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Abstract: In this work, some new inequalities for the numerical radius of block n-by-n matrices are
presented. As an application, the bounding of zeros of polynomials using the Frobenius companion
matrix partitioned by the Cartesian decomposition method is proved. We highlight several numerical
examples showing that our approach to bounding zeros of polynomials could be very effective in
comparison with the most famous results as well as some recent results presented in the field. Finally,
observations, a discussion, and a conclusion regarding our proposed bound of zeros are considered.
Namely, it is proved that our proposed bound is more efficient than any other bound under some
conditions; this is supported with many polynomial examples explaining our choice of restrictions.

Keywords: numerical radius; operator matrix; zeros of polynomials; algorithm

1. Introduction

The problem of finding the zeros of complex monic polynomials of the form

Pn(z) = zn + anzn−1 + · · ·+ a2z + a1, z ∈ C, n ≥ 2, a1 6= 0,

is one of the most interesting, difficult, and oldest problems in mathematics. Several
approaches have been taken to study this problem, with significant effort expended. See,
for example [1,2], and the references therein.

One of the most common problems in this topic is determining or approximating the
radius of the disk containing these zeros. In modern mathematics, the numerical range of a
given Hilbert space is a very important concept related to the problem of bounding zeros of
complex polynomials. The numerical range in matrix analysis (finite dimensional Hilbert
space) is equivalent to the Rayleigh quotient for a given complex Hermitian matrix C. It
can be easily shown that, for a given matrix C, the Rayleigh quotient reaches its smallest
and largest eigenvalues of C. In terms of the field of values of a complex n× n matrix, one
of the well-known tools used in this problem is the Frobenius Companion matrix C(Pn),
which corresponds to the polynomial Pn. Therefore, inequalities for the numerical radius
of such matrices would be very helpful in this direction. See [3,4].

The spectrum of a non-singular matrix C is the set of all its eigenvalues. Because the
spectral set is contained in the numerical range, the radius of the spectral set is less than
(or equal to) the radius of the numerical range. The problem with dealing with a spectral
radius is that it is not as easy to deal with as a numerical radius. Because of that, in the last
two decades, the problem of bounding the numerical radius has caught the attention of
many researchers. It is worth mentioning that when an operator (matrix) C is a normal
operator, the spectral radius is the same as the numerical radius.

We continue our investigation of the numerical radius of Hilbert space operators in
this article by establishing new inequalities for n× n operator matrices for general Hilbert
space operators. Our approach depends mainly on using the Cartesian decomposition of a

Algorithms 2022, 15, 184. https://doi.org/10.3390/a15060184 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15060184
https://doi.org/10.3390/a15060184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-6696-9119
https://doi.org/10.3390/a15060184
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15060184?type=check_update&version=1


Algorithms 2022, 15, 184 2 of 18

general Hilbert space operator. To the best of our knowledge, no known algorithm has been
employed to constrain the zeros of the polynomial Pn(z) using the Frobenius companion
matrix partitioned using the Cartesian decomposition method, and this is one of the main
originalities of the study. In particular, we remark that applying the numerical radius
inequalities to the companion matrix presents a partition difficulty because the primary
diagonal in the reported results necessitates a square sub-matrix. To that end, we show that
the standard approaches for splitting the companion matrix, considered by many authors
in the literature, are ineffective. As applications, several bounds for the zeros of complex
polynomials are introduced. Various numerical examples show that our results are far
superior to most of the well-known bounds found in the literature.

The rest of the article is structured as follows: Section 2 presents the mathematical
background of the study. Section 3 describes the numerical radius inequalities of the matrix
operator. Applications for bounding zeros of polynomials are given in Section 4. The
numerical radius of the real and imaginary parts of the considered matrix is determined in
Section 5. Observations and discussion of the study are provided in Section 6. Concluding
remarks are given in Section 7.

2. Mathematical Background

Some preliminaries and notations are now introduced for the purposes of the study.
Let H be a complex Hilbert space with an inner product 〈·, ·〉 and B(H ) be the C∗-algebra
of all bounded linear operators from H into itself. When H = Cn, we identify B(H )
with the algebra Mn of n-by-n complex matrices. For a bounded linear operator T on a
Hilbert space H , the numerical range W(T) is the image of the unit sphere of H under
the quadratic form x → 〈Tx, x〉 associated with the operator. More precisely, we can set

W(T) = {〈Tx, x〉 : x ∈H , ‖x‖ = 1}.

In addition, the numerical radius is defined to be

w(T) = sup{|λ| : λ ∈W(T)} = sup
‖x‖=1

|〈Tx, x〉|.

The spectral radius of an operator T is defined to be

r(T) = sup{|λ| : λ ∈ sp(T)}.

We recall that the usual operator norm of an operator T is defined to be

‖T‖ = sup{‖Tx‖ : x ∈ H, ‖x‖ = 1}.

Several numerical radius type inequalities improving and refining the inequality
1
2
‖T‖ ≤ w(T) ≤ ‖T‖ (T ∈ B(H ))

have been recently obtained by many other authors. See, for example, refs. [5–10]. Four
important facts concerning the numerical radius inequalities of n× n operator matrices are
obtained by different authors, which are grouped together as follows:

Let S =
[
Sij
]
∈ B(

⊕n
i=1 Hi) such that Sij ∈ B

(
Hj, Hi

)
. Then, Refs [5,9,10]

w(S) ≤



w
([

t(1)kj

])
,

w
([

t(2)kj

])
,

w
([

t(3)kj

])
,

w
([

t(4)kj

])
,

;
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where

t(1)kj = w
([∥∥∥Skj

∥∥∥]); t(2)kj =


1
2

(∥∥∥Skj

∥∥∥+ ∥∥∥S2
kj

∥∥∥1/2
)

, k = j∥∥∥Skj

∥∥∥, k 6= j
;

t(3)kj =

 w
(

Skj

)
, k = j∥∥∥Skj

∥∥∥, k 6= j
; t(4)kj =


w
(

Skj

)
, k = j

w
(

0 Skj
Sjk 0

)
, k 6= j

.

