
adult life, as well as significant long-term societal cost reductions [12]. However, most
technological tools proposed to assist the ASD intervention process showed some common
limitations [13].

It is critical to comprehend the severity of each individual with ASD to plan personal-
ized treatments and conduct more effective intervention processes. Nowadays, there are
many protocols used to support diagnosis, such as the Autism Diagnostic Observation
Schedule (ADOS), Autism Diagnostic Interview—Revised (ADI-R), and Social Communi-
cation Questionnaire (SCQ). However, ADOS is currently one of the most used worldwide.
ADOS divides ASD classification between autism—the ones with more severe symptoms—
autism spectrum—the ones with less severe symptoms—and as non-spectrum—those
diagnosed outside of the spectrum [14].

An ADOS diagnosis consists of standard evaluation on three main domains: commu-
nication, social relations, and behavior. Each domain has a set of tasks to be evaluated, with
different total scores. The ADOS diagnosis comprises four modules for a specific range
of ages and language skills, each with different cut-offs for each of the three classes [15].
Furthermore, current ASD diagnosis is performed by trained professionals, with the help
of tools such as ADOS, which has both sensibility and specificity above 80% [16]. It is
important to note that the current ADOS version mainly used is the ADOS-2 [14], but due
to our available samples, we used the ADOS in its classic version.

The last decade was marked by research looking for methods to take advantage of
the recent evolution of machine learning (ML) to build automated ASD diagnosis pro-
cesses [17–20]. The first works in this field date from mid-2010 [21]. Since then, there has
been an increase in the number of papers and improved outcomes. Many of these works
used magnetic resonance imaging (MRI) and ML combined, aiming for a positive or negative
ASD diagnosis by classifying subjects between ASD and TD [21], as in [18–20,22–24].

One of MRI’s advantages is that it is a non-invasive procedure, being a prevalent
method to scan the brain in living human beings [25]. There are two main uses for brain
MRI: (1) the structural scan, which scans brain tissues and assesses their differences; and
(2) the functional scan, which tracks the oxygen flow in the brain. This second method
is usually called functional MRI (fMRI) and allows the indirect measurement of brain
activities in regions of interest (ROIs). From the measured oxygen levels, it is possible to
determine which regions are more activated than others [25,26].

There are many tasks applied to a subject for an fMRI scan; they range from resting
state to very narrow activities, such as watching a video. The resting-state fMRI is usually
called rs-fMRI, which is a means to delimitate the activity for scan acquisition. However,
the other activities, in general, do not have a specific nomination. The rs-fMRI is easiest to
apply and is also easy to compare between multiple studies, as it is easier to reproduce in
the same setup than any other activity.

Additionally, other medical images are also combined with ML to diagnose ASD, as is
the case of electroencephalograms (EEG), which try to measure brain activity by scanning
magnetic signals originating from the brain. There are many different setups, but as in
fMRI, many papers using resting-state scans are available, such as [27–30]. However, some
other setups, such as during the ADOS test [31] or while watching videos [32], are also
available. However, there are few EEG data with ASD diagnosis that are publicly available.
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Meanwhile, on the fMRI side, some universities have worked together and created
the Autism Brain Imaging Data Exchange (ABIDE) [33], an initiative that makes available
more than 2000 brain fMRI scans for research purposes. In addition, all fMRI subjects gave
consent to use their images. This initiative facilitates autism investigation by providing
access to a database that otherwise would not be easily acquired. Moreover, the pre-
processed data available on ABIDE I PREPROCESSED also contribute in this sense.

Therefore, we take into account the following true propositions: (1) early diagnosis
and interventions lead to better outcomes for autism treatment, as well as long-term cost
reduction; (2) ADOS scores allow a rating of the ASD severity; (3) promising results of
ML techniques classifying ASD vs. neurotypical through the use of rs-fMRI; and (4) the
ADOS scores and ASD rs-fMRI data available at ABIDE. This work aims to investigate
the functional differences between autism spectrum and autistic individuals, looking for
potential brain regions that may be associated with autism severity. We used ML applied
to brain segments from rs-fMRI data to classify individuals from the two groups to identify
these regions, selecting the ones with the greatest differences as potential biomarkers that
should be more deeply investigated in future works.

The remainder of this paper is structured as follows: Section 2 presents the methodol-
ogy employed. Sections 3 and 4 present and discuss our results, while Section 5 concludes
this work.

2. Methodology

This section presents this work’s methodology. It starts by describing the materials
used in Section 2.1, followed by a presentation of the ADOS sub-classes for ASD classifica-
tion in Section 2.2 and the region selection process in Section 2.3. Then, we explain both
the ML used to classify the samples in Section 2.4 and the validation process in Section 2.5.
Finally, we present the final data source in Section 2.6 and the accuracy, sensitivity, and
sensibility cut-off points in Section 2.7.

