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Abstract: Profiting from the great progress of information technology, a huge number of multi-label
samples are available in our daily life. As a result, multi-label classification has aroused widespread
concern. Different from traditional machine learning methods which are time-consuming during
the training phase, ELM-RBF (extreme learning machine-radial basis function) is more efficient and
has become a research hotspot in multi-label classification. However, because of the lack of effective
optimization methods, conventional extreme learning machines are always unstable and tend to fall
into local optimum, which leads to low prediction accuracy in practical applications. To this end,
a modified ELM-RBF with a synergistic adaptive genetic algorithm (ELM-RBF-SAGA) is proposed
in this paper. In ELM-RBF-SAGA, we present a synergistic adaptive genetic algorithm (SAGA)
to optimize the performance of ELM-RBF. In addition, two optimization methods are employed
collaboratively in SAGA. One is used for adjusting the range of fitness value, the other is applied to
update crossover and mutation probability. Sufficient experiments show that ELM-RBF-SAGA has
excellent performance in multi-label classification.

Keywords: ELM-RBF; adaptive genetic algorithm; multi-label classification; optimization

1. Introduction

General classification problems mainly focus on single-label learning, that is, each
sample belongs to only one category, and the categories are mutually exclusive. However,
in some applications, an object often has more than one label [1]. For example, a news item
can correspond to multiple topics, such as politics, economics, and diplomacy. An image
may include many objects (e.g., cars, pedestrians, roads, buildings). As a matter of fact, in
plenty of practical fields, such as multimedia content tagging, text information tagging,
genetics, and so on, multi-label learning is necessary [2,3]. Nevertheless, as the number
of labels increases, the solution space grows exponentially not linearly; this is because
the number of labels corresponding to each object is uncertain. As a result, traditional
methods tend to take considerable time but the prediction effect is always unsatisfactory in
solving multi-label classification problems. Considering the extensibility and effectiveness
of ELM, more and more researchers attempt to employ ELM and its variants to address the
challenge of multi-label classification [4].

The basic structure of original ELM network is shown in Figure 1. Different from
the deep neural network, it is unnecessary to set amounts of parameters in ELM, which
has the superiorities of easy convergence and broad applicability [5,6]. Nowadays, ELM
has been extensively researched for solving different problems including classification,
clustering, and prediction in the machine learning area. ELM and its improved models
have been widely applied in wave positioning [7], density estimation [8], robotic sensors
design [9], natural circulation design for nuclear power reactors [10], or other practice
fields. ELM-RBF is the improved version of ELM [11]. In ELM-RBF, the centers of clusters
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C and impact widths δ of RBF are initialized randomly. In addition, it is necessary to solve
the Moore–Penrose generalized inverse and the minimum norm least-squares solution to
determine the output weights between hidden layers [12].

Figure 1. The structure of the ELM network.

However, because traditional ELM-RBF [11] generates input layer weights (ILW) and
hidden layer bias (HLB) randomly, this kind of method is often unstable and prone to
falling into local optimal solutions [13,14]. Considering that the genetic algorithm (GA) [15]
has many advantages, such as excellent global search capability and extensibility, which
make it easily combine with other algorithms [16], we present a synergistic adaptive genetic
algorithm (SAGA) to optimize ELM-RBF. In other words, SAGA is used to improve the
prediction accuracy of ELM-RBF by adjusting ILW and HLB. As a result, an improved
multi-label learning method, ELM-RBF-SAGA, is proposed.

In a word, the main work of this paper is summarized as below.

• To avoid falling into a local optimal solution, we present two adaptive optimization
measures in SAGA. One is about adjusting the range of fitness value, which is used to
maintain population diversity and provide adequate power for evolution. The other
is mainly reflected in calculating the crossover and mutation probability, which are
the two crucial factors in the optimization process.

• In order to promote the performance of ELM-RBF, we utilize SAGA presented in this
paper to optimize ILW and HLB, and then propose a modified extreme learning model
for multi-label classification, ELM-RBF-SAGA.