Clearly, the third and fourth bounds above are gentle refinements of the first and
second bounds; therefore, both w

([
t(3)kj

])
and w

([
t(4)kj

])
give better upper estimates for

the numerical radius of S =
[
Sij
]
.

Let Tn be the tridiagonal Toeplitz matrix denoted by Tn = tridiag(b, a, c), i.e.,

Tn :=



a c 0 · · · 0

b a c
. . .

...

0 b
. . . . . . 0

...
. . . . . . . . . c

0 · · · 0 b a


n×n

, n ≥ 2.

It is well known that the eigenvalues of Tn are given by [11] as

λk = a + 2
√
|bc| cos

(
kπ

n + 1

)
, k = 1, 2, · · · , n

and they have the polar form

λk = a + 2

√
|bc|ei(θ+φ)/2 cos

(
kπ

n + 1

)
, k = 1, 2, · · · , n,

where θ = arg(b) and φ = arg(c). In the case of bc 6= 0, Tn has n simple eigenvalues, and
all of them lie in the closed segment

Sn,λ =

{
a + tei(θ+φ)/2 : t ∈ R, |t| ≤ 2

√
|bc| cos

(
π

n + 1

)}
⊂ C.

The eigenvalues are located symmetrically with respect to a. Thus, the spectral radius
of Tn is given by

r(Tn) = max
{∣∣∣∣a + 2

√
|bc|ei(θ+φ)/2 cos

(
π

n + 1

)∣∣∣∣, ∣∣∣∣a + 2
√
|bc|ei(θ+φ)/2 cos

(
nπ

n + 1

)∣∣∣∣}. (1)

Furthermore, if bc 6= 0, then the eigenvectors xk = [x1,n, x2,n, · · · , xk,n]
T associated

with the eigenvalue λk of Tn are given in the form xk,j =
( c

b
)k/2 sin

(
kjπ
n+1

)
, k, j = 1, 2, · · · , n.

For a comprehensive study of Toeplitz matrices, the reader may refer to the interesting
book [12].

The following result is of great interest in the results presented next [11].

Lemma 1. The tridiagonal Toeplitz matrix Tn = tridiag(b, a, c) is normal (i.e., T∗n Tn = TnT∗n ) if
and only if |b| = |c|.
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Lemma 2. Let H1 and H2 be Hilbert spaces and T =

[
A B
C D

]
be an operator matrix with

A ∈ B(H1), B ∈ B(H2, H1), C ∈ B(H1, H2) and D ∈ B(H2). Then,

ω(T) ≤ 1
2

(
ω(A) + ω(D) +

√
(ω(A)−ω(D))2 + (‖B‖+ ‖C‖)2

)
.

Lemma 3. If S :=
[
skj

]
∈Mn(C), then,

ω(S) ≤ ω
([∣∣∣skj

∣∣∣]) =
1
2

r
([∣∣∣skj

∣∣∣+ [∣∣∣skj

∣∣∣]]).

Let A ∈ B(H ), then,

|〈Ax, y〉|2 ≤
〈
|A|2αx, x

〉〈
|A∗|2(1−α)y, y

〉
, 0 ≤ α ≤ 1,

for any vectors x, y ∈ H , where |A| = (A∗A)1/2. This inequality is well known as the
mixed Schwarz inequality, which was introduced in [13] and generalized later in [14].

The following result presents the Cartesian decomposition of the mixed Schwarz
inequality [8].

Lemma 4. Let A ∈ B(H ) be with the Cartesian decomposition A = P + iQ. If f and g are
non-negative continuous functions on [0, ∞) satisfying f (t)g(t) = t (t ≥ 0), then,

|〈Ax, y〉| ≤ ‖ f (|P|)x‖‖g(|P|)y‖+ ‖ f (|Q|)x‖‖g(|Q|)y‖

for all x, y ∈H .

3. Numerical Radius Inequalities of m×m Matrix Operator

Let us now turn our attention to numerical radius inequalities of the m×m matrix
operator, starting with the following theorem:

Theorem 1. Let A =
[

Akj

]
∈ ⊕mMn(C) be an m × m operator, such that Pkj + iQkj is the

corresponding Cartesian decomposition of Akj. If f and g are non-negative continuous functions on
[0, ∞) satisfying f (t)g(t) = t (t ≥ 0), then,

w(A) ≤ w1/2
([

ckj

])
, (2)

where

ckj = m ·


w
(

P2
kk + Q2

kk
)
, j = k

1
4

∥∥∥ f 2
(∣∣∣Pkj

∣∣∣)+ g2
(∣∣∣Pkj

∣∣∣)+ f 2
(∣∣∣Qkj

∣∣∣)+ g2
(∣∣∣Qkj

∣∣∣)∥∥∥2
, j 6= k.