2.1. Materials

In this work, we used the rs-fMRI data provided by ABIDE [33]. The ABIDE I consor-
tium currently offers 1100 rs-fMRI scans from subjects with and without ASD diagnosis.
Since our work was not an ASD vs. TD classification, all rs-fMRI data of neurotypical
subjects were discarded, leaving 505 preprocessed fMRI scans from subjects with ASD
diagnosis. From these ASD data, only 202 had information concerning ADOS scores for
communication, social interaction, and repetitive behavior, which are essential data in our
classification approach. Thus, the final data comprised 202 ASD subjects.

The original data from fMRI are 3D images over time. Therefore, applying an atlas
and a preprocessing pipeline is necessary to transform the 3D images into matrices repre-
senting the brain regions (columns) and their respective activities over time (rows). The
preprocessing pipeline also removes noises and other undesirable artifacts, which allows
better results.

2.1.1. Automated Anatomical Labeling (AAL)

An atlas is a brain mapping that allows us to evaluate brain activity through its
regions. We used the AAL atlas [34] available at ABIDE, as it is the most used atlas in the
literature for ASD classification using fMRI and ML [21], reaching meaningful outcomes
in [18,20,35–37].

In its third version, AAL segments the human brain into 116 ROIs. A detailed explana-
tion of these regions can be seen in [34]. Table 1 presents the AAL’s labels.
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Table 1. Automated anatomical labeling (ID and name).

ID Label Name ID Label Name ID Label Name

0 Precentral.L 39 ParaHippocampal.R 78 Heschl.L

1 Precentral.R 40 Amygdala.L 79 Heschl.R

2 Frontal.S.L 41 Amygdala.R 80 Temporal.S.L

3 Frontal.S.R 42 Calcarine.L 81 Temporal.S.R

4 Frontal.S.Orb.L 43 Calcarine.R 82 Temporal.Pole.S.L

5 Frontal.S.Orb.R 44 Cuneus.L 83 Temporal.Pole.S.R

6 Frontal.Mid.L 45 Cuneus.R 84 Temporal.Mid.L

7 Frontal.Mid.R 46 Lingual.L 85 Temporal.Mid.R

8 Frontal.Mid.Orb.L 47 Lingual.R 86 Temporal.Pole.Mid.L

9 Frontal.Mid.Orb.R 48 Occipital.S.L 87 Temporal.Pole.Mid.R

10 Frontal.Inf.Oper.L 49 Occipital.S.R 88 Temporal.Inf.L

11 Frontal.Inf.Oper.R 50 Occipital.Mid.L 89 Temporal.Inf.R

12 Frontal.Inf.Tri.L 51 Occipital.Mid.R 90 Cerebelum.Crus1.L

13 Frontal.Inf.Tri.R 52 Occipital.Inf.L 91 Cerebelum.Crus1.R

14 Frontal.Inf.Orb.L 53 Occipital.Inf.R 92 Cerebelum.Crus2.L

15 Frontal.Inf.Orb.R 54 Fusiform.L 93 Cerebelum.Crus2.R

16 Rolandic.Oper.L 55 Fusiform.R 94 Cerebelum.3.L

17 Rolandic.Oper.R 56 Postcentral.L 95 Cerebelum.3.R

18 Sp.Motor.Area.L 57 Postcentral.R 96 Cerebelum.4.5.L

19 Sp.Motor.Area.R 58 Parietal.S.L 97 Cerebelum.4.5.R

20 Olfactory.L 59 Parietal.S.R 98 Cerebelum.6.L

21 Olfactory.R 60 Parietal.Inf.L 99 Cerebelum.6.R

22 Frontal.S.Medial.L 61 Parietal.Inf.R 100 Cerebelum.7b.L

23 Frontal.S.Medial.R 62 SraMarginal.L 101 Cerebelum.7b.R

24 Frontal.Med.Orb.L 63 SraMarginal.R 102 Cerebelum.8.L

25 Frontal.Med.Orb.R 64 Angular.L 103 Cerebelum.8.R

26 Rectus.L 65 Angular.R 104 Cerebelum.9.L

27 Rectus.R 66 Precuneus.L 105 Cerebelum.9.R

28 Insula.L 67 Precuneus.R 106 Cerebelum.10.L

29 Insula.R 68 Paracentral.Lobule.L 107 Cerebelum.10.R

30 Cingulum.Ant.L 69 Paracentral.Lobule.R 108 Vermis.1.2

31 Cingulum.Ant.R 70 Caudate.L 109 Vermis.3

32 Cingulum.Mid.L 71 Caudate.R 110 Vermis.4.5

33 Cingulum.Mid.R 72 Putamen.L 111 Vermis.6

34 Cingulum.Post.L 73 Putamen.R 112 Vermis.7

35 Cingulum.Post.R 74 Pallidum.L 113 Vermis.8

36 Hippocampus.L 75 Pallidum.R 114 Vermis.9

37 Hippocampus.R 76 Thalamus.L 115 Vermis.10

38 ParaHippocampal.L 77 Thalamus.R
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2.1.2. Preprocessing Pipeline

Different machines across multiple sites acquired the fMRI data available at ABIDE.
Moreover, some sites used different total time acquisition. Thus, some rs-fMRI scans have
more frames than others.

