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Abstract: Due to the influence of insufficient production capacity or shortage of production materials,
production enterprises may produce products in advance or be backordered. In order to improve the
adaptability of enterprises and reduce production costs, the impacts of early delivery and delayed
delivery are analyzed, and the method to determine the loss threshold is put forward. Moreover,
the maximum allowable shortage of customers with different tardiness is calculated, and the cost of
delayed delivery and loss of sales is determined. Considering the production cost, raw material cost,
inventory cost, staff cost, stockout, and lost sales cost, an early/delay multi-objective optimization
model is developed for an aggregate production planning (APP) problem to minimize total production
costs and instability in the workforce. Three algorithms and three different hybrid strategies are
designed to solve the model. Finally, some test experiments are employed in order to validate the
performance of the proposed evaluation of the three algorithms. The results show that: The method
of determining the loss threshold can effectively reflect the double influence of customer satisfaction
with waiting time and shortage quantity. The definition of unit tardiness cost reflects the law that it
increases gradually with waiting time. The determination of the feasible range of product output and
the number of workers in the workforce can reduce the search scope of the algorithm and improve
the efficiency of the algorithm.

Keywords: aggregate production planning; multi objective; multi-product; late delivery; hybrid
algorithms; hybrid strategies

1. Introduction

Aggregate production planning (APP) is an operational activity that determines the
minimum cost, workforce, and production plans required to meet customer demands. APP
simultaneously establishes optimal production, inventory, and employment levels over
a given finite planning horizon to meet the total demand for all products that share the
same limited resources [1]. As the implementation of JIT (Just in Time) practice becomes
increasingly popular, each echelon in a supply chain tends to carry smaller inventories, and
thus the whole supply chain is made more vulnerable to lost sales and/or backorders [2].
Furthermore, with the development of the manufacturing industry, more dynamic char-
acteristics of production need to be considered in practical application. Therefore, the
APP model should include multiple factors related to production and inventory, such as
production cost, labor cost, inventory cost, etc. and should also consider some extension
conditions, such as backorder cost, overtime cost, and lost sales cost.

APP is one of the most critical areas of planning performed in the design of production
systems, and it has attracted considerable interest from both practitioners and academics [1].
Many researchers have considered the backordering decisions in the APP model. We
summarized the most important and related studies that consider backordering for APP in
Table 1.
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Table 1. The related studies considering the backordering for APP.

Article Model Category Objective Function Considerations Solving
Approaches

Wang and
Liang [3]

Multiple objective linear
programming model

Total production costs;
Carrying and backordering
costs; Costs of changes in

labor levels

Inventory levels; labor levels;
machine capacity; warehouse

space; the time value of money

Solution algorithm
based on linear
programming

problem

Ning et al. [4] A fuzzy random APP
model

The chance of obtaining the
profit more than the
predetermined profit

The market demand;
production cost;

subcontracting cost; inventory
carrying cost; backorder cost;

product capacity; sales
revenue; maximum labor level;

maximum capital level

A hybrid
optimization

algorithm

Mahdavi
et al. [5]

An integer mathematical
programming model

The summation of
machine, reconfiguration,

inter-cell material handling,
inventory holding,

backorder, worker hiring,
firing and salary costs

The available time for workers;
capacity of machine; worker

assignment; worker
assignment

Linearized using
some auxiliary

variables

Chakrabortty
and Hasin [6]

Multiple objective linear
programming model

The production costs; the
carrying and backordering
cost; the rate of change in

labor levels

Inventory levels; labor levels;
overtime; subcontracting and

backordering levels; labor,
machine and warehouse

capacity

Multi-Objective
Genetic Algorithm

Sadeghi
et al. [7]

Fuzzy Grey Goal
Programming model

The total production costs;
the total carrying and

backordering costs; the rate
of changes in

workforce level

machine capacity and
warehouse space; labor levels;

carrying inventory

A goal
programming

approach

Saidi-Mehrab
et al. [8]

Integer linear
programming model

The total costs of machine
maintenance and overhead,

system reconfiguration,
backorder and inventory

holding, training and
salaryof workers

Demand satisfaction;
machineavailability; machine

time-capacity; available time of
worker and training

Linearized using
some auxiliary

variables

Basis et al. [9] Mixed integer linear
programming model

The total cost composed of
production, setup, raw

material supply, inventory
holding and

backorder penalty

Demand satisfaction; material
balance; inventory capacity;

the relationship between setup
binary and

production quantity

A rolling
horizon-based

approach

Modarres and
Izadpanahi [10]

Linear programming
model

The operational cost
(including backorder and
inventory carrying costs);

the energy cost;
carbon emission

Demand satisfaction; limits for
each product in each period

and total production;
energy consumption

The goal attainment
technique

Hossain
et al. [11]

Mixed integer linear
programming model

The total costs in terms of
inventory levels, labor

levels, overtime,
subcontracting and

backordering levels, and
labor, machine, warehouse

capacity, incentive and
wastage cost

The time varying demand,
unstable production capacity
and work forces, inventory
control, wastage reduction,

and proper incentive
for workforce

Genetic Algorithm
Optimization

approach and Big
M method

Sakhaii
et al. [12]

Deterministic nonlinear
mathematical model

The costs of machine
breakdown and relocation,

operator training and
hiring, inter-intra cell part

trip, and shortage
and inventory

The inter-cell layout, machine
reliability and relocation,

machine capacity and
operator assignment

Linearized
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Table 1. Cont.