• Sufficient experiments have been carried out on several public datasets to verify
model’s performance. Experimental results demonstrate that SAGA is very effective
in optimizing ELM-RBF. In addition, ELM-RBF-SAGA has obvious advantages over
comparing methods and is very suitable for multi-label classification.

The rest of this article is arranged as below: In Section 2, related works about ELM
and its improved model, the genetic algorithm, are described briefly. The proposed ELM-
RBF-SAGA is introduced in Section 3. Experiments and conclusions are shown in Section 4
and Section 5, respectively.

2. Related Works
2.1. Original ELM and Kernel ELM

Original ELM stems from single layer feed-forward neural network (SLFN) [10]. In
ELM, the input weights w and biases b in hidden layers are stochastically determined.

The output function of ELM can be expressed in Equation (1):
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f (x) =
L

∑
i=1

G(wi, bi, x)β =
L

∑
i=1

βihi(x) = h(x)β (1)

where h(x) is the activation function in the hidden layer, and h(x) = [h1(x), . . . , hL(x)] is
the row output vector of hidden layer. β = [β1, . . . , βL]

T is the column vector of the output
weights between nodes in the hidden layer and output layer. L is the output dimension.
These output weights are generated by linear calculation.

In order to minimize the training error, the training purpose of ELM is illustrated in
Equation (2):

Minimize : ‖Hβ− T‖2 and ‖β‖ (2)

where H is the output matrix of hidden layer as shown in Equation (3), and T is the output
label matrix:

H =

h(x1)
...

h(xn)

 =

h1(x1) . . . hL(x1)
...

h1(xn) . . . hL(xn)

 (3)

Supposing the training error ‖Hβ− T‖2 = 0, then the training work of this model is
to find the least-squares solution of a linear system: Hβ = T, as Equation (4):

β = H+T (4)

where H+ is the Moore–Penrose pseudo-inverse of H.
According to the Constrained-Optimization theorem, Equation (4) can be improved

into Equation (5) (when the number of input samples is not huge):

β = HT(I/C + HHT)−1T (5)

where I is n-order unit matrix and C is regular cost parameter.
In ref. [17], Huang et al. demonstrated the fundamentals of ELM and proved that ELM

can approximate most of the continuous function. Researchers proposed several modified
models such as ensemble ELM (E-ELM) [18], bi-directional ELM (B-ELM) [19], and Meta-
ELM [20]. Among these methods, kernel ELM (K-ELM) has enhanced the performance of
ELM remarkably [21]. In recent years, many researchers have combined ELM models with
deep learning [22], transfer learning [23], and random forests [24].

K-ELM [21] defines kernel matrix for ELM, as Equation (6):

ΩELM = HHT : ΩELMi,j = h(xi)h(xj) = K(xi, xj) (6)

It should be mentioned, in K-ELM [21], if kernel function is determined, the vectors of
input samples will be transferred from feature space to kernel space.

2.2. ELM-RBF

Unlike ELM, ELM-RBF adopts RBF kernel instead of the single layer feed-forward
neural network to improve model’s performance [11]. The centers of clusters and impact
widths of RBF kernel are initialized randomly. In addition, the output of the hidden layer
is related to the specific task. For instance, in multi-label classification, the dimension of
output is equal to the number of categories. In addition, the kernel function in ELM-RBF
can be written as Equation (7).

hk(x) = h(ck, σk, x) = exp(−‖x− ck‖2/(σ2
k )), k = 1, 2, . . . , K (7)

where x is the input vector. ck is the center of the kth cluster in RBF kernel, and σk is the
impact width of this cluster.
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The result of ELM-RBF is shown as Equation (8).

f (x) =
L

∑
i=1

βi hi(x) = h(x)β (8)

where βi is the output weight.
The optimization target of ELM-RBF can be described as follows:

Hβ = T (9)

where H is the output matrix of hidden layer as shown in Equation (3), and T is the output
label matrix.