The ABIDE offers 884 preprocessed rs-fMRI scans in four pipeline options:

• Connectome Computation System (CCS);
• Configurable Pipeline for the Analysis of Connectomes (CPAC);
• Data Processing Assistant for rs-fMRI (DPARSF);
• Neuroimaging Analysis Kit (NIAK).

These pipelines have different methods and sequences to manage fMRI data, removing
noise such as head motion, skull, and magnetic interference. We only used the DPARSF
pipeline in this work [26,38,39]. The criteria used for choosing DPARSF were analogous to
those employed in the atlas definition process. Except for works where the authors create
their preprocessing pipeline, DPARSF is the prevailing pipeline in a number of papers [21],
reaching meaningful outcomes in ASD classification using rs-fMRI and ML [37,40–42].

The DPARSF final product is a matrix (X, Y), where X is the number of columns, and
Y is the number of rows. Each table column represents one ROI, according to the chosen
atlas, and each table row represents the elapsed time during the scan. The number of rows
(Y) could differ for each fMRI, even using the same atlas. However, the X value must be the
same for all fMRI using the same atlas. For example, in a DPARSF matrix, a value (Xi,Yj)
represents the oxygen level of ROI i at time j.

2.2. ADOS Classification

We used the ADOS standard division for ASD diagnosis to investigate any functional
differences in the severity of ASD. The ADOS standard division has previously defined
cut-off points to classify subjects as autistic, ASD, or non-ASD. Table 2 shows the maximum
scores and the ASD and autism cut-off points for each module (ASD score groups according
to the individual’s age) and domain areas. For each ADOS module, the first line indicates
the maximum value; the second line shows the ASD cut-off point, and the third line
indicates the autism cut-off point, according to the domain area.

Table 2. ADOS maximum score and cut off points for ASD [15].

Comm SI IS + Comm RB

Maximum
score 10 14 24 6

Module 1 ASD
cut off 2 4 7 -

Autism
cut off 4 7 12 -

10 14 24 6
Module 2 3 4 8 -

5 6 12 -

8 14 22 8
Module 3 2 4 7 -

3 6 10 -

8 14 22 8
Module 4 2 4 7 -

3 6 10 -

Comm (Communication); SI (Social Interaction); IS + Comm (Communication + Social Interaction); RB (Repetitive
Behavior).
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We adopted the cut-off points from [15] to determine into which class a given subject
should be classified, based on their scores available on ABIDE. This way, if a subject scored
in at least one domain above the “autism cut-off”, they were classified as Class 2 (autism).
If the subject did not score above the “autism cut-off” but had at least one domain scoring
above the “ASD cut-off”, they were classified as Class 1 (ASD). We classified the remaining
subjects as non-ASD, discarding them. Tables 3 and 4 show the ABIDE subjects’ distribution
according to the ADOS class; the complete phenotypes of each subject are available on [33].

Table 3. ASD subjects group.

Subject Index from ABIDE

51457 50145 50995 51470 50152 51007 50803 50056 51011 50499
50960 50182 51019 50976 51211 51026 50983 51229 50142 50991
50993 51461 50146 51001 51471 50025 51008 50958 50057 51034
51018 50967 51210 51021 50981 51224

Table 4. Autistic subjects group.

Subject index from ABIDE

51456 51458 51459 51460 51462 51463 51464 51465 51466 51467
51468 51469 51472 51474 50649 50653 50651 50791 50792 50795
50798 50799 50800 50802 50804 50823 50824 50825 50954 50955
50956 50961 50962 50964 50965 50966 50968 50969 50970 50972
50973 50974 50977 50978 50979 50982 50984 50985 50986 50987
50988 50989 50990 50992 50994 50996 50997 50998 50999 51000
51002 51003 51006 51009 51010 51012 51014 51015 51016 51017
51020 51023 51024 51025 51027 51028 51029 51032 51033 51035
50143 50144 50148 50150 50153 50004 50005 50006 50007 50012
50014 50016 50022 50024 50027 50029 50183 50184 50186 50187
50188 50189 50190 50191 50212 51206 51208 51212 51214 51216
51217 51218 51221 51222 51223 51226 51234 51235 51236 51237
51239 51240 51241 51248 51249 51291 51293 51294 51295 51298
51301 51302 50477 50480 50482 50483 50486 50487 50488 50490
50491 50492 50493 50494 50496 50497 50498 50500 50502 50503
50504 50505 50507 50514 50515 50516 50518 50519 50520 50521
50524 50525 50526 50528 50529 50530

Tables 5–7 present the phenotype information of the selected subjects.