Proof. Let x = [x1, x2, · · · , xm]
T ∈ ⊕m

`=1 Mn(C) with ‖x‖ = 1; then, we have
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1
m2 |〈Ax, x〉|2 =

1
m2

∣∣∣∣∣ m

∑
k,j=1

〈
Akjxj, xk

〉∣∣∣∣∣
2

≤ 1
m

m

∑
k,j=1

∣∣∣〈Akjxj, xk

〉∣∣∣2 (by Jensen′s inequality)

=
1
m

m

∑
k=1
|〈Akkxk, xk〉|2 +

1
m

m

∑
j=1
j 6=k

∣∣∣〈Akjxj, xk

〉∣∣∣2

≤ 1
m

m

∑
k=1

(
〈Pkkxk, xk〉2 + 〈Qkkxk, xk〉2

)
+

1
m

m

∑
j=1
j 6=k

[〈
f 2
(∣∣∣Pkj

∣∣∣)xj, xk

〉 1
2
〈

g2
(∣∣∣Pkj

∣∣∣)xj, xk

〉 1
2

+
〈

f 2
(∣∣∣Qkj

∣∣∣)xj, xk

〉 1
2
〈

g2
(∣∣∣Qkj

∣∣∣)xj, xk

〉 1
2
]2

≤ 1
m

m

∑
k=1

(
‖Pkkxk‖2 + ‖Qkkxk‖2

)
+

1
4m

m

∑
j=1
j 6=k

{〈[
f 2
(∣∣∣Pkj

∣∣∣)+ g2
(∣∣∣Pkj

∣∣∣)]xj, xk

〉
+
〈[

f 2
(∣∣∣Qkj

∣∣∣)+ g2
(∣∣∣Qkj

∣∣∣)]xj, xk

〉}2

=
1
m

m

∑
k=1

(〈
P2

kkxk, xk

〉
+
〈

Q2
kkxk, xk

〉)
+

1
4m

m

∑
j=1
j 6=k

∥∥∥ f 2
(∣∣∣Pkj

∣∣∣)+ g2
(∣∣∣Pkj

∣∣∣)+ f 2
(∣∣∣Qkj

∣∣∣)+ g2
(∣∣∣Qkj

∣∣∣)∥∥∥2
‖xj‖2‖xk‖2

≤ 1
m

m

∑
k=1

〈(
P2

kk + Q2
kk

)
xk, xk

〉
+

1
4m

m

∑
j=1
j 6=k

∥∥∥ f 2
(∣∣∣Pkj

∣∣∣)+ g2
(∣∣∣Pkj

∣∣∣)+ f 2
(∣∣∣Qkj

∣∣∣)+ g2
(∣∣∣Qkj

∣∣∣)∥∥∥2
‖xj‖‖xk‖

(because ‖xj‖2 ≤ ‖xj‖, ∀j)

=
1
m

m

∑
k=1

∥∥∥P2
kk + Q2

kk

∥∥∥‖xk‖2

+
1

4m

m

∑
j=1
j 6=k

∥∥∥ f 2
(∣∣∣Pkj

∣∣∣)+ g2
(∣∣∣Pkj

∣∣∣)+ f 2
(∣∣∣Qkj

∣∣∣)+ g2
(∣∣∣Qkj

∣∣∣)∥∥∥‖xj‖‖xk‖

=
〈[

ckj

]
y, y
〉

,

where y = [‖x1‖, ‖x2‖, · · · , ‖xm‖]T . Taking the supremum over x ∈ ⊕m Mn, we obtain the
desired result.

Particularly, we are interested in the following 2× 2 cases:

Corollary 1. If A =

[
A11 A12
A21 A22

]
is in Mn

⊕
Mn, then,

ω

([
A11 A12
A21 A22

])
≤
√

ω
(

P2
11 + Q2

11
)
+ ω

(
P2

22 + Q2
22
)
+

√(
ω
(

P2
11 + Q2

11
)
−ω

(
P2

22 + Q2
22
))2

+ N2, (3)

where N = ‖|P12|+ |Q12|‖+ ‖|P21|+ |Q21|‖.
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Proof. From Theorem 1 and by employing Lemma 3, we have

ω

([
A11 A12
A21 A22

])

≤
√

2 ·ω
1
2

 ω
(

P2
11 + Q2

11
)

‖|P12|+ |Q12|‖

‖|P21|+ |Q21|‖ ω
(

P2
22 + Q2

22
)


=
√

2 · r
1
2


 ω

(
P2

11 + Q2
11
) ‖|P12|+|Q12|‖+‖|P21|+|Q21|‖

2

‖|P12|+|Q12|‖+‖|P21|+|Q21|‖
2 ω

(
P2

22 + Q2
22
)




=

√
ω
(

P2
11 + Q2

11
)
+ ω

(
P2

22 + Q2
22
)
+

√(
ω
(

P2
11 + Q2

11
)
−ω

(
P2

22 + Q2
22
))2

+ N2,

which proves the result.

Corollary 2. If A =

[
A11 0
0 A22

]
in Mn

⊕
Mn, then,

ω

([
A11 0
0 A22

])
≤ max

(
ω
(

P2
11 + Q2

11

)
, ω
(

P2
22 + Q2

22

))
,

where Pkk + iQkk is the Cartesian decomposition of Akk.

Proof. Setting A12 = 0 = A21 in Corollary 1 and using the fact that ω

([
A 0
0 D

])
≤

max(ω(A), ω(D)), see [15].

4. Applications for Bounding Zeros of Polynomials

One of the most interesting and useful applications of the numerical radius inequalities
is to bound zeros of complex polynomials using a suitable partition of the well-known
Frobenius companion matrix. Let

p(z) = zn + anzn−1 + · · ·+ a2z + a1, (4)

be any polynomial with a1 6= 0. The general corresponding companion matrix is defined as

C(p) :=


−an −an−1 · · · −a2 −a1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

. (5)

It is well known that the eigenvalues of C(p) are exactly the zeros of p(z), see [3], p. 316.
Based on some numerical radius estimations of C(p), several authors paid serious

attention to finding various upper bounds of the zeros of p(z). Some famous upper bounds
are listed as follows:

If λ is a zero of p(z), then,

1. Cauchy [3] obtained the following upper bound:

|λ| ≤ 1 + max{|ak| : k = 1, 2, , · · · , n}. (6)

2. Carmichael and Mason [3] provided the following estimate:

|λ| ≤
√

1 +
n

∑
k=1
|ak|2. (7)
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3. Montel [3] proved the following estimate:

|λ| ≤ max

{
1,

n

∑
k=1
|ak|
}

. (8)

4. Fujii and Kubo [16] have shown that

|λ| ≤ cos
(

π

n + 1

)
+

1
2

(
|an|+

n

∑
k=1
|ak|2

)
. (9)

5. Abdurakhmanov [17] provided the following estimate:

|λ| ≤ 1
2

|an|+ cos
(π

n

)
+

√√√√(|an| − cos
(π

n

))2
+

(
1 +

n−1

∑
k=1
|ak|2

)2
. (10)

It seems that Paul and Bag [18] did not notice the Abdurakhmanov result where they
provided the same estimate.