Article Model Category Objective Function Considerations Solving
Approaches

Mehdizadeh
et al. [13]

Multi-objective
optimization model

The profit by improving
learning and reducing the
failure cost of the system;
the costs associated with
repairs and deterioration

The market demands; the
machine capacity; the

limitation on the total quantity
produced; the workforce levels

of labor groups;
inventory capacity

Subpopulation
genetic algorithm;

weighted sum
multi-objective

genetic algorithm
and nondominated

sorting genetic
algorithm II

Jamalnia
et al. [14]

A framework based on a
set of stochastic,

nonlinear, multi-objective
optimization models

The total revenue; total
production costs;

utilization of production
resources and capacity

The production capacity; the
product demand; workforce

The multiple
criteria

decision-making
methods Additive

value function,
TOPSIS and VIKOR

Xue and
Offodile [15]

Non-linear mixed integer
programming model

The total cost of machine
maintenance and overhead,

inter- and intra-cell
material handling,
inventory holding,

subcontracting, and
backordering

The production-inventory
balance; production

consistency; the lower and
upper bounds for the

production level; the capacity
limits; the machine balance;
the storage space limits; the
maximal backordering level

Linearized

Jang and
Chung [16]

A robust
optimization model

The total costs composed
of regular time labor costs,
overtime labor costs, hiring

costs, layoff costs, and
product-related costs that

include producing, holding
inventory, backlogging,

and subcontracting costs

The workforce level; the
production capacity; the

production balance; overtime
labor limit

Bi-level
particleswarm
optimization

Throughout the review, multi-objective programming has been widely used in this
area, and most of the existing research on APP mainly consider the constraints on the
balance equation for production, inventory capacity, inventory and demand, production
capacity, and labor capacity. Moreover, the production cost, inventory and backorder level
are the other main objectives that have been taken into consideration. The main methods
applied to management science techniques for APP problems are: linear programming,
piecewise linear programming, nonlinear programming, etc. Table 2 shows some of the
characteristics of the existing models.

Furthermore, Florian et al. [17] analyzed the computational complexity of a class
of deterministic production planning problems with various types of cost functions and
proved that the single material problem under the constraints of linear cost function
and time-varying capacity and some special cases are NP-hard. Chen and Thizy [18]
also proved that the multi-item capacitated production planning problem is strongly NP-
hard. In addition, according to Ramezanian et al. [19] and Mehdizadeh et al. [13], APP
problems with multi-phase production are among strongly NP-hard issues. Moreover,
metaheuristics have proved to be efficient techniques for solving APP problems. Among
the metaheuristics, genetic algorithms (GAs) (Chakrabortty et al. [6], Hossain et al. [11],
Mehdizadeh et al. [13], Ramezanian et al. [19], Liu et al. [20]), and particle swarm optimiza-
tion (PSO) (Jang et al. [16], Wang et al. [21], Chakrabortty et al. [22]) have been used to deal
with APP models.
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Table 2. The characteristics of the existing models.

Issue Description

Product demand Be deterministic, and must be satisfied by product, inventory,
or backorder

Production costs
Strictly linear or piecewise linear in any given planning period (consist of
regular time and overtime production and costs of inventory
and backorders)

Inventory Be limited over the entire planning horizon

Capacity Inventory capacity, production capacity and labor capacity are
mainly considered

Backorders May or may not be allowed
Multiple product In most APP models more than one product exists

Labor characteristics Some important labor characteristics are considered in some APP models,
such as labor skills, labor training, labor productivity, and constant level

Objective The costs associated with meeting a known demand, the total revenue of
the system or inventory and backorder level

Constraints The balance equation for production, inventory capacity, inventory and
demand, pro-duction capacity, and labor capacity

Model category Linear programming, piecewise linear programming, nonlinear
programming, etc.

As a major factor determining the production capacity of enterprises, labor costs
account for an increasing proportion. Therefore, decision makers pay great attention to the
impact of labor changes, and the stability of workers has become more important than ever.
Furthermore, the fluctuation of demand will lead to a change in enterprise employment.
So, the stability of employment is extremely important to the APP problem. Therefore,
in the objective function, the sum of the changes in the number of workers is used to
measure its stability. In reality, due to the decline of actual production capacity caused by
the change of workers, equipment maintenance or damage, holidays and sudden epidemic
situations, or due to the shortage of production materials, production enterprises may
produce products in advance or be backordered. Both of these situations will affect the cost
of the enterprise. In order to improve the adaptability of enterprises and reduce production
costs, it is necessary to properly arrange the production plan to improve the production
management level of the enterprise.

In considering the situation of production in advance or backorder, this paper an-
alyzes the impact of backorders and determines the cost of backorder and loss of sales.
Furthermore, a bi-objective optimization model for an APP problem of multi-product,
multi-stage with early and late delivery minimizes total production costs and instability in
the workforce, considering the balance equation for production, product demand, labor,
inventory and production capacity, and different worker types. In order to improve the
efficiency of solving large-scale multi-objective APP problems, a local search (LS) algorithm
is based on the minimum cost flow (MCF). Further, in order to improve the speed of solving
APP problems, hybrid strategies based on local search-based GA (LS-GA), hybrid genetic
algorithm-particle swarm optimization based on stages (HGA-PSO1) and multi-population
strategy (HGA-PSO2) are adopted to solve this model. Finally, the performances of the
proposed evaluation of the multi-objective algorithm are selected to compare and analyze
each algorithm.