We should mention that RBF function plays a significant role in the original ELM
algorithm and its modified models. RBF function is one of the most common activation
functions of ELM, and it is also the main kernel style of K-ELM [21]. The selection of
activation function for ELM, or the design method for kernel in K-ELM [21], is critical to
the performance of model. It is reasonable to believe that the modified ELM model using
RBF function as the main structure, such as ELM-RBF, would be an effective algorithm [19].

2.3. Genetic Algorithm

Genetic algorithm is proposed by professor Holland [15] based on the natural selection
law of survival of the fittest. Through simulating the biological evolution process and
genetic mechanism, GA is more extensible than most traditional optimization methods [25],
such as gradient and hill climbing, so it has been used for many complicated engineering
problems widely, including neural network, machine learning, function optimization, and
so on [26].

GA mainly consists of three operations: selection, crossover, and mutation [27]. The
purposes of crossover and mutation are to reconstitute genetic materials of parents and
produce unexpected genes to form new individuals. After the above operations, these
individuals with higher fitness value will be selected with a relative higher probability to
compose a new generation. In general, along with the advance of evolution, the quality of
population will be improved gradually [28].

In GAs, the probabilities of crossover (Pc) and mutation (Pm) determine the perfor-
mance of algorithm [29] to a large extent. However, the Pc and Pm of simple genetic
algorithm (SGA) is constant; as a result, SGA tends to fall into local optimal solution and is
difficult to converge in practical application [30].

To address the defect of SGA, some great efforts have been made by many researchers,
and the adaptive genetic algorithm (AGA) [31] presented by Srinvas is one of the most
representative achievements. Instead of adopting the fixed Pc and Pm, in AGA, the Pc and
Pm of individuals are adjusted according to respective fitness values, and the result is that
the evolutionary quality has been improved greatly [32].

In AGA, these individuals with higher fitness value than the average fitness will vary
with lower Pc and Pm, and the Pc and Pm of the best individual will be zero [33]. However, in
an early evolutionary stage, the local optimum is not necessarily the global optimal solution.
Together with the selection mechanism, the population diversity may drop sharply [34]. In
addition, the fitness value of individuals including the best will gather near the average
fitness, which means their genetic structures are likely to remain unchanged. As a result,
the search for the best solution will be handicapped badly, so AGA also has the drawback
of premature convergence [35].

Through research and analysis, we present a novel approach to calculate Pc and Pm,
which makes it possible for the local optimal individuals to amend their genes. In addition,
we adopt an adaptive adjustment measure to maintain population diversity, which plays a
vital role on preventing premature convergence.
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3. Methodology

Because the setting of ELM-RBF is initialized randomly, this kind of model is always
unstable and can easily fall into a local optimal solution [14]. To deal with these issues, we
propose a modified extreme learning approach, ELM-RBF-SAGA. Specifically, we present
a novel genetic algorithm, SAGA, based on two optimization methods firstly. After that,
SAGA is used to adjust ILW and HLB to improve model’s prediction accuracy.

3.1. Synergistic Adaptive Genetic Algorithm

In order to improve the optimization performance of SAGA, we present two adaptive
optimization measures. One is used for adjusting the range of fitness value to maintain pop-
ulation diversity and provide a solid foundation for evolution. The other is mainly applied
to adjust Pc and Pm, which are the two crucial factors in suppressing local optimal solutions.

3.1.1. Maintaining the Population Diversity

Along with the advance of evolution, population diversity may stand a good chance
of dropping significantly, which means the evolutionary power would be reduced greatly.
Especially when dealing some complicated multimodal functions, traditional AGA often
falls into local optimum [32,34]. To avoid the above situation as much as possible, we
adopt an adjustment measure based on a normal distribution function to prevent the sharp
decline of population diversity, and put forward the concept about the expected range
of fitness value, denoted by S, whose fundamental purpose is to maintain population
diversity by regulating the range of fitness value. The expected range of fitness value in the
ith generation Si can be computed as:

Si =

 S0. exp[ (c1. i
k )

2

−2 ], Ri 6 S0. exp[ (c1. i
k )

2

−2 ]

Ri, Ri > S0. exp[ (c1. i
k )

2

−2 ].