6. Linden [19] provided the following estimate:

|λ| ≤ |an|
n

+

√√√√n− 1
n

(
n− 1 +

n

∑
k=1
|ak|2 −

|an|2

n

)
. (11)

7. Kittaneh [14] improved the Abdurakhmanov estimate by proving that

|λ| ≤ 1
2

|an|+ cos
(π

n

)
+

√√√√(|an| − cos
(π

n

))2
+ (|an−1| − 1)2 +

n−2

∑
j=1

∣∣aj
∣∣2. (12)

8. Abu-Omar and Kittaneh [20] introduced the following estimate:

|λ| ≤ 1
2

 |an|+ α

2
+ cos

(
π

n + 1

)
+

√(
|an|+ α

2
− cos

(
π

n + 1

))2
+ 4β

, (13)

where α =

√
n
∑

k=1
|ak|2 and β =

√
n−1
∑

k=1
|ak|2.

9. Al-Dolat et al. [21] provided the following estimate:

|λ| ≤ 1
2

|an|+ 2 cos
(π

n

)
+

√√√√t2|an|2 +
n−1

∑
k=1
|ak|2 +

√
1 + (1− t)2|an|2

 (14)

for t ∈ [0, 1]. In fact, the upper bound above should be rewritten by taking ‘min’ over
t ∈ [0, 1], which gives the best value for this estimate.

No single known algorithm has been used in the literature to bound the zeros of
the polynomial p(z) using the Frobenius companion matrix partitioned by the Cartesian
decomposition method, as far as we are aware.

To apply the numerical radius inequalities established in the previous section to C(p),
we note that we have a little partition challenge in applying our obtained results because
the main diagonal in the presented results requires a square sub-matrix. As a result, the
usual well-known methods of partitioning the companion matrix C(p) are useless, as
demonstrated by the inequalities presented in the previous section, for example in (3).
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The approach we propose is to consider the degree p(z) in (4) to be even with a fixed
integer n, such that a1 6= 0. To this end, we consider the even polynomial

q(z) = z2n + a2nz2n−1 + · · ·+ a2z + a1, n ≥ 2, a1 6= 0. (15)

Let

C(q) =



A11︷ ︸︸ ︷

−a2n −a2n−1 · · · −an+2 −an+1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0
. . . 1 0


n×n

A12︷ ︸︸ ︷

−an −an−1 · · · −a2 −a1
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0
. . . 0 0


n×n

0 0 · · · 0 1
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0
. . . 0 0

0 0 · · · 0 0


n×n︸ ︷︷ ︸

A21



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0
. . . 1 0

0 0 · · · 0 0


n×n︸ ︷︷ ︸

A22


2n×2n

(16)

be the corresponding companion matrix, partitioned as what it is. Constructing the Carte-
sian decomposition of C(q), we have

Re(C(q)) =



P11︷ ︸︸ ︷

−Re(a2n)
−a2n−1+1

2 · · · −an+2
2

−an+1
2

−a2n−1+1
2 0

. . . 0 0
... 1

2

. . . 1
2

...

0 0
. . . 0 1

2
−an+1

2 0 · · · 1
2 0


n×n

P12︷ ︸︸ ︷

−an
2

−an−1
2 · · · −a2

2
−a1

2
0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

1
2 0 · · · 0 0


n×n

−an
2 0 · · · 0 1

2
−an−1

2 0 · · · · · · 0
... 0

. . . · · · 0

−a2
2

... · · · · · ·
...

−a1
2 0 · · · 0 0


n×n︸ ︷︷ ︸

P21



0 1
2 0 · · · 0

1
2 0 1

2 0
...

0 1
2

. . .
. . . 0

...
. . .

. . .
. . . 1

2
0 · · · 0 1

2 0


n×n︸ ︷︷ ︸

P22


2n×2n

(17)

and

Im(C(q)) =



Q11︷ ︸︸ ︷

−Im(a2n)
−a2n−1−1

2i · · · −an+2
2i

−an+1
2i

a2n−1+1
2i 0

. . . 0 0
... 1

2i

. . . −1
2i

...

0 0
. . . 0 −1

2i
an+1

2i 0 · · · 1
2i 0


n×n

Q12︷ ︸︸ ︷

−an
2i

an−1
2i · · · a2

2i
a1
2i

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

−1
2i 0 · · · 0 0


n×n

an
2i 0 · · · 0 1

2i
an−1

2i 0 · · · · · · 0
... 0

. . . · · · 0

a2
2i

... · · · · · ·
...

a1
2i 0 · · · 0 0


n×n︸ ︷︷ ︸

Q21



0 −1
2i 0 · · · 0

1
2i 0 −1

2i 0
...

0 1
2i

. . .
. . . 0

...
. . .

. . .
. . . −1

2i
0 · · · 0 1

2i 0


n×n︸ ︷︷ ︸

Q22


2n×2n

. (18)
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Hence,

C(q) := Re(C(q)) + iIm(C(q)).

Moreover, it is easy to observe that Akj = Pkj + iQkj for k, j = 1, 2. This observation may
not hold true in general for operator matrices, i.e., the Cartesian decomposition of operator
matrices is not equal to the Cartesian decomposition of their sub-matrices. However,
because we construct a special type of C(q) partition, it appears that such equality holds
true only for this construction.