The remainder of this paper is organized as follows: Section 2.1 introduces some
notations. Section 2.2 analyzes the impacts of production in advance and backorder. In
Sections 2.3 and 2.4, the objective functions and constraints are discussed, respectively.
In addition, the GA and the LS algorithm based on MCF are proposed in Sections 3.1
and 3.2, respectively, and a double-layered multi-objective particle swarm optimization
algorithm (DMOPSO) is designed in Section 3.3, and three hybrid strategies are adopted in
Section 3.4. The proposed algorithm is tested via some numerical examples in Section 4.
Finally, Section 5 provides concluding remarks.
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2. Bi-Objective Model for APP with Production in Advance and Backordering

On-time delivery (OTD) refers to the delivery of products that meet the quantity and
quality requirements to customers in the period of the promised delivery date, which
is a key metric to measure delivery performance [23]. OTD can ensure the reliability of
delivery and, most importantly, customer loyalty as well as improve the reputation of
enterprises and customer satisfaction. In reality, due to the decline of actual production
capacity caused by the change of workers, equipment maintenance or damage, holidays
and sudden epidemic situations, or due to the shortage of production materials, production
enterprises may produce in advance or be backordered. Production in advance will increase
the inventory cost, while backorders will affect customer satisfaction. Generally speaking,
for customers, the longer the delayed delivery time and the greater the quantity, the lower
the customer satisfaction. If enterprises cannot meet their customers’ expectations, then
they may find a supplier who can. This leads to a loss of sales, which greatly increases the
lost sales cost (LSC). For the multi-product and multi-stage production mode, production
in advance or backorder often occurs, which will directly or indirectly lead to an increase in
enterprise production cost and can irreparably damage the customer relationship. So, it is
necessary to properly arrange the production plan to improve the production management
level of the enterprise. Therefore, a bi-objective optimization model is established in
this section for the APP problem considering the impacts of production in advance and
backorder. These two objective functions are formulated in Section 2.3, and the constraints
are analyzed in Section 2.4 based on the mathematical notations defined in Section 2.1.

2.1. Notations

(1) Sets and indices

The sets and indices used in this paper are listed in Table 3.

Table 3. Sets and indices.

Sets/Indices Description

T Set of periods in planning
t Index of the production planning period, t ∈ T
I Set of product categories
i Index of the product category, i ∈ I
J Set of raw material categories
j Index of the raw material category, j ∈ J
K Set of the worker types
K Index of the worker type, k ∈ K

(2) Parameters

The parameters used in this paper are listed in Table 4.

Table 4. Parameters.

Parameters Description

PDit Demand of product i in period t (units)
PCi Unit production cost of product i

PBit(t′ − t) The maximum tolerant backorder quantity for product i in period t
for the customer waiting time t′ − t;

Bit(t′ − t) The delivery quantity of the product i from period t delayed to
period t′

cbi(t′ − t) The backorder cost per unit time and per unit quantity
C1t Total production cost of period t
cli The unit LSC of product i
C5t Total backorder cost or lost sales cost in period t
PRit The unit raw material cost of product i in period t
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Table 4. Cont.

Parameters Description

C2t Total raw material cost in period t
PWik Labor hours required for a unit product i of worker k
PNit The production capacity for product i in period t
CIit The inventory of product i in period t
CKi Inventory cost of product i
CNi The inventory capacity of product i
C3t Total inventory cost in period t
Rij The demand of raw material j for producing unit i
RMjt Total demand of raw material j in period t
RCjt The price of raw material j in period t
WHtk The worker number for k type in period t
WIk The basic salary of k type worker in a planning period
WLtk The number of laid-off workers for k type in period t
WHC Training cost for a new worker
WR Maximum regular labor hours in a period
WO Maximum overtime labor hours in a period
WRTtk Total regular labor hours for k type worker of period t
WOTtk Total overtime labor hours for k type worker of period t
WRCk Unit regular time labor cost for k type worker
WOCk Unit overtime labor cost for k type worker
C4t Total labor cost in period t

(3) Decision variables

The decision variables are listed in Table 5.

Table 5. Decision variables.

Variables Description

PPit Production quantity of i in period t
Wtk The number of k type workers employed in period t

2.2. Analysis of the Impact of Production in Advance and Stockout

(1) Production in advance

Manufacturing enterprises make use of the remaining production capacity to carry out
production in advance, which can make balanced use of the effective production capacity
of the enterprise in each period and avoid the impact caused by the change of workers,
equipment maintenance or damage, holidays, and other conditions [9]. However, produc-
tion in advance will increase the inventory cost of production, which can be expressed by
Equation (1).

T

∑
t=1

I

∑
i=1

CIit·CKi (1)

(2) Stockout

Due to the decline of actual production capacity or the shortage of production ma-
terials, production enterprises may be backordered [2]. Stockout will lead to a decline
in customer satisfaction or loss of sales. Generally, the longer the replenishment time
and the greater the backorder quantity, the greater the possibility of a loss of sales [24].
Therefore, the stockout cost, which includes backorder cost (BC) and LSC, depends on the
replenishment time and the backorder quantity. In order to determine the stockout cost, it
is necessary to determine firstly the critical value of the proportion of backorder quantity
to the total demand for different replenishment times that customers can tolerate.
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The threshold for customer loss: Let the threshold for customer loss be the critical
value. Referring to the definition of exponential partial backlogging rate in the inventory
model [25], the threshold for customer loss is defined as Equation (2).

β(t′ − t) = k0·e−k1(t′−t−1) (2)

where t′ − t is the customer waiting time (t′ > t), t represents the planning period of
customer demand, and t′ is the period of replenishment. k0 is the backordering intensity
coefficient, that is, the maximum backorder rate acceptable to the customer for one planned
period of delayed delivery. k1 is the waiting time resistance, and 0 < k0 < 1, k1 > 0.

Then, the maximum tolerant backorder quantity of customers for the customer waiting
time t′ − t according to the demand PDit of product i in the period t can be calculated by
Equation (3).

PBit(t′ − t) = PDit·β(t′ − t) = PDit·k0·e−k1(t′−t−1) (3)

The backorder cost (BC): Stockout will lead to significant decreases in customer satis-
faction or loss of sales. Generally, the method of penalty cost is adopted to deal with the
BC, and the BC per unit time is fixed, and most of them do not consider the difference in
the time to replenishment. However, in fact, the longer the waiting time and the greater the
quantity of backorder, the worse the customer’s satisfaction. Therefore, the BC needs to
consider the two influencing factors jointly. It is assumed that the BC per unit time and per
unit quantity also increases linearly [2]. Then, the BC per unit time and per unit quantity,
cbi(t′ − t), can be expressed by Equation (4).

cbi(t′ − t) = fi + ai·(t′ − t) + bi·(t′ − t)2 (4)

where fi is the fixed cost part of product I unit BC, ai and bi are the cost rate and cost
increasing rate of unit BC, respectively.