S0 = R0

(10)

where Ri is the range of fitness in the ith generation. R0 is the range of initial population,
and S0 is the expected range of initial population. c1 is a controlled parameter, which equals√

2 in general. i = 1, 2, 3, . . . , k, and k is the max number of generations.
As the premise of maintaining population diversity, the expected range of fitness

value S is mainly used for setting the maximum difference of fitness value during the
adjustment process. In other words, maintaining population diversity should be reflected
in the adjustment to individual fitness value finally. Moreover, the relative pecking order of
fitness should be invariant, and the absolute difference can be adjusted according to the
same ratio. Lastly, as the reference point for adjustment, the average fitness value should
be fixed to ensure the stability of evolution. The detailed measures are defined as:

f
′
n =

{
f + ( fn − f ). Si

Ri
, f + ( fn − f ). Si

Ri
> 0

0, f + ( fn − f ). Si
Ri

6 0
(11)

where fn and f
′
n are the fitness value of the nth individual before and after adjustment,

respectively, and f is the average fitness value. Ri is the range of fitness in the ith generation,
and Si is the expected range of fitness value in the ith generation.

As shown in Figure 2, the values of a set of samples are 1, 2, 3, and 4, denoted by a, b, c,
and d, and b is the average value. Obviously, the range R equals d-a, namely 3. If S is set to
7, according to the measures above, the values of these samples would be revised as−0.333,
2, 4.333, and 6.666, denoted by a1, b1, c1, d1. The following are the detailed analyses. Firstly,
b1 equals to b, in other words, the average value is unchanged. Secondly, the max difference
is d1 − a1, namely 6.999, which is very close to S. In addition, the relative positions of these
samples are invariant, for instance, b − a = c − b, d − b = 2(c − b) and b1 − a1 = c1 − b1,
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d1 − b1 = 2(c1 − b1) correspondingly. Based on these analyses, the purpose of adjustment
has been achieved perfectly.

Figure 2. The illustration of the adjustment process.

3.1.2. Adaptive Probabilities of Crossover and Mutation

In GAs, Pc and Pm play a vital role in preventing premature convergence [33]. In AGA,
the Pc and Pm of the best individuals are both zero, which means they will be preserved
into the next generation [34]. However, they may not be the global optimal individuals.
With the advance of evolution, the algorithm will get stuck at a local optimum easily [32].
To overcome the weakness of AGA, we adopt a new method based on normal distribution
to calculate Pc and Pm, and the method can be expressed as:

Pm =

 PMmin + (PMmax − PMmin). exp[
(c2. f− f

fmax− f
)2

−2 ], f > f
PMmax, f 6 f

(12)

Pc =

 PCmin + (PCmax − PCmin). exp[
(c3. f

′
− f

fmax− f
)2

−2 ], f > f
PCmax, f 6 f

(13)

where PMmax, PMmin, PCmax and PCmin are the maximum and minimum value of Pc and Pm,
respectively. fmax is the maximum fitness value of population. f is denoted as the average
fitness value, and f

′
is the larger fitness value of the individuals to be crossed. c2 and c3 are

the controlled parameters, and both equal to 3 in general.
The adaptive adjustment curves of Pc and Pm are shown in Figures 3 and 4.

Figure 3. The adaptive adjustment curve of Pc .

3.1.3. Optimization Experiments

In order to test the optimization performance of SAGA, compared with H-SGA [36],
IAGA [37], and MAGA [38], we select several classical functions to carry out the comparing
experiments. These functions are shown as below:
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F1: One-dimension multimodal function.

F1 = x + 10 sin(5x) + 7 cos(4x),

0 6 x 6 9
(14)

This function has multiple local optima in x∈[0, 9], and the only one maximum is
F1 (7.8568) = 24.8554. The graph of F1 is shown in Figure 5.

Figure 4. The adaptive adjustment curve of Pm .

Figure 5. The graph of function F1.

F2: Camel function.