It is not easy to apply (3) to a general algorithm because it has the norms ‖|P11|+ |Q11|‖
and ‖|P22|+ |Q22|‖, which are difficult to evaluate for general n× n matrices. In fact, it will
be easier as long as we have numeric entries with specific n, as explored in the presented
examples below.

Table 1 illustrates that our upper bound of any zero of q1(z) = z6 + 5
4 z5 + 4

3 z4 + z3 +
2z2 + 3z + 4, obtained by (3), is much better among all given upper bounds listed in Table 1.

Table 1. Comparisons of upper bounds based on the considered polynomial q1(z).

Mathematician Upper Bound

Cauchy (6) 5
Carmichael and Mason (7) 5.860057831

Montel (8) 12.58333333
Fujii and Kubo (9) 18.19610776

Abdurakhmanov (10) 17.44802607
Linden (11) 5.845408848

Kittaneh (12) 4.040959271
Abu-omar and Kittaneh (13) 4.916052295

Al-Dolat et al. (14) 4.867955746
Corollary 1 3.941508802

We note that the same approach can be used for polynomials of odd degrees with zero
absolute terms; for example, in (15), assume that n is odd ≥ 5 and a1 = 0. Then, p(z) can
be written as

p(z) = z
(

zn−1 + anzn−2 + · · ·+ a2

)
= zp1(z),

where p1(z) is an even polynomial of degree ≥ 4. Because z = 0 is a zero for p(z),
it must belong to the disk containing the zeros of p1(z). Hence, in this case we have
ω(C(p)) = ω(C(p1)). We leave the details to the interested reader.

5. Numerical Radius of Real and Imaginary Parts of C(p)
The numerical radius of real and imaginary parts of C(p) is now investigated. To this

end, let T ∈Mn(C) with the Cartesian decomposition T = P + iQ. Then,

W(T) ⊆W(P) + W(Q).

Hence,

σ(T) ⊆ [λmin(P), λmax(P)]× [λmin(Q), λmax(Q)].

In case of the companion matrix C(p), it follows that all the zeros of p(z) in (4) are
located in the rectangle

[λmin(Re[C(p)]), λmax(Re[C(p)])]× [λmin(Im[C(p)]), λmax(Im[C(p)])]. (19)

In [14], Kittaneh provided an explicit formula for the characteristic polynomial of
Re[C(p)], which is given as
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pReal(z) := (z + Re(an))
n−1

∏
j=1

(
z− cos

(
jπ
n

))
−

n−1

∑
j=1

(
n−1

∏
k 6=j

(
z− cos

(
kπ

n

)))∣∣vj
∣∣2,

where

vj =
1√
2n

[
(1− an−1) sin

(
jπ
n

)
−

n−1

∑
k=2

an−k sin
(

kjπ
n

)]
.

In the same work [14], an explicit rectangle that contains the rectangle (19), and thus
that contains all the zeros of p(z), is obtained in the result below.

Theorem 2 ([14], Kittaneh). If z is any zero of p(z) = zn + cnzn−1 + · · ·+ c2z + c1, (c1 6= 0),
then z belongs to the rectangle [−c, c]× [−d, d], where

c =
1
2

|Re(cn)|+ cos
(π

n

)
+

√√√√(|Re(cn)| − cos
(π

n

))2
+ |cn−1 − 1|2 +

n−2

∑
k=1
|ck|2


and

d =
1
2

|Im(cn)|+ cos
(π

n

)
+

√√√√(|Im(cn)| − cos
(π

n

))2
+ |cn−1 − 1|2 +

n−2

∑
k=1
|ck|2

.

Based on the results obtained in this work, in what follows, we provide another
possible rectangle. In order to establish our result, we need the following lemma (see [21]):

Lemma 5. Let A, B, C, D ∈ B(H ) and T =

[
A B
C D

]
. Then,

ω(T) ≤ 1
2

(
ω(A) + ω(D) +

√
(ω(A)−ω(D))2 + (ω(B + C) + ω(B− C))2

)
.

Now we can give our explicit rectangle, which contains the rectangle (19) and thus all
of the zeros of p(z).

Theorem 3. Let q(z) be any even complex polynomial as given in (15) whose degree is ≥ 4. If z is
any zero of q(z), then z belongs to the rectangle [−s, s]× [−t, t], where

s :=
1
4

(
|Re(a2n)|+ cos

(π

n

)
+ F

)
+

1
2

cos
(

π

n + 1

)

+
1
2

√(
1
2

(
|Re(a2n)|+ cos

(π

n

)
+ F

)
− cos

(
π

n + 1

))2
+

(
|Re(an)|+ G + |Im(an)|+ H

2

)2

and

t :=
1
4

(
|Im(a2n)|+ cos

(π

n

)
+ J
)
+

1
2

cos
(

π

n + 1

)

+
1
2

√(
1
2

(
|Im(a2n)|+ cos

(π

n

)
+ J
)
− cos

(
π

n + 1

))2
+

(
|Re(an)|+ G + |Im(an)|+ H

2

)2
,

where
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F :=

√√√√(|Re(a2n)| − cos
(π

n

))2
+ |1− a2n−1|2 +

2n−2

∑
k=n+1

|ak|2,

G :=

√√√√|Re(an)|2 + |1− a1|2 +
n−1

∑
k=2
|ak|2,

H :=

√√√√|Im(an)|2 + |1 + a1|2 +
n−1

∑
k=2
|ak|2,

and

J :=

√√√√(|Im(a2n)| − cos
(π

n

))2
+ |1 + a2n−1|2 +

2n−2

∑
k=n+1

|ak|2.