If the stockout quantity of each period is less than or equal to the maximum tolerant
backorder quantity of customers, the BC in period t can be obtained by Equation (5).

C5t =
I

∑
i=1

Bit(t′ − t)·cbi(t′ − t), Bit(t′ − t) ≤ PBit(t′ − t) (5)

Lost sales cost (LSC): If the stockout quantity is greater than the maximum tolerant
backorder quantity of customers, the customer will no longer wait. The enterprise loses the
order of this part of the products, and the LSC of this part can be calculated according to
the lost sales volume. So, the LSC in period t can be expressed by Equation (6).

C5t =
I

∑
i=1

Bit(t′ − t)·cli, Bit(t′ − t) > PBit(t′ − t) (6)

2.3. Objective Functions

According to the literature [20], the total production cost and stability in the work-
force are mainly considered, where the total production cost mainly includes the product
production cost, raw material cost, product inventory cost, labor cost, BC, and LSC.

The total production cost in period t can be calculated by Equation (7).

C1t =
I

∑
i=1

PPit·PCi (7)

Total demand of raw material j and the total raw material cost in period t can be
calculated by Equations (8) and (9).

RMjt = Rji·PPit (8)
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C2t =
I

∑
i=1

PPit·PRit =
I

∑
i=1

J

∑
j=1

PPit·Rij·RCjt (9)

Using Equation (10), the total inventory cost in period t can be calculated based on
Equation (1).

C3t =
I

∑
i=1

CIit·CKi (10)

If the working hours required for production are less than the maximum labor hours

of regular time for k type worker,
I

∑
i=1

PPit·PWik ≤ Wtk·WR, then the total labor hours for

regular time WRTtk =
I

∑
i=1

PPit·PWik and the total labor hours of overtime WOTtk = 0. Oth-

erwise, WRTtk = Wtk·WR and WOTtk =
I

∑
i=1

PPit·PWik −Wtk·WR. Thus, total labor hours

for k type worker of regular time and overtime can be written as Equations (11) and (12).

WRTtk = min

{
I

∑
i=1

PPit·PWik, Wtk·WR

}
(11)

WOTtk = max

{
I

∑
i=1

PPit·PWik −Wtk·WR, 0

}
(12)

The total labor cost in period t can be calculated by Equation (13).

C4t =
K

∑
k=1

(WHtk·WHC + Wtk·WIk + WRTtk·WRCk + WOTtk·WOCk) (13)

The BC and LSC can be calculated according to Equations (5) and (6). Then, the first ob-
jective function that aims to minimize the total production cost is defined in Equation (14).

minZ1 =
T

∑
t=1

(C1t + C2t + C3t + C4t + C5t) (14)

The diversity of products and fierce competition make the stability of the manufac-
turing industry more important than ever. Therefore, in order to improve the adaptability
of enterprises and reduce production costs, we need to consider the stability of work-
ers. Hence, the sum of changes in the number of workers is used to measure its stability
according to Equation (15).

minZ2 =
T

∑
t=1

K

∑
k=1

(WHtk + WLtk) (15)

where for period t, the hired k type worker number, WHtk = max{Wtk −Wtk−1, 0}, and the
number of laid off k type workers, WLtk = max{Wtk−1 −Wtk, 0}.

2.4. The Constraints

Since Bit(t′ − t) indicates the delivery quantity of product i from period t delayed to
period t′, if there is a delivery quantity from the previous period delayed to period t′, it is
equivalent to the increase in demand in period t′. Conversely, if there is a delivery period
in period t, it is equivalent to a reduction in demand in period t. In the case of backorder
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and loss of sales, the production and inventory balance condition can be expressed by
Equation (16).

CIit = CIit−1 + PPit−1 −
t−2

∑
t1=1

Bit−1(t− 1− t1)− PDit−1 +
T

∑
t2=t

Bit−1(t2 − t + 1) (16)

Equation (17) represents the workforce balance constraint.

Wtk = Wtk−1 + WHtk −WLtk (17)

Constraint (18) and Constraint (19) express the inventory and production capacity
constraints, respectively.

0 ≤ CIit ≤ CNi (18)

0 ≤ PPit ≤ PNit (19)

The sum of the initial inventory level, the production volume and the delivery quantity
of the product in each period should be equal to or greater than the demand for the product.
Then, the demand constraint of the product in each period can be expressed as:

PPit + CIit +
T

∑
t′=t+1

Bit(t′ − t) ≥ PDit (20)

Constraint (21) ensures that the production capacity of the workforce must meet the
labor hours required to produce the production quantity.

I

∑
i=1

PPit·PWik ≤Wtk(WR + WO) (21)

For the same product in the same period, production in advance and backordering
or loss of sales cannot occur at the same time. That is, if the product inventory is greater
than zero, there will be no backordering or loss of sales. The constraint can be expressed
as follows:

CIit·
T

∑
t′=t+1

Bit(t′ − t) = 0 (22)

Then the bi-objective APP problem model with production in advance and partial
backordering can be established.

3. Hybrid Algorithms Design

To the complexity of this APP model, three hybrid algorithms based on the local search
are designed to improve the efficiency of the algorithm. A genetic algorithm (GA) has
broadly applicable stochastic search and optimization techniques, while a simple GA is
prone to premature and has slow convergence. The particle swarm optimization (PSO)
algorithm is a kind of swarm optimization algorithm with a fast search speed and is
easy to implement [26]. A local search (LS) algorithm can improve search ability in the
solution space.