F2 = (4− 2.1x2
1 +

x2
1

3
)x2

1 + x1x2+(−4 + x2
2)x2

2,

−3 6 xi 6 3, i = 1, 2
(15)

This function has six local minima and two global minima, which are
F2(−0.0898, 0.7126) = F2(0.0898,−0.7126) =−1.031628. The graph of F2 is shown in Figure 6.

F3: Schaffer’s f6 [39].

F3 = 0.5+
sin2

√
x2

1 + x2
2 − 0.5

[1.0 + 0.001(x2
1 + x2

2)]
2

,

−100 6 xi 6 100, i = 1, 2

(16)

The function is symmetric about the origin and has multiple local optimal values. Its
global minimum is F3(0, 0) = 0. As a result, this function is very suitable for optimization
experiment. The graph of F3 is shown in Figure 7.
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Figure 6. The graph of function F2.

Figure 7. The graph of function F3.

F4: Schaffer’s f7 [39].

F4 = (x2
1 + x2

2)
0.25[sin2(50(x2

1 + x2
2)

0.1) + 0.1],

−100 6 xi 6100, i = 1, 2
(17)

This function is similar to F3, and its global minimum is F4(0, 0) = 0. The graph of F4 is
shown in Figure 8.

Figure 8. The graph of function F4.
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In all experiments, the size of population is 20, and the binary length is 22. The number
of iterations in F1 is 200, and that of in other function is 600. In H-SGA [36], Pc is altering
from 0.5 to 0.75, and Pm is altering from 0.05 to 0.08. The range of Pc in IAGA [37] and SAGA
is (0.6, 0.8), and that of Pm is (0.05, 0.08). In MAGA [38], Pc1 = 0.7, Pc2 = 0.2, Pm1 = 0.07,
Pm2 = 0.03, γ = 2 and α = 0.08.

Based on the above conditions, each function is executed 1000 times independently
with four algorithms in an initial environment randomly. In addition, the calculation
accuracy of function F1 and F2 is 10−4, and that of F3 and F4 is 10−6. Tables 1–3 list the
experimental results, for example, the number of convergences, average convergence
generation, and value.

Table 1. The total number of convergences.

Method
Multimodal Function

F1 F2 F3 F4

H-SGA [36] 980 964 753 625
IAGA [37] 993 982 895 863

MAGA [38] 996 991 966 953
SAGA 1000 997 995 986

Table 2. Average convergence generation.

Method
Multimodal Function

F1 F2 F3 F4

H-SGA [36] 113 191 320 356
IAGA [37] 82 133 263 272

MAGA [38] 62 105 198 215
SAGA 56 95 183 196

Table 3. Average convergence value.

Method
Multimodal Function

F1 F2 F3 F4

H-SGA [36] 24.825632 −1.028323 0.0094 0.0150
IAGA [37] 24.850056 −1.031200 0.0030 0.0092

MAGA [38] 24.853056 −1.031300 0.0022 0.0042
SAGA 24.855368 −1.031601 0.0016 0.0035

From Tables 1 and 2, we can easily find that SAGA and MAGA [38] have higher
convergence rates and fewer iterations compared with H-SGA [36] and IAGA [37], which
indicates these two methods have obvious advantages in convergence speed. However,
as shown in Table 3, SAGA is better than MAGA [38] in the final convergence result,
which fully proves the method proposed in this paper has outstanding global optimization
ability. Figures 9–12 are the experimental results of the comparison algorithm on each
optimization function.

From Figures 9–12, we can clearly find that SAGA and MAGA [38] outperform
H-SGA [36] and IAGA [37] in terms of convergent speed and robustness. In addition,
the performance of SAGA is close to that of MAGA [38] on the experiments with function
F1 and F2. Benefitting from the adjustment method of maintaining population diversity,
SAGA can obtain the global optimal solutions easily on the experiments about F3 and F4,
which is superior to MAGA [38]. In summary, SAGA has the excellent ability to search
global optimal solutions and can converge quickly.
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Figure 9. The experimental results on function F1.

Figure 10. The experimental results on function F2.

Figure 11. The experimental results on function F3.