Table 5. Sex distribution.

Group Total Male Female

ASD 36 32 4

Autistic 166 152 14

Table 6. Age distribution.

Group AVG MAX MIN Standard Deviation

ASD 16.47 38.76 8.0 7.90

Autistic 17.63 55.4 7.13 8.91
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Table 7. FIQ distribution.

Group AVG MAX MIN Standard Deviation

ASD 108.35 132.0 76.0 13.66

Autistic 104.81 148.0 65.0 16.76

2.3. Region Selection

We grouped the ROIs from AAL by macro regions, considering the region name. The
result was a set of regions (SoRs) (e.g., precentral left and right as one SoRs, angular left
and right as one SoRs). This process resulted in 35 SoRs containing the ROIs grouped by
brain region. We also included one SoRs with all the ROIs.

Table 8 presents the resulting SoRs, where the set ID is the SoRs’ identification, and
the RoIs IDs match the RoIs used in Table 1.

Table 8. SoRs IDs and their respective RoIs IDs from AAL.

Set ROIs Set ROIs Set ROIs Set ROIs
ID IDs ID IDs ID IDs ID IDs

0 [0, 1] 9 [26, 27] 18 [48, ...,53] 27 [72, 73]

1 [2, ..., 5] 10 [28, 29] 19 [54, 55] 28 [74, 75]

2 [6, ..., 9] 11 [30, ..., 35] 20 [56, 57] 29 [76, 77]

3 [10, ..., 15] 12 [36, 37] 21 [58, ..., 61] 30 [78, 79]

4 [16, 17] 13 [38, 39] 22 [62, 63] 31 [80, ..., 89]

5 [18, 19] 14 [40, 41] 23 [64, 65] 32 [90, ..., 107]

6 [20, 21] 15 [42, 43] 24 [66, 67] 33 [108, ..., 115]

7 [22, 23] 16 [44, 45] 25 [68, 69] 34 ALL

8 [24, 25] 17 [46, 47] 26 [70, 71]
[X, ..., Y] is a one-to-one incremental sequence where X is the lower limit and Y the superior (e.g., [1, ..., 4] is the
same as [1, 2, 3, 4]).

This approach aimed: (1) to simplify the SVC classification; and (2) to give a more
generic location of the functional differences between ASD classes in a manner that would
allow better comparison between existing studies that use different atlases.

2.4. SVC Classifying Algorithm

We used a supervised learning method, support vector machine (SVM), specifically the
C-Support Vector Classification (SVC), to check the differences between ASD sub-classes.
This method has three steps: training, validation, and test [43,44].

Based on an in-depth systematic review and meta-analysis available in [21], we selected
SVM as our ML method. SVM was the most used AI tool for solving ASD classification
problems, showing some reliable results when applied in similar situations [18,20,37,45,46].
The second most used method was the artificial neural network (ANN) [21]. Both approaches
have similar results in the literature, with SVM slightly better in terms of sensitivity [21].
As our goal was to find potential regions of a biomarker, and due to the complexity of
the problem, we decided to adopt SVM given its more direct comparison, facilitating the
interpretability of the results. We used the SVM from the scikit-learn library available at [47].

SVM creates a multidimensional plane, where each object (in our case, each subject)
will be positioned according to the selected features’ value. First, the sample part used
for training will determine a curve to split the plane, as shown in Figure 1, where each
area corresponds to one class. Then, the validation sample part will verify the accuracy
of the curve, and this process will be repeated until the SVM reaches the best angle given
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the features, training sample, and validation sample. After this, the test sample is used to
measure the SVM generalization.

Figure 1. Classification curve generated by SVM with two features.

We hypothesized that higher accuracy would reflect the existence of an interpretative
way to differ each class. In other words, SoRs with higher accuracy potentially contain the
regions where classes are more distinct regarding the features used. These findings can
highlight the areas to consider for further investigations on functional brain activity and
ASD severity.

As the main goal was to find regions where there is a functional brain difference in the
ASD severity level, and there is a lack of data about SVM setups in previews works on fMRI
related to ASD investigations, as observed in [21], we chose a few educated-guess setups in
our experiment. The setup was related to the variables gamma, coef0, kernel, class_weight,
degree, and max_iter.

The gamma delimitates how close the final classification should be regarding the
training sample, with more significant values given to more rigid solutions and lower
values to given more flexible solutions.

The coef0 is an independent value related to the scale of the sample. Meanwhile, the
kernel is the mathematical equation used to solve the problem, and the ones available
from [47] are linear, poly, rbf, sigmoid.