Proof. Employing Lemma 5, on the real part of C(q) (17), which is obtained in the previous
section, by setting A = P11, B = P12, C = P21 and D = P22, it is enough to show that

ω(Re[C(q)])

≤ 1
2

(
ω(P11) + ω(P22) +

√
(ω(P11)−ω(P22))

2 + (ω(P12 + P21) + ω(P12 − P21))
2
)

. (20)

Let us simplify that. Indeed, we have

P11 =



−Re(a2n)
−a2n−1+1

2 · · · −an+2
2

−an+1
2

−a2n−1+1
2
...

−an+2
2

−an+1
2

0 1
2 0 · · · 0

1
2 0 1

2 0
...

0 1
2

. . . . . . 0
...

. . . . . . . . . 1
2

0 · · · 0 1
2 0


,

which can be written as

P11 =

[
−Re(a2n) u∗

u Tn−1

]
,

where x :=
[
−a2n−1+1

2 , · · · , −an+2
2 , −an+1

2

]
. Thus, by employing Lemmas 2 and 3, we have

ω(P11) = ω

([
|Re(a2n)| x∗

x Tn−1

])
≤ ω

([
ω(|Re(a2n)|) ‖x‖
‖x‖ ω(Tn−1)

])
= r
([

ω(|Re(a2n)|) ‖x‖
‖x‖ ω(Tn−1)

])
=

1
2

(
|Re(a2n)|+ cos

(π

n

)
+

√(
|Re(a2n)| − cos

(π

n

))2
+ 4‖x‖2

)

=
1
2

|Re(a2n)|+ cos
(π

n

)
+

√√√√(|Re(a2n)| − cos
(π

n

))2
+ |1− a2n−1|2 +

2n−2

∑
k=n+1

|ak|2
. (21)

On the other hand, we have
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P12 + P21 =


−an

2
−an−1

2 · · · −a2
2

−a1
2

0 0 · · · 0 0
0 0 · · · 0 0
...

...
...

...
...

1
2 0 · · · 0 0

+



−an
2 0 · · · 0 1

2
−an−1

2 0 · · · · · · 0
... 0

. . . · · · 0
−a2

2
... · · · · · ·

...
−a1

2 0 · · · 0 0



=



− an+an
2 − an−1

2 · · · − a2
2 − a1

2 + 1
2

− an−1
2

...
− a2

2
− a1

2 + 1
2

0 0 · · · 0
...

. . . · · · 0

0 · · · · · ·
...

0 0 · · · 0


n×n

.

Let v :=
[
−an−1

2 , · · · , −a2
2 , −a1+1

2

]T
. So that, by Lemmas 2 and 3, we have

ω(P12 + P21) = ω

([
|Re(an)| v∗

v 0

])
≤ ω

([
w(|Re(an)|) ‖v‖
‖v‖ 0

])
= r
([

w(|Re(an)|) ‖v‖
‖v‖ 0

])
=

1
2

(
|Re(an)|+

√
|Re(an)|2 + 4‖v‖2

)

=
1
2

|Re(an)|+

√√√√|Re(an)|2 + |1− a1|2 +
n−1

∑
k=2
|ak|2

. (22)

Similarly, we have

P12 − P21 =



− an−an
2 − an−1

2 · · · − a2
2 − a1

2 −
1
2

an−1
2
...

a2
2

a1
2 + 1

2

0 0 · · · 0
...

. . . · · · 0

0 · · · · · ·
...

0 0 · · · 0


n×n

.

Let u :=
[

an−1
2 , · · · , a2

2 , a1+1
2

]T
.

So that, by Lemmas 2 and 3, we have

ω(P12 − P21) = ω

([
|−iIm(an)| u∗

u 0

])
≤ ω

([
w(|Im(an)|) ‖u‖
‖u‖ 0

])
= r
([

w(|Im(an)|) ‖u‖
‖u‖ 0

])
=

1
2

(
|Im(an)|+

√
|Im(an)|2 + 4‖u‖2

)

=
1
2

|Im(an)|+

√√√√|Im(an)|2 + |1 + a1|2 +
n−1

∑
k=2
|ak|2

. (23)

In addition, by (1) and Lemma 1, we have

ω(P22) = cos
(

π

n + 1

)
. (24)
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Combining all above inequalities and equalities (21)–(24) in (20), and following the
same steps for ω(Im[C(q)]), we obtain the required result in Theorem 3. Thus, the proof of
Theorem 3 is established.

The example in Table 2 shows that our estimated rectangle given in Theorem 3 might
be better than the one given in Theorem 2.

Example 1. Consider q2(z) = z6 + 2iz5 + 4iz4 + 1
4 z + 1

16 ; then, the real and imaginary parts of
the zeros of q2(z) are bounded as obtained in Table 2.

Table 2. Comparisons of upper bounds based on the considered polynomial q2(z).

Result Upper Bound of |Re(λ)| Upper bound of |Im(λ)|
Kittaneh [14] 3.999737494 3.576384821

Theorem 3 2.476786336 2.585204772

Remark 1. Several particular cases of Theorem 3, which are of great interest, could be deduced.
Among others, we note the following cases:

• a2n = an = 0, a2n−1 = ±1 and a1 = 1.
• a2n = an = 0, a2n−1 = ±1 and ak = 0 for all k = 2, 3, · · · , n − 1. In particular, take

a1 = 1.
• a2n = an = 0, a2n−1 = ±1 and ak = 0 for all k = n + 1, n + 2, · · · , 2n− 2. In particular,

take a1 = 1.

Theorem 4. Under the assumptions of Theorem 3, we have

ω(C(q)) ≤ 1
2

L + cos
(

π

n + 1

)
+

√(
L− cos

(
π

n + 1

))2
+ (D1 + D2)

2

, (25)

where

L :=
1
2

√√√√ 2n

∑
k=n+2

|ak|2 +

√√√√ 2n

∑
k=n+2

|ak|2 + (|an+1|+ 1)2

,

D1 =
1
2

|an|+

√√√√|an|2 + |1− a1|2 +
n−1

∑
k=2
|ak|2


and

D2 =
1
2

|an|+

√√√√|an|2 + |1 + a1|2 +
n−1

∑
k=2
|ak|2

,

Proof. Applying (20) to C(q) given in (16) by setting A = A11, B = A12, C = A21 and
D = A22. So that, we obtain

ω(C(q)) ≤
1
2

(
ω(A11) + ω(A22) +

√
(ω(A11)−ω(A22))

2 + (ω(A12 + A21) + ω(A12 − A21))
2
)

. (26)

Let us observe that
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A11 =



−a2n −a2n−1 · · · −an+2 −an+1
1 0 · · · 0
...