Figure 12. The experimental results on function F4.
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3.2. ELM-RBF-SAGA

Due to the lack of effective optimization for ILW and HLB, conventional ELM-RBF is
often unstable and prone to falling into local optimal solutions [14]. Considering SAGA’s
extraordinary optimization ability as shown in Section 3.1.3, we introduce SAGA into
ELM-RBF to adjust ILW and HLB for improving model’s prediction accuracy. Specifically,
ILW and HLB are firstly mapped to individual vectors in SAGA. Then, the overall error
function of training set and test set is taken as SAGA’s fitness function, which can be
described by Equation (18). In addition, the prediction error of ELM-RBF-SAGA will be
gradually reduced through iterative optimization operations, such as crossover, mutation,
and selection. As a result, the optimal ILW and HLB are used to minimize error:

Fitness(S) =

√
1
n

n

∑
i=1

( f (xi)− yi)
2 (18)

where S = {(xi, yi) | 0 < i 6 n} is the dataset. xi is the input instance as shown in
Equation (7), yi is the real label corresponding to xi, and n is the number of instances.
f (.) is the output of ELM-RBF as shown in Equation (8).

The detailed steps of ELM-RBF-SAGA are described as below.

1. Build ELM-RBF network model.
2. Initialize population in SAGA. ILW and HLB of ELM-RBF are encoded in individual

genes as shown in Figure 13, and the evolutionary population is initialized accordingly.
Figure 14 demonstrates the variation trend of population before and after evolution. It
can be clearly seen from Figure 14a that the initial individuals are aimlessly distributed.
However, after iterative optimization, the population is consciously close to the global
optimal position as exhibited in Figure 14b.

3. Set fitness function of SAGA. The error function of ELM-RBF is taken as the fitness
function of SAGA, and then the fitness values of initial population are calculated.

4. Perform selecting operation. With the continuous advancement of evolution, the
calculation error will gradually be reduced. As a result, it is necessary to take the
reciprocal of fitness function to select the individuals with “high fitness”.

5. Adjust individual fitness according to Equations (10) and (11).
6. Update the Pc and Pm in SAGA according to Equations (12) and (13).
7. Perform crossover and mutation according to new Pc and Pm.
8. Compute the fitness value of new individual based on Equation (18). These individuals

with superior performance are preserved to compose the next evolutionary group.
9. Iterate steps 4–8 until the termination condition is satisfied, for instance, the number

of iterations or the minimum error.
10. Decode the individual gene with the best fitness value. ELM-RBF is initialized with

the decoded ILW and HLB to obtain the optimal network structure, which is used for
multi-label classification as shown in Section 2.2.

Figure 13. The illustration of the encoding process.
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(a) (b)

Figure 14. The comparative diagram of evolution before and after. (a) the initial distribution of
evolutionary population; (b) the distribution of evolutionary population after 100 generations.

4. Experiments and Discussion
4.1. Comparing Algorithms

We choose four remarkable methods to perform comparative experiments with ELM-
RBF-SAGA about multi-label classification. These algorithms are described as follows:

• ML-KNN [40]: This model is a classic multi-label classification approach.
• ML-ELM-RBF [41]: This model extends ELM-RBF to deal with multi-label classification.
• ML-KELM [42]: This model makes use of an efficient projection framework to produce

an optimal solution.
• ML-CK-ELM [43]: In this model, a specific module is constructed based on several

predefined kernels to promote classification accuracy.

4.2. Experimental Datasets

Following the classical method in [40], we choose four general datasets, which are
widely applied to assess the model’s ability in multi-label classification, to perform the
validation experiment. They are “Art dataset”, “Business dataset”, “Computer dataset”,
and “Yeast dataset”. Table 4 lists the details of these datasets.

Table 4. Details about the multi-label classification datasets.