In order to improve the efficiency of solving large-scale multi-objective APP problems,
the three algorithms can be effectively combined. In order to improve the efficiency of
solving large-scale multi-objective APP problems, based on the characteristics of GA, LS,
and PSO, this section designs three hybrid algorithms using different hybrid strategies.
In this section, the GA and the LS algorithm based on the augmented cycle algorithm
are designed to solute the APP problem model in Sections 3.1 and 3.2, respectively. In
Section 3.3, a DMOPSO algorithm is proposed, and, finally, three hybrid strategies are
introduced in Section 3.4.
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3.1. Genetic Algorithm

(1) Chromosome Representation

In this study, a chromosome CH contains two sub-chromosomes, P and W, which
represent the production quantity of a product and the number of workers, respectively.
The genes in each chromosome are integer. Figure 1 is a simple example of a chromosome
with I product categories and T periods.

Algorithms 2022, 15, x FOR PEER REVIEW 11 of 25 
 

P
...

W

...

T...21

ITPP...1IPP 2IPP

...21PP 22PP 2TPP

12PP11PP 1TPP

Period (t)

Category 1

Category 2

...

Category I

Worker Type 1 ... 1TW21W11W

Worker Type 2 ... 2TW22W12W

......

Worker Type k ... TkW2kW1kW  
Figure 1. An example of a chromosome. 

(2) Initialization 
Analysis of the feasible range of itPP : For the same product in the same period, pro-

duction in advance and backordering or loss of sales cannot occur at the same time. If the 
total amount of demand in the current period and the quantity of backorders in the pre-
vious period is greater than the sum of production capacity and inventory at the begin-
ning of the current period, stockout occurs. Therefore, in this case, the product should be 
produced with the maximum production capacity due to the existence of stockout cost. 
Otherwise, the minimum itPP  should meet the sum of the product demand in the plan-
ning period and the quantity of backorder in the previous period according to Constraint 
(20). Thus, the minimum itPP  in the planning period can be obtained by 

2

1

1 2
1

MinPP max 0,min ( ) ,
t

it it it it it
t

PD B t t CI PN
−

−
=

    = + − −  
    


 

(23)

Moreover, the maximum production quantity should not exceed the production ca-
pacity and inventory capacity according to Constraints (18) and (19). 

2

1

1 2
1

MaxPP min ( ) ,
t

it i it it it it
t

CN PD B t t CI PN
−

−
=

  = + + − − 
  


 

(24)

Analysis of the feasible range of tkW : The minimum and maximum tkW  can be ob-
tained according to the production quantity and the labor cost and stability in the work-
force (      indicates rounding up). 

1
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Obviously, the chromosomes satisfy Constraints (18)–(22) in the process of initializa-
tion. 

Calculation of the stockout quantity: If the total amount of demand in the current 
period and the quantity of backorders in the previous period is greater than the sum of 
production capacity and inventory at the beginning of the current period, the products 
will be out of stock; otherwise, the products will be produced in advance. So, the stockout 
quantity can be calculated by 
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(2) Initialization

Analysis of the feasible range of PPit: For the same product in the same period,
production in advance and backordering or loss of sales cannot occur at the same time.
If the total amount of demand in the current period and the quantity of backorders in
the previous period is greater than the sum of production capacity and inventory at the
beginning of the current period, stockout occurs. Therefore, in this case, the product should
be produced with the maximum production capacity due to the existence of stockout cost.
Otherwise, the minimum PPit should meet the sum of the product demand in the planning
period and the quantity of backorder in the previous period according to Constraint (20).
Thus, the minimum PPit in the planning period can be obtained by

MinPPit = max

{
0, min

{
PDit +

t−1

∑
t2=1

Bit−1(t− t2)− CIit, PNit

}}
(23)

Moreover, the maximum production quantity should not exceed the production capac-
ity and inventory capacity according to Constraints (18) and (19).

MaxPPit = min

{
CNi + PDit +

t−1

∑
t2=1

Bit−1(t− t2)− CIit, PNit

}
(24)

Analysis of the feasible range of Wtk: The minimum and maximum Wtk can be obtained
according to the production quantity and the labor cost and stability in the workforce (d e
indicates rounding up).

MinWtk =

⌈
(

I

∑
i=1

PPit·PWik)/(WR + WO)

⌉
(25)

MaxWtk = max

{
Wtk−1,

⌈
(

I

∑
i=1

PPit·PWik)/WR

⌉}
(26)

Obviously, the chromosomes satisfy Constraints (18)–(22) in the process of initialization.
Calculation of the stockout quantity: If the total amount of demand in the current period
and the quantity of backorders in the previous period is greater than the sum of production
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capacity and inventory at the beginning of the current period, the products will be out of
stock; otherwise, the products will be produced in advance. So, the stockout quantity can
be calculated by

max

{
PDit +

t−1

∑
t′′=1

Bit−1(t− t′′ )−CIit − PPit, 0

}
(27)

(3) Genetic Operators

The genetic operators in this paper are almost the same as that of the genetic al-
gorithm in [20], mainly including the partheno crossover operator (only utilizable for
sub-chromosome P), arithmetic crossover operator, production mutation operator, muta-
tion operator for the number of workers, and repairing infeasible gene operators, which
will not be introduced in detail here.

The GA has the characteristics of random multi-point search and implicit parallelism,
while a simple genetic algorithm is prone to being premature and has slow convergence.
As shown in Figure 2, the same experiment is calculated 10 times using the designed GA,
and it can be seen that sometimes the algorithm will fall into the local optimal solution.
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Figure 2. Running results of GA for 10 times.

3.2. Local Search Algorithm

This LS algorithm searches the neighborhood from a solution of production quantity
under the condition that the number of workers remains unchanged to improve Z1. The
problem of optimization of production quantity is a special case of the MCF problem,
according to [20]. Thus, the LS algorithm for production quantity can be designed based
on augmenting cycle.