. . . · · · 0

0 · · · . . .
...

0 0 · · · 1

0
...
0
0


n×n

.

Let d := [−a2n · · · −an+2]. So that, by Lemmas 2 and 3, we have

ω(A11) = ω

([
d −an+1
I 0

])
≤ ω

([
‖d‖ |an+1|
‖I‖ ‖0‖

])
= r

([
‖d‖ |an+1|+1

2
|an+1|+1

2 0

])

=
1
2

√√√√ 2n

∑
k=n+2

|ak|2 +

√√√√ 2n

∑
k=n+2

|ak|2 + (|an+1|+ 1)2

. (27)

Now, let b := [−an−1, · · · ,−a2, 1− a1]. So that, by Lemma 3, we have

A12 + A21 =



−an −an−1 · · · −a2 1− a1

0
...
0
0

0 0 · · · 0
...

. . . · · · 0

0 · · · . . .
...

0 0 · · · 0


n×n

,

and thus

ω(A12 + A21) = ω

([
|−an| b

0 0

])
≤ ω

([
w(|an|) ‖b‖

0 0

])
= r
([

w(|an|) 1
2‖b‖

1
2‖b‖ 0

])
=

1
2

(
|an|+

√
|an|2 + ‖b‖2

)

=
1
2

|an|+

√√√√|an|2 + |1− a1|2 +
n−1

∑
k=2
|ak|2

. (28)

Similarly, let z := [an−1, · · · , a2, 1 + a1]. So that, by Lemma 3, we have

A12 − A21 =



an an−1 · · · a2 1 + a1

0
...
0
0

0 0 · · · 0
...

. . . · · · 0

0 · · · . . .
...

0 0 · · · 0


n×n

.

So that

ω(A12 − A21) = ω

([
|an| b

0 0

])
≤ ω

([
w(|an|) ‖z‖

0 0

])
= r
([

w(|an|) 1
2‖z‖

1
2‖z‖ 0

])
=

1
2

(
|an|+

√
|an|2 + ‖z‖2

)

=
1
2

|an|+

√√√√|an|2 + |1 + a1|2 +
n−1

∑
k=2
|ak|2

. (29)
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Because ω(A12 − A21) = cos
(

π
n+1
)
, by substituting (27)–(29) into (26), we obtain the

required result in (25).

The following example illustrates that the upper bound given in Theorem 4 is better
than some famous and recent upper bounds obtained in the literature. Any zero of q3(z) =
z6 + 1

2 z5 + 1
16 z2 + 1 is bounded by any values given in Table 3 and shows that our presented

results could be much better than all compared upper bounds listed in Table 2.

Table 3. Comparisons of upper bounds based on the considered polynomial q3(z).

Mathematician Upper Bound

Cauchy (6) 2
Carmichael and Mason (7) 1.501301519

Montel (8) 1.5625
Fujii and Kubo (9) 1.777921993

Abdurakhmanov (10) 1.701542875
Linden (11) 2.350962955

Kittaneh (12) 1.455651176
Abu-omar and Kittaneh (13) 1.857439836

Al-Dolat et al. (14) 2.147748325
Theorem 4 1.307548659

Corollary 3. Under the assumptions of Theorem 4. If ak = 0 for all k = 2, 3, · · · , n and a1 = 1
(or a1 = −1), then, we have

ω(C(q)) ≤ 1
2

L + cos
(

π

n + 1

)
+

√(
L− cos

(
π

n + 1

))2
+ 1

. (30)

where L is defined in Theorem 4.

Proof. From (20), we have ω(A12 + A21) = 0 and ω(A12 − A21) = 1, if a1 = 1. Thus, we
have

(ω(A12 + A21) + ω(A12 − A21))
2 = 1.

In addition, we always have ω(A22) = cos
(

π
n+1
)
. Employing (20), we obtain the desired

result in (30).

Remark 2. It is convenient to note that (25) can be rewritten as

ω(C(q)) ≤ 1
2

ω(A11) + cos
(

π

n + 1

)
+

√(
ω(A11)− cos

(
π

n + 1

))2
+ (D1 + D2)

2

.

Moreover, if an+1 6= 0 in Theorem 4, one can replace the upper bound of ω(A11) by any other
upper bound established in the literature. Indeed, the choice could be as minimal as possible, and
this improves our result in (25).

We end this work by giving a new upper bound for the numerical radius of the
companion matrix that represents the polynomial g(z) = zn + cnzn−1 + cn−1zn−2 + · · ·+
c2z + c1 (with c1 6= 0) of any degree ≥ 2.

Our upper bound is exactly the number L defined in Theorem 4. Namely, cn =
a2n, cn−1 = a2n−1, · · · , c2 = an+2, c1 = an+1. If ck’s are all reals such that |ck|<

6=
1 and

|ck+1|>
6=
|ck| (∀k = 1, 2, · · · , n− 1), then, we have
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ω(C(g)) ≤ 1
2

(√
n

∑
k=2
|ck|2 +

√
n

∑
k=2
|ck|2 + (|c1|+ 1)2

)
:= MW, (31)

provided that
n
∑

k=2
|ck| ≥ 2

3 . Otherwise, the result is still valid even we do not have these

assumption(s), i.e., if |ck| ≥ 1 for some k 6= 1, then (31) it remains always true for both real
and complex coefficients. The analysis of the proof is mentioned in the proof of Theorem 4,
as stated for ω(A11), under the assumption that c1 = an+1 6= 0.