Dataset Train Test Dim Label

Art [40] 2000 3000 462 26
Business [40] 2000 3000 438 30

Computer [40] 2000 3000 681 33
Yeast [40] 1500 917 103 14

4.3. Evaluation Metrics

In this paper, we select some universal evaluation metrics, such as Hamming loss,
one-error, coverage, ranking loss, and average precision, to verify the classification effect of
different models. These metrics are shown as the following formulas. In these formulas,
S = {(xi, yi) | 0 < i 6 n} is the dataset, h(.) is the multi-label classification model, n is the
number of input instances, and q is the output dimension and the number of labels for each
instance. xi is the set of input samples, yi is the set of output values. Yi is the set of labels, l
is the subset of Yi. f (.) is the objective function. rank f (.) is the ranking function.

Hamming loss indicates the gap between outputs of classifier and the true label and
can be defined as:
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HammingLossS(h) =
1
n

n

∑
i=1

1
q
|h(xi)∆Yi| (19)

where h(xi)∆Yi means the symmetric difference between outputs and ground-truth.
One-error is used for evaluating the times that top-ranked label is not in the set of

relevant labels. In addition, the computational process is expressed as:

One− ErrorS(h) =
1
n

n

∑
i=1

1
q
[[arg max

p∈yi
f (xi, p)] /∈ Yi] (20)

Coverage, as shown in Equation (21), reveals the minimum query times of finding all
the relevant labels in a sequence of output set:

CoverageS(h) =
1
n

n

∑
i=1

max
l∈Yi

rank f (xi, l)− 1 (21)

Ranking loss measures the average fraction that the irrelevant labels are in front of
the relevant labels in a rank of output values associated with an input instance. The
computational process is described as follows:

RankingLossS(h) =
1
n

n

∑
i=1

1
|Yi||Yi|

|{(l1, l2) | f (xi, l1) 6 f (xi, l2), (l1, l2) ∈ Yi ×Yi}| (22)

where Yi denotes the complementary set of Yi in the label space Y.
Average precision evaluates the average fraction of relevant labels ranked above a

particular label. This indicator can be formulated by the following equation:

AveragePrecisionS(h) =
1
n

n

∑
i=1

1
|Yi| ∑

l∈Yi

|{l′ | rank f (xi, l
′
) 6 rank f (xi, l), l

′ ∈ Yi}|
rank f (xi, l)

(23)

4.4. Experimental Results and Discussion

Experimental results in different datasets are shown in Tables 5–8, respectively. As
a classical multi-label classification method, ML-KNN [40] distinguishes categories by
measuring the distance between different feature values. This method is simple and insen-
sitive to abnormal input. However, compared with ELM-based methods, the performance
of ML-KNN [40] is always unsatisfactory, which also indicates the effectiveness of ELM.
ML-ELM-RBF [41] improves the classification accuracy of ELM-RBF by stacking ELM-AE.
Compared with ML-KNN [40], the performance of ML-ELM-RBF [41] is significantly im-
proved, such as acquiring the best values of Hamming loss and one-error in computer
dataset. To search the optimal solution, ML-KELM [42] employs a special projection frame-
work and non-singular transformation matrix. Experimental results show that this method
achieves competitive performance, especially obtaining the optimal values of Hamming
loss and ranking loss in the art dataset. ML-CK-ELM [43] improves multi-label classification
accuracy by optimizing the combination of multiple kernels; as a result, this approach
is better than these previous methods in most indicators. Although without multi-layer
staked structure, ELM-RBF-SAGA proposed in this paper is superior to ML-CK-ELM [43]
on the whole, which fully demonstrates the effectiveness of SAGA in optimizing ELM-RBF.
Table 9 lists the running time of different models in each dataset. It can be easily found
from Table 9, as the representative of traditional machine learning methods, ML-KNN [40]
is significantly slower than ELM-based models whether in the training or testing phase. In
addition, this trend is especially evident with dataset’s complexity increasing. Although
our proposed method is not the fastest, it is faster than ML-CK-ELM [43] in art, computer,
and yeast dataset. In summary, ELM-RBF-SAGA has obvious advantages over comparison
methods and is very suitable for multi-label classification.
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Table 5. Performance of different models in the art dataset.