First, production planning can be dealt with as a network model. Any two unequal
periods t1, t2 ∈ [1, T] can form a cycle. The maximum adjustment production quantity of
i is limited by the minimum value of the production quantity of period t1, the inventory
capacity from period t1 to t2, and the production quantity of period t2. The maximum
adjustment amount can be determined according to the limit quantity analysis of three
aspects for the formed anticlockwise circle and clockwise circle, respectively.

(1) The formed anticlockwise cycle

The production quantity of period t1: The maximum production quantity of the period
t1 will limit the increased flow, which can be expressed as MaxPPit1 − PPit1 .

Inventory remaining capacity: The minimum remaining inventory capacity from
period t1 to t2 is min{CNi − CIit|t1 < t ≤ t2 }.

The production quantity of period t2: If there is no stockout from period t1 to t2,
the adjustment amount of the period t2 limit is PPit2 −MinPPit2 (as shown in Figure 3a).
Otherwise, the adjustment amount can be increased to the total stockout quantity from

period t1 to t2,
t2
∑

t′′=t1+1

T
∑

t′=t′′
Bit′′−1(t′ − t′′ + 1) (as shown in Figure 3b).



Algorithms 2022, 15, 182 12 of 24

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 25 
 

{ }
2

1 1 2 2
1

" 1 1 2
" 1 ' "

min MaxPP , , MinPP ( ' " 1) .
t T

i it it i it it it it
t t t t

FP PP CN CI PP B t t t t t−
= + =

= − − − + − + < ≤ 
 

(28)

 

o

2
it

i

PP
θ−1it

i

PP
θ+

1t
v

2t
v

d

1it
PD 2it

PD

1itCI

it iCI θ+

iθ

2itCI

 

o

2it

i

PP

θ−1it

i

PP

θ+

1t
v

2t
v

d

1it

PD
2it

PD

1itCI it iCI θ+

iθ

2

1

" 1
" 1 ' "

t T

it i
t t t t

B θ−
= + =

− 

2itCI

 

(a) No stockout from period 1t  to 2t  (b) Stockout from period 1t  to 2t  

Figure 3. Illustration of augmenting flow in anticlockwise cycle. 

(2) The formed clockwise cycle 
The production quantity of period 1t : If there is no stockout from period 1t  to 2t , 

the adjustment amount of the period 1t  limit is 
1 1

MinPPit itPP −  (as shown in Figure 4a). 
Otherwise, the adjustment amount can be increased to the minimum stockout quantity 
from period 1t  to 2t : { }" 1 1 2min ( ' " 1) " , " 'itB t t t t t t t T− − + ≤ < ≤ ≤  (as shown in Figure 4b). 

o

2
it

i

PP
θ+

1it

i

PP

θ−

1t
v

2t
v

d

1it
PD

2it
PD

1itCI

it iCI θ−

iθ

2itCI

 

o

2
it

i

PP

θ+

1it

i

PP

θ−

1t
v

2t
v

d

1it
PD

2it

PD

1itCI
it iCI θ−

iθ

2itCI

" 1it iB θ− −

 

(a) No stockout from period 1t  to 2t  (b) Stockout from period 1t  to 2t  

Figure 4. Illustration of augmenting flow in clockwise cycle. 

Inventory remaining capacity: The minimum remaining inventory capacity from pe-
riod 1t  to 2t  is { }1 2min 0,it itCI CI t t t> < ≤ . 

The production quantity of period 2t : The maximum production quantity of the pe-
riod 2t  will limit the increased flow, which can be expressed as 

2 2
MaxPPit itPP− . 

The maximum adjustment amount of clockwise cycle for product i can be obtained 
by 

{
}

2 2

1 1

" 1

" 1 1 2

min MaxPP , , ( ' " 1),

MinPP min{ ( ' " 1)}| 0, .

i it it it it

it it it it

FP PP CI B t t

PP B t t CI t t t

−

−

= − − +

− + − + > < ≤
 

(29)

Figure 3. Illustration of augmenting flow in anticlockwise cycle.

The maximum adjustment amount of anticlockwise cycle for product i can be obtained
as follows:

FPi = min
{

MaxPPit1 − PPit1 , CNi − CIit, PPit2 −MinPPit2 +
t2

∑
t′′=t1+1

T

∑
t′=t′′

Bit′′−1(t
′ − t′′ + 1) |t1 < t ≤ t2 }. (28)

(2) The formed clockwise cycle

The production quantity of period t1: If there is no stockout from period t1 to t2,
the adjustment amount of the period t1 limit is PPit1 −MinPPit1 (as shown in Figure 4a).
Otherwise, the adjustment amount can be increased to the minimum stockout quantity from
period t1 to t2: min{Bit′′−1(t′ − t′′ + 1)|t1 ≤ t′′ < t2, t′′ ≤ t′ ≤ T } (as shown in Figure 4b).

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 25 
 

{ }
2

1 1 2 2
1

" 1 1 2
" 1 ' "

min MaxPP , , MinPP ( ' " 1) .
t T

i it it i it it it it
t t t t

FP PP CN CI PP B t t t t t−
= + =

= − − − + − + < ≤ 
 

(28)

 

o

2
it

i

PP
θ−1it

i

PP

θ+

1t
v

2t
v

d

1it
PD 2it

PD

1itCI

it iCI θ+

iθ

2itCI

 

o

2it

i

PP

θ−1it

i

PP

θ+

1t
v

2t
v

d

1it

PD
2it

PD

1itCI it iCI θ+

iθ

2

1

" 1
" 1 ' "

t T

it i
t t t t

B θ−
= + =

− 

2itCI

 

(a) No stockout from period 1t  to 2t  (b) Stockout from period 1t  to 2t  

Figure 3. Illustration of augmenting flow in anticlockwise cycle. 