The class_weight option considers the size of each class in the training step, adjusting
the weight accordingly. For example, regarding training, if Class 1 has three subjects and
Class 2 has nine subjects, Class 1 will weigh three while Class 2 will weigh one. This process
is meant to avoid the algorithm taking into account only the dominant class from training,
which can jeopardize the SVM’s generalization capacity.

The degree will define the curve degree of the equation that splits the SVM classification
plane. Finally, max_iter is the total training iterations allowed to be used by the algorithm,
stopping the training when the value is reached, regardless of the gain.

Here, we used the following values for each variable:

• gamma = [2,4],
• coef0 = [1.0],
• kernel= [poly],
• class_weight= [balanced],
• degree = [2,3],
• max_iter = [400000].

2.5. Validation Process

We performed a k-fold cross-validation model to validate our process [48–50]. We
selected k = 10, which is recommended for samples larger than 200 objects. The SVM
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automatically split the sample into training and test; in this case, we used the standard 70%
to training and 30% for test. Therefore, the 9 folds were sent to the SVM and then split into
7/3 for training and test, and then applied in the 10th fold for validation; the process was
repeated until all 10 folds were used as the validation sample.

We adopted the following division criteria to avoid bias noise:

• Amount of subjects of a specific ADOS subclass in each fold, avoiding any fold having
only subjects of the same subclass. For example, a fold without autistic subjects could
bias the SVC always to answer ASD due to the lack of autistic subjects on training or
validation.

We first divided our sample into two groups, ASD and autistic, one for each ADOS
subclass. Then, we ordered them by subject ID, and for each group, we designated one sub-
ject at a time for each fold: {Subject 1 to Fold 1, Subject 2 to Fold 2, Subject n to Fold (n
mod 10)}.

Thus, each fold had a balanced subclass distribution at the end of this process. Given
our sample’s limitations, this process aimed to produce the most adaptive learning for our
SVC.

2.6. Final Data Source

The resultant data were composed of two files for each subject. The first file contained
a matrix where each column represented one of the 116 ROIs from the AAL atlas, and
each row represented a picture of the brain over time. The second file was a vector with
the subject’s phenotype data, including the ADOS score. Since the first row of each fMRI
placed the ROI label, we removed it from the file sent to the SVM.

SVM only accept vectors as its input. Therefore, we converted the resulting matrix
from DPARSF into a vector. We considered two conversion options: (1) construct a vector
from the matrix where the matrix position (Xi, Yj) is placed on the vector position (Zi+i∗j);
and (2) acquire the maximum, minimum, median, and average values for each ROI from
each SoRs and create a vector (Zamax , Zamin , Zamed , Zaavg , ..., Zbmax , Zbmin , Zbmed , Zbavg), where a
and b are, respectively, the first and the last ROI ID of a SoRs.

Both conversion options have advantages and drawbacks. The first option has the
simplest preprocessing but a more significant need for computer power for the SVC to
process all data. On the other hand, the second option has the drawback of a preprocessing
pipeline, which will acquire the data from each subject to transform in the four values
mentioned above, with loss of information due to transformation. However, due to the size
reduction, the SVC requires less computer power to analyze all the data from all subjects.
Thus, aiming for better scalability and facilitating human understanding of the results, we
chose the second option for this paper.

2.7. Accuracy, Sensitivity, and Specificity Restrictions, and Post-Hoc Tests

We imposed restrictions on the minimum accuracy, sensitivity, and sensibility re-
quired to consider a functional difference between the two ASD sub-classes. The cut-off
point was 60%, based on values achieved by other ASD vs. non-ASD classification stud-
ies [22–24,51–53]. Thus, we discarded results with accuracy (ACC), specificity (SPC), or
sensibility (SNS) less than 60%.

Finally, we applied three post-hoc tests on the features from the SoRs that achieved
the cut-off: addition of phenotype data, t-test, and p-value. The addition of phenotype data
aimed to investigate the effect of sex, age, and FIQ on SVM accuracy for each SoRs, while
t-test and p-value aimed to investigate the separability of the sample used, to investigate
how they differed from both groups.

3. Results

This section presents the results of our ASD vs. autism classification experiments. All
SoRs can be seen in Table 8 and each ROI used by these sets can be seen in Table 1. In
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this paper, we used specificity (SPC) related to the ASD classification and sensitivity (SNS)
associated with the autistic classification.

Our experiments worked with a total of 202 subjects, which comprised 36 with ASD
and 166 with autism, according to the ADOS scores. Table 9 shows the SoRs with the ACC,
SNS, and SPC greater than or equal to 60%.

Table 9. SoRs above the required threshold.

SoRs ID ACC SNS SPC

11 73.85% 76.50% 60.83%

23 66.28% 67.38% 60.83%

1 64.88% 65.69% 63.33%

30 63.38% 61.47% 70.83%

27 60.90% 60.84% 60.00%

ACC ranged from 60.9% (SoRs 27) to 73.8% (SoRs 11). SNS ranged from 60.8% (SoRs
27) to 76.5% (SoRs 11). SPC ranged from 60.0% (SoRs 27) to 70.8% (SoRs 30). This shows
the existence of a non-random separation when considering five brain regions.