Evaluation Metric
Algorithm

ML-KNN [40] ML-ELM-RBF [41] ML-KELM [42] ML-CK-ELM [43] ELM-RBF-SAGA

Average Precision 0.5736 0.6078 0.6132 0.6263 0.6317
Coverage 4.7539 5.6723 5.2531 4.5864 4.5826

Hamming Loss 0.0576 0.0535 0.0531 0.0553 0.0533
One-Error 0.5132 0.4739 0.4732 0.4698 0.4683

Ranking Loss 0.1273 0.1387 0.1126 0.1143 0.1131

Table 6. Performance of different models in the yeast dataset.

Evaluation Metric
Algorithm

ML-KNN [40] ML-ELM-RBF [41] ML-KELM [42] ML-CK-ELM [43] ELM-RBF-SAGA

Average Precision 0.7541 0.7567 0.7623 0.7778 0.7773
Coverage 6.3986 6.4632 6.2573 6.1935 6.1893

Hamming Loss 0.1953 0.1968 0.1858 0.1864 0.1845
One-Error 0.2345 0.2376 0.2292 0.2268 0.2285

Ranking Loss 0.1719 0.1728 0.1613 0.1593 0.1586

Table 7. Performance of different models in the business dataset.

Evaluation Metric
Algorithm

ML-KNN [40] ML-ELM-RBF [41] ML-KELM [42] ML-CK-ELM [43] ELM-RBF-SAGA

Average Precision 0.8826 0.8835 0.8863 0.8872 0.8886
Coverage 2.1576 2.5076 2.4964 2.4058 2.4032

Hamming Loss 0.0261 0.0258 0.0256 0.0232 0.0241
One-Error 0.1213 0.1163 0.1143 0.1156 0.1135

Ranking Loss 0.0356 0.0392 0.0369 0.0376 0.0342

Table 8. Performance of different models in the computer dataset.

Evaluation Metric
Algorithm

ML-KNN [40] ML-ELM-RBF [41] ML-KELM [42] ML-CK-ELM [43] ELM-RBF-SAGA

Average Precision 0.6718 0.6983 0.7021 0.7112 0.7136
Coverage 3.9417 4.3896 3.9863 3.9578 3.9286

Hamming Loss 0.0362 0.0332 0.0339 0.0341 0.0336
One-Error 0.3960 0.3329 0.3526 0.3418 0.3345

Ranking Loss 0.0787 0.0913 0.0856 0.0793 0.0785

Table 9. Running time of different models in each dataset.

Evaluation Metric
Algorithm

ML-KNN [40] ML-ELM-
RBF [41] ML-KELM [42] ML-CK-

ELM [43]
ELM-RBF-

SAGA

Training time in Art [40] 1.2365 1.1735 1.1967 1.2132 1.2053
Testing time in Art [40] 1.1986 1.1552 1.1624 1.1862 1.1775

Training time in Business [40] 2.4573 1.8521 1.9173 2.0681 2.1367
Testing time in Business [40] 2.1061 1.7647 1.8265 1.8572 1.9356

Training time in Computer [40] 2.8732 2.1369 2.2358 2.3537 2.2132
Testing time in Computer [40] 2.6113 1.9127 2.0526 2.1769 2.0319

Training time in Yeast [40] 1.0523 0.7631 0.8256 0.9572 0.8543
Testing time in Yeast [40] 0.8958 0.7239 0.7653 0.8839 0.7668
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5. Conclusions

Because of the lack of effective optimization methods, conventional ELM-RBF is
always unstable has difficulty finding the global optimal solution, which leads to inferior
prediction precision in multi-label classification. Aiming at these issues, a modified extreme
learning model, ELM-RBF-SAGA, is proposed in this article.. In ELM-RBF-SAGA, an
improved genetic algorithm, SAGA, is presented to optimize the performance of ELM-RBF.
In addition, two adjustment methods are employed cooperatively in SAGA. One is applied
to adjust the range of fitness value for maintaining population diversity, the other is used
for updating crossover and mutation probability to generate the optimal ILW and HLB
in ELM-RBF. Experiments suggest that our proposed method achieves overwhelming
advantages in multi-label classification.
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