(2) The formed clockwise cycle 
The production quantity of period 1t : If there is no stockout from period 1t  to 2t , 

the adjustment amount of the period 1t  limit is 
1 1

MinPPit itPP −  (as shown in Figure 4a). 
Otherwise, the adjustment amount can be increased to the minimum stockout quantity 
from period 1t  to 2t : { }" 1 1 2min ( ' " 1) " , " 'itB t t t t t t t T− − + ≤ < ≤ ≤  (as shown in Figure 4b). 

o

2
it

i

PP

θ+

1it

i

PP

θ−

1t
v

2t
v

d

1it
PD

2it
PD

1itCI

it iCI θ−

iθ

2itCI

 

o

2
it

i

PP

θ+

1it

i

PP

θ−

1t
v

2t
v

d

1it
PD

2it

PD

1itCI
it iCI θ−

iθ

2itCI

" 1it iB θ− −

 

(a) No stockout from period 1t  to 2t  (b) Stockout from period 1t  to 2t  

Figure 4. Illustration of augmenting flow in clockwise cycle. 

Inventory remaining capacity: The minimum remaining inventory capacity from pe-
riod 1t  to 2t  is { }1 2min 0,it itCI CI t t t> < ≤ . 

The production quantity of period 2t : The maximum production quantity of the pe-
riod 2t  will limit the increased flow, which can be expressed as 

2 2
MaxPPit itPP− . 

The maximum adjustment amount of clockwise cycle for product i can be obtained 
by 

{
}

2 2

1 1

" 1

" 1 1 2

min MaxPP , , ( ' " 1),

MinPP min{ ( ' " 1)}| 0, .

i it it it it

it it it it

FP PP CI B t t

PP B t t CI t t t

−

−

= − − +

− + − + > < ≤
 

(29)

Figure 4. Illustration of augmenting flow in clockwise cycle.

Inventory remaining capacity: The minimum remaining inventory capacity from
period t1 to t2 is min{CIit|CIit > 0, t1 < t ≤ t2 }.

The production quantity of period t2: The maximum production quantity of the period
t2 will limit the increased flow, which can be expressed as MaxPPit2 − PPit2 .

The maximum adjustment amount of clockwise cycle for product i can be obtained by

FPi = min
{

MaxPPit2 − PPit2 , CIit, Bit′′−1(t′ − t′′ + 1),
PPit1 −MinPPit1 + min{Bit′′−1(t′ − t′′ + 1)}

∣∣CIit > 0, t1 < t ≤ t2
}

.
(29)

LS algorithm can significantly improve the quality of solution, especially in large-scale
experiments, as shown in Figure 5. However, the running time will be greatly increased for
each experiment.
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3.3. Double-Layered Multi-Objective Particle Swarm Optimization Algorithm

In the PSO model, each particle needs to continuously update the velocity and the
position according to the Pbest (the best position of a particle) and the Gbest (the best
position for all particles). For the single-objective problem, these two solutions are easy to
choose, but for the multi-objective problem, it is difficult to choose the local optimal guide
Pbest and the global optimal guide Gbest. How to choose the Pbest and the Gbest to guide
the moving of each particle in the search space is a critical issue, and it is very important
for the premature convergence of the PSO algorithm and the diversity of solutions [27].

(1) Generation and Update of the Global Optimal Guide

Choosing an appropriate global optimal solution, Gbest, to guide particles will greatly
improve the quality of Pareto solutions and maintain the diversity of nondominated
solutions. Firstly, this paper establishes an external archive, which mainly records the
nondominated solutions found so far. At each iteration, the external archive is updated to
ensure that the external archive is only nondominated solutions.

Selection mechanism of Gbest: The following selection mechanism of Gbest is estab-
lished based on the external archive: If the number of nondominated solutions in the
external archive is less than or equal to the population size of the PSO algorithm, popsize,
all the solutions in the external archive are selected as the global optimal guides Gbest. Oth-
erwise, the crowding distance-based selection algorithm is used to select popsize solutions
from the external archive as the global optimal guides Gbest.

Gbest assignment mechanism for each particle: Let NDnum be the number of solutions
in Gbest, and the mechanism for assigning a global optimal guide to each particle is
as follows:

Step 1. Calculate the distance between individual particles and the solutions in Gbest.
Step 2. Assign a guide to each particle. If NDnum=popsize, select a guide with the

smallest distance for each particle as the individual global optimal guide (the global
optimal guides for individual particles cannot be repeated). Otherwise, each global optimal
guide is assigned to popsize/NDnum particles with the smallest distance as their global
optimal guides.

Figure 6 shows the Gbest assignment mechanism for each particle of the bi-objective
optimal problem.
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(2) Selection Mechanism of the Local Optimal Guide Pbest

During the evolution process of the PSO algorithm, the local optimal guide Pbest
is selected for each particle according to the following method: Calculate the distance
between each solution in the Pbest set and the global optimal guide corresponding to the
individual in Gbest, and select the individual optimal location with the smallest distance
as the local optimal guide. Figure 7 visualizes this process. g1 is the global optimal guide
assigned to an individual particle x1. p1, p2, p3 are the solutions in the Pbest for x1. When
selecting the local optimal guide for x1, p1 is selected because its position is closest to g1.
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(3) Updating Rules of Particle Velocity and Position

In the standard form of PSO, the velocity vector for particle k is updated according to
three other vectors that are the local optimal guide of the kth particle (Pbest), the current
global optimal guide (Gbest), and the current position of the particle [28]. In every iteration,
each particle updates its velocity and position according to the assigned global optimal
guide and local optimal guide according to the following rules:

v1
k(g + 1) = χ

[
ωkv1

k(g) + c1r1(pb1
k(g)− x1

k(g)) + c2r2(gb1
k(g)− x1

k(g))
]

(30)

v2
k(g + 1) = χ

[
ωkv2

k(g) + c1r1(pb2
k(g)− x2

k(g)) + c2r2(gb2
k(g)− x2

k(g))
]

(31)

x1
k(g + 1) = x1

k(g) +
⌈

v1
k(g + 1)

⌉
(32)

x2
k(g + 1) = x2

k(g) +
⌈

v2
k(g + 1)

⌉
(33)
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where k is a particle, χ is the constriction factor, and ωk is the inertia weight. c1, c2 are
respectively learning factors. r1, r2 are two random parameters within [0, 1]. g is the
number of iterations, v1

k(g) and v2
k(g) represent the velocity of particle k in the PP layer

and W layer of iteration g, respectively. pb1
k(g), pb2

k(g), gb1
k(g) and gb2

k(g) represent the
local optimal guide and global optimal guide of particle k in the PP layer and W layer of
iteration g, respectively. x1

k(g) and x2
k(g) are the position of particle k.