The t-test of each feature allows us to understand the difference between the ASD and
autistic groups. The t-test results are a statistical difference between any two given groups,
and positive values mean that the group 1 average is larger than group 2, while negative
values mean that the group 2 average is larger than group 1. Table 10 shows the t-test result
for each feature on each SoRs for which SVM had above threshold results, and the positive
values mean that the ASD group average is larger than the autistic group for that feature,
while negative values mean that the autistic group average is higher.

Table 10. The t-test for features on SoRs with values above required threshold.

Feature
SoRs

1 11 23 27 30

1st ROI max −2.2285 −1.7574 −1.3936 −2.0293 −1.9078

1st ROI min 2.0665 1.9254 1.7192 2.2895 1.8749

1st ROI mean −0.2457 −0.3619 −0.1699 0.4010 −0.4500

1st ROI STD 0.2434 0.2758 0.0988 −0.4227 0.4915

2nd ROI max −1.6051 −1.7618 −1.4630 −1.8003 −1.9181

2nd ROI min 1.9787 1.6766 1.4059 2.0074 1.8686

2nd ROI mean 0.3057 −0.4697 −0.0915 −0.8066 0.8104

2nd ROI STD −0.2794 0.4066 0.0596 0.8234 −0.6772

3rd ROI max −1.8155 −1.7295 - - -

3rd ROI min 1.7308 1.6808 - - -

3rd ROI mean 0.0548 0.4520 - - -

3rd ROI STD −0.2010 −0.5442 - - -

4th ROI max −1.6348 −1.7266 - - -

4th ROI min 1.8527 1.9396 - - -

4th ROI mean −0.1745 1.8407 - - -

4th ROI STD 0.1780 −1.9850 - - -
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Table 10. Cont.

Feature
SoRs

1 11 23 27 30

5th ROI max - −1.8367 - - -

5th ROI min - 1.3644 - - -

5th ROI mean - −0.5116 - - -

5th ROI STD - 0.5581 - - -

6th ROI max - −1.5904 - - -

6th ROI min - 1.3676 - - -

6th ROI mean - 0.5552 - - -

6th ROI STD - −0.5744 - - -

Furthermore, reinforcing the t-test result, the p-value (scale [0,1]) of each feature from
SoRs above the required threshold is plotted in Table 11. The higher p-value was 0.96 for
the mean on ROI 4 (Frontal Sup. Orb. Left), the third ROI from SoRs 1, with high values
indicating a risk of not being able to distinguish the two groups from each other. On the
other hand, lower values indicate a high possibility of discerning the two groups using the
feature. The lower p-value was 0.02 from the min on ROI 72 (Putamen Left), the first ROI
from SoRs 27. The SoRs 1 has a mean p-value of 0.45 (0.43 STD), while SoRs 11 has a mean
p-value of 0.32 (0.14 STD); for SoRs 23, 27, and 30, the mean p-value is 0.53 (0.51 STD), 0.30
(0.24 STD), and 0.30 (0.24 STD), respectively. Therefore, SoRs 11 has the lowest p-value STD
and one of the lowest p-value means, which indicates a high probability of containing the
largest set of features to classify ASD severity. It is worth noting that these values reflect
only our sample and should not be used as a diagnostic tool as further research is needed
to either confirm or deny our findings.

Table 11. p-values for features on SoRs with values above required threshold.

Feature
SoRs

1 11 23 27 30

1st ROI max 0.02696 0.08038 0.16498 0.04375 0.05785

1st ROI min 0.04007 0.05560 0.08713 0.02309 0.06227

1st ROI mean 0.80617 0.71784 0.86524 0.68888 0.65319

1st ROI STD 0.80794 0.78296 0.92141 0.67295 0.62359

2nd ROI max 0.11005 0.07963 0.14504 0.07332 0.05652

2nd ROI min 0.04922 0.09519 0.16131 0.04605 0.06314

2nd ROI mean 0.76015 0.63907 0.92717 0.42088 0.41870

2nd ROI STD 0.78026 0.68474 0.95254 0.41129 0.49906

3rd ROI max 0.07095 0.08527 - - -

3rd ROI min 0.08502 0.09437 - - -

3rd ROI mean 0.95639 0.65175 - - -

3rd ROI STD 0.84090 0.58691 - - -

4th ROI max 0.10366 0.08578 - - -
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Table 11. Cont.