6. Observations and Discussion Regarding MW

Let us now discuss the findings of our study on the applied side. First, consider
q4(z) = z6 + 1

4 z5 + 1
9 z4 + 1

16 z3 + 1
25 z2 + 1

36 z + 1
49 ; we find that the largest zero has modulus

= 0.5447544053. Table 4 shows that our result MW is pretty close to the exact modulus
and it is much better than all other upper bounds.

Table 4. Comparisons of upper bounds based on the considered polynomial q4(z).

Mathematician Upper Bound

Cauchy (6) 1.25
Carmichael and Mason (7) 1.039971167

Montel (8) 1
Fujii and Kubo (9) 1.066738881

Abdurakhmanov (10) 1.198213950
Linden (11) 2.091031073

Kittaneh (12) 1.152835774
Abu-omar and Kittaneh (13) 1.072449189

Al-Dolat et al. (14) 1.573586825
Theorem 4 1.219108946

MW 0.6721175730

Another example shows the efficiency of our result (31), consider q5(z) = z6 + 1
3 z4 +

1
4 z3 + 1

9 z2 + 1
100 ; we find that the largest zero has modulus = 0.7419983061. Table 5 shows

that our result MW is very close to the exact modulus.

Table 5. Comparisons of upper bounds based on the considered polynomial q5(z).

Mathematician Upper Bound

Cauchy (6) 1.333333333
Carmichael and Mason (7) 1.089062344

Montel (8) 1
Fujii and Kubo (9) 0.9939972629

Abdurakhmanov (10) 1.167303296
Linden (11) 2.078873251

Kittaneh (12) 1.325435041
Abu-omar and Kittaneh (13) 1.299097566

Al-Dolat et al. (14) 1.581696908
Theorem 4 1.351458429

MW 0.7647166222

After careful considerations and investigations, for almost all cases of ck’s (with
|ck| < 1), we discovered that (31) is very effective as long as |ck| < 1, besides the other
mentioned assumptions. The following example explains why we chose the presented
conditions in (31), and thus it solidifies and supports the reason for our selection. Let

h1(z) = z6 +
1
6

z4 +
1
5

z2 +
1
4

.
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The real coefficients of h1(z) do not respect our conditions in (31). So, the largest zero
has modulus = 0.8120242973, but the upper bound in (31) = 0.7685824855, which is an
incorrect upper bound, implying that (31) does not apply arbitrary for any ck’s unless we
have some restriction(s). To ensure the correctness—and after long extrapolation by testing
many cases—we established the investigated assumptions in (31) for all polynomials with
real coefficients.

In this regard, it is worth noting that the assumptions about ck’s, whenever |ck| < 1,
are only valid for real coefficients. However, if some of ck’s is complex, then it is not true
that we cannot apply (31). For example, the polynomial

h2(z) = z6 +

(
1
4
+ i

1
4

)
z5 +

i
9

z4 +
i

16
z3 +

1
25

z2 +
1

36
z +

1
49

,

refuting three assumptions of (31). Namely, we have that some ck’s is complex, with
n
∑

k=2
|ck| = 0.5949422794 ≤ 2

3 , and |c3| < |c2|. At the same time, we find that the largest zero

has a modulus = 0.6408240287. However, the upper bound in (31) = 0.7337440145, which
means that (31) still can be applied under other conditions as long as |ck| < 1. We are not
able to determine the sufficient condition for complex coefficients in the case that |ck| < 1.

Furthermore, the polynomial

h3(z) = z6 +
1
4

z4 +
1
3

z2 +
1
4

,

is a good example, showing that the conditions |ck+1| < |ck| and
n
∑

k=2
|ck| = 0.5833333333 ≤

2
3 are not necessary but they are sufficient. In other words, the restricted conditions in (31)
do not mean that there are no other examples that violate these conditions. Indeed, the
largest zero of h3(z) has modulus = 0.8310538215; however, the upper bound in (31)
= 0.8671411790. Therefore, (31) can be applied even if we do not have our restrictions.

In this matter, we would say our restricted assumptions in (31) are very sufficient and
hold correctly over all reals as long as we have the mentioned assumptions in (31); however,
they are not necessary, in general. We leave it up to the interested reader to investigate the
sufficiency and necessity conditions in the case of |ck| < 1. When some of |ck| > 1, k 6= 1,
(31) is always valid, regardless of what types of coefficients we have, their arrangement,
or their sum. Last but not least, the upper bound (31) has a very high impact efficiency,
especially when all |ck|’s are < 1.

7. Conclusions

In this article, inequalities of the numerical radius of Hilbert space operators are
introduced. For the first time and to the best of our knowledge, the Cartesian decomposition
is used in applications to find upper bounds for the numerical radius of the disk containing
zeros of real polynomials. As we showed, we found a new method (bound) to find the
upper bounds through the Cartesian decomposition with some sufficient restrictions, and
we showed with examples that our method is much better than the other bounds that were
established earlier in the literature. The constraints we have assumed are not necessary but
are quite sufficient to prove that the zeros of real polynomials lie within a given disk. As for
complex polynomials, there is no condition for them. Our method is valid for all these types
of polynomials, as obtained in h2(z). It remains to point out that the restrictions placed on
our method are not alone, and we have shown with an example that our method can work
without these restrictions, as obtained in h3(z). For further details and more information,
we recommend the reader refer to Section 6. Moreover, we would like to mention that,
based on the results obtained in this work, all the zeros of a complex polynomial are located
in a new possible rectangle (Theorem 3, other than Kittaneh rectangle Theorem 2), provided
with an example. This shows that our proposed rectangle is better (in some cases) than the
one proposed in Theorem 2.
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