Feature
SoRs

1 11 23 27 30

4th ROI min 0.06540 0.05384 - - -

4th ROI mean 0.86167 0.06715 - - -

4th ROI STD 0.85890 0.04852 - - -

5th ROI max - 0.06773 - - -

5th ROI min - 0.17396 - - -

5th ROI mean - 0.60950 - - -

5th ROI STD - 0.57737 - - -

6th ROI max - 0.11332 - - -

6th ROI min - 0.17297 - - -

6th ROI mean - 0.57936 - - -

6th ROI STD - 0.56635 - - -

Moreover, we performed other trials adding phenotype information (age, sex, and full
IQ). We used the same features and added the phenotype data in the vector sent to the ML
algorithm. We executed the test for the three phenotypes together, one at a time, and all
combinations of two phenotypes. We used the same process for the main experiment; the
results that reached the threshold defined in Section 2.7, as well as the ACC gain, using the
phenotype for each SoRs are shown in Table 12. However, as shown by [21], these features
did not show a significant improvement, if any, in the sample.

Table 12. Results adding phenotype data to the SoRs.

SoRS ID + Phenotype Data ACC SNS SPC ACC Gain

23 + Sex 68, 88% 70, 58% 62, 5% 2, 595%

27 + Sex 62, 45% 62, 2% 63, 3% 1, 546%

30 + Age 69, 3% 68, 74% 71, 66% 5, 920%

30 + Age and Sex 66, 28% 65, 69% 69, 16% 2, 900%
The missing combinations did not reach the cut-offs in at least one of ACC, SNS, or SPC.

Finally, we show the mean result for each of the features with high ACC both for ASD
and autistic in Tables 13 and 14, respectively.

Table 13. Mean values for features on SoRs from ASD sample.

Feature
SoRs

1 11 23 27 30

1st ROI max 0.9605 1.6019 2.6961 1.5552 3.0939

1st ROI min −1.0676 −1.5430 −2.5440 −1.4001 −3.0682

1st ROI mean 0.0000 0.0009 −0.0004 0.0005 −0.0019

1st ROI STD −0.0341 −0.4287 0.1747 −0.2329 0.9709

2nd ROI max 1.1802 2.8490 2.5306 1.3805 2.3672
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Table 13. Cont.

Feature
SoRs

1 11 23 27 30

2nd ROI min −1.0081 −2.8490 −2.5677 −1.3228 −2.3113

2nd ROI mean 0.0000 0.0013 0.0001 −0.0002 0.0000

2nd ROI STD −0.0025 −0.6258 −0.0893 0.1171 0.0720

3rd ROI max 1.7238 0.9808 - - -

3rd ROI min −1.8015 −1.0159 - - -

3rd ROI mean 0.0010 0.0005 - - -

3rd ROI STD −0.5470 −0.2449 - - -

4th ROI max 1.7880 1.6496 - - -

4th ROI min −1.6441 −1.5445 - - -

4th ROI mean 0.0003 0.0021 - - -

4th ROI STD −0.1568 −1.0049 - - -

5th ROI max - 1.6627 - - -

5th ROI min - −1.8507 - - -

5th ROI mean - −0.0001 - - -

5th ROI STD - 0.0597 - - -

6th ROI max - 2.9188 - - -

6th ROI min - −3.2137 - - -

6th ROI mean - 0.0013 - - -

6th ROI STD - −0.6678 - - -

Table 14. Mean values for features on SoRs from autistic sample.

Feature
SoRs

1 11 23 27 30

1st ROI max 1.7303 2.7176 4.1538 2.8470 5.9894

1st ROI min −1.7637 −2.7257 −4.4038 −2.7160 −5.8292

1st ROI mean 0.0002 0.0013 −0.0002 0.0001 −0.0008

1st ROI STD −0.1171 −0.5762 0.1041 −0.0193 0.3691

2nd ROI max 1.9003 4.5360 4.1990 2.3653 4.1346

2nd ROI min −1.8646 −4.4891 −4.0994 −2.3611 −3.9732

2nd ROI mean −0.0002 0.0021 0.0003 0.0003 −0.0011

2nd ROI STD 0.0790 −0.9468 −0.1331 −0.1156 0.4724

3rd ROI max 2.8208 1.6436 - - -

3rd ROI min −2.8687 −1.6166 - - -

3rd ROI mean 0.0010 0.0003 - - -
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Table 14. Cont.

Feature
SoRs

1 11 23 27 30

3rd ROI STD −0.4340 −0.1223 - - -

4th ROI max 2.8618 2.8466 - - -

4th ROI min −2.8870 −2.6779 - - -

4th ROI mean 0.0006 0.0001 - - -

4th ROI STD −0.2536 −0.0148 - - -

5th ROI max - 2.6724 - - -

5th ROI min - −2.6525 - - -

5th ROI mean - 0.0003 - - -

5th ROI STD - −0.1597 - - -

6th ROI max - 4.6039 - - -

6th ROI min - −4.9155 - - -

6th ROI mean - 0.0003 - - -

6th ROI STD - −0.1874 - - -

4. Discussion

This paper assessed brain functional differences between ASD and autism using rs-
fMRI and SVM classification (SVC). The measure used to distinguish ASD from autism was
the ADOS score and cut-off points, as seen in Table 2.

Our results highlight some brain regions that potentially can distinguish functional
differences between both groups (ASD vs. autism). The main finding in distinguishing
the two ASD sub-classes reached up to 73.8% accuracy (SoRs 11). These results need to be
taken with caution due to the limitations mentioned and given its Matthews Correlation
Coefficient of 0.31 (scale [−1,1]), which is better than a random selection but still not
ideal. However, our results show a promising path to investigate the functional difference
between both ASD sub-classes.

The best ACC was reached for SoRs 11, consisting of the cingulate gyrus (cingulum),
and both left and right sides of the brain for the anterior, median, and posterior. We can
conjecture that brain regions such as the cingulum (73.8% ACC, 76.5% SNS, 60.8% SPC) and
angular (SoRs 23) (66.3% ACC, 67.4% SNS, 60.8% SPC) have the potential to differentiate
the severity of ASD subjects taking into consideration the ACC reached on this experiment.
These SoRs applied together with methods such as ADOS may in the future allow profes-
sionals to classify individuals. The frontal lobe (SoRs 1) (64.9% ACC, 65.7% SNS, 63.3% SPC)
also should be considered for further investigations as it shows reasonable ACC.

Our results support previous studies [54–56] that point to the cingulum region func-
tions differences between ASD vs. TD. Likewise, [19,40] detected the thalamus as a key
region for classifying ASD vs. TD, and [57–60] pointed to the frontal lobe as a region
where ASD vs. TD can be differentiated from each other. Angular (SoRs 23) [61,62], Heschl
(SoRs 30) [63,64], and putamen (SoRs 27) [65,66] also have consistently been linked to ASD.

Since these brain regions are commonly pointed to as an ASD vs. TD differential, we
can also suppose, based on our results, that such regions have the potential to describe
areas where functional activity may be a biomarker for ASD severity, supporting previous
investigations [64]. Therefore, we can presume the potential functional difference between
subjects from the ASD group and the autism group using these ROIs.
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5. Conclusions

Firstly, and most importantly, the field lacks sample data to strengthen the recent out-
comes. We believe that all published studies have insufficient samples to ensure definitive
conclusions on ML applied to fMRI for ASD diagnoses. For example, the ADOS used hun-
dreds of thousands of subjects to validate its algorithm, while the sum of all subjects from
all published papers regarding ML applied to fMRI (discounting the subjects duplicated
for multiple studies) is not even close to this value. Therefore, any claim to solve the issue
tends to be premature. Nevertheless, it is mandatory to research possible biomarkers while
waiting for more available data to validate the findings.

We investigated the functional brain activity difference between ADOS ASD sub-
classes (autism and ASD) using fMRI data from subjects previously diagnosed and available
at ABIDE. The differences between each ASD sub-class were the ADOS score and cut-off
points. We applied these data to train an ML classification algorithm (SVC) to classify the
disorder severity, investigating the existence of functional brain differences across regions
between both ASD sub-classes.

Our main contribution was the identification of five SoRs that potentially have dis-
criminating patterns for ASD severity. Additionally, the suggested use of SoRs can help
to improve investigations by allowing more clarity in interpreting and comparing the
results, aiming to enable physicians to look up the same markers found by the ML. In this
same aspect, opting to explore approaches using features more easily observed by human
analyses, such as the maximum, minimum, mean, and standard deviation from each ROI,
is also another contribution. These contributions can improve further research to give tools
for physicians to utilize these signals when evaluating a subject, more than simply finding
an ML to aid the ASD evaluation.

Our findings are consistent with previous studies on autism and brain development,
bringing a promising approach to evaluating ASD subtypes. A computational aid system
could improve medical diagnosis by delivering more tools for physicians’ evaluation,
reducing analysis ambiguity. Further research, applied to a younger sample, can allow
a computational system to assess individuals early, before the most severe symptoms
begin. Distinguishing the severity of a subject can help in intervention selection, and earlier
diagnosis can help set proper interventions to improve the individual’s quality of life.

Our study limitations lie mainly in the reduced sample size, which may not generalize
our outcomes for all populations. However, we can speculate about these functional
differences between the ASD subtypes.

Another limitation of the study was the mean age of the subjects (-̃16 years old), which
does not correspond to early diagnosis. Therefore, an additional experiment with younger
subjects will be required to improve the results’ reliability.

For further works, an increase in the available subjects, including younger ones,
would help to raise the accuracy as it would help to clarify how many of our results can be
generalized to all populations. In addition, the research community would benefit from
more available fMRI data with the respective phenotype data (such as ADOS score, age at
scan, sex, FIQ), allowing more accurate investigations.
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