Generally, a large inertial weight facilitates the global search, while a small inertial
weight facilitates the local search. Therefore, a linearly decreasing inertial weight is adopted
to adjust ωk.

ωk(g) = ωmax −
g(ωmax −ωmin)

G
(34)

where G is the maximum iteration number, ωmax and ωmin are the predefined maximum
and minimum inertia weight, respectively.

3.4. Hybrid Strategies

In order to improve the efficiency of solving large-scale multi-objective APP problems,
based on the characteristics of GA, LS, and PSO, this section designs three different hybrid
strategies.

(1) Hybrid Strategy of LS-GA

The idea of LS-GA hybrid strategy is to use the local search ability of LS to improve the
efficiency of the algorithm. The method is to add an LS search algorithm in the evolution
process of each offspring. The flow chart of the LS-GA Strategy is shown in Figure 8.
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(2) Hybrid Strategy of HGA-PSO1

The hybrid genetic algorithm-particle swarm optimization based on stages (HGA-
PSO1) combines the PSO algorithm and LS-GA algorithm, considering the characteristics
of the PSO algorithm, which has fast convergence speed but is prone to premature conver-
gence, and the LS-GA algorithm has strong local search ability.

One of the methods of this strategy is: Firstly, the DMOPSO algorithm is used for
global search. When it falls into the local optimal solution (by setting a certain evolutionary
algebra), then the LS-GA algorithm is used for local search based on the global optimal
solution. The flow chart of the hybrid strategy for HGA-PSO1 is shown in Figure 9.
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(3) Hybrid Strategy of HGA-PSO2

The other method of hybrid strategy based on LS-GA and PSO is: The population
is divided into two subpopulations for LS-GA and PSO, and nondominated sorting and
crowding distance-based fitness assignment strategies of the NSGA-II algorithm are used to
implement the competitive selection. LS-GA selects the initial population from the external
archive by selection operation to optimize the solution in the external archive, and PSO
selects individual particles from the overall parent population for global search. The flow
chart of the hybrid strategy of HGA-PSO2 is shown in Figure 10.
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4. Numerical Experiments

For comparing the performance of LS-GA, HGA-PSO1, and HGA-PSO2, all algorithms
solve nine test experiments 10 times, and the performance measures defined in [20], the
average objectives value (avg(·)), the runtime of the algorithm (Runtime (S)), the number
of nondominated sets (M1), set coverage measure (M2), and mean ideal distance (MID), are
used to analyze the performance of algorithms.

The main parameters of the test experiments are listed in Table 6 (k = 1), and other
parameters are described in Tables A1–A3 of Appendix A. Several parameters, such as the
population sizes, the maximum number of generations, the probability of the crossover,
and the mutation operator, may influence the performance of an algorithm. In this research,
all the parameters of the GA and PSO algorithms are relatively efficient values obtained
through many tests, which are shown in Table 7. Moreover, the backordering intensity
coefficient k0 = 0.25, the waiting time resistance k1 = 0.3, the fixed cost part of product
i fi= 0.05PCi, the cost rate ai = 0.5 fi, and the cost increasing rate bi= 0.05 fi, respectively.
The rates of customer loss threshold and backorder cost per unit quantity are shown in
Figures 11 and 12, respectively.

Table 6. Parameters setting.

Experiments Parameters of Labors

No. I T J Parameter Value

1 2 4 3 WHC (Yuan/p) 100
2 2 6 3 WR (h) 50
3 2 8 3 WO (h) 10
4 4 4 3 WIk (Yuan) 800
5 4 6 3 WRCk (Yuan/h) 5
6 4 8 3 WOCk (Yuan/h) 10
7 6 4 3 W1k (p) 10
8 6 6 3
9 6 8 3

Table 7. Parameters of the GA and PSO.

Parameter Setting of GA Parameter Setting of PSO

Parameter Value Parameter Value

Population sizes popsize

Experiments 1~3: 30, each sub-population
of HGA-PSO2: 15
Experiments 4~6: 40, each sub-population
of HGA-PSO2: 20
Experiments 7~9: 50, each sub-population
of HGA-PSO2: 25

Constriction factor 0.73

Maximum number of generations G

Experiments 1~3: 1000, Set algebra of
HGA-PSO1: 500
Experiments 4~6: 1200, Set algebra of
HGA-PSO1: 600
Experiments 7~9: 1500, Set algebra of
HGA-PSO1: 750

Predefined maximum
value of inertia weight
ωmax

0.8

Probability of partheno crossover
operator: Pc1

Iteration number < 600: 0.2, otherwise, 0.3
Predefined minimum
value of inertia weight
ωmin

0.4

Probability of arithmetic crossover Pc2 Iteration number < 600: 0.1, otherwise, 0.2 Learning factors c1 2.0
Probability of production mutation Pm1 Iteration number < 600: 0.4, otherwise, 0.6 Learning factors c2 2.1
Probability of mutation for the number
of workers Pm2

Iteration number < 600: 0.5, otherwise, 0.7
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The experiments are performed on DELL Vostro 3800-R1846 (Intel Core i3 4130
(3.4 GHz 8 GB memory)) 10 times. The results of performance measures are reported
in Table 8 and Figure 13, respectively.

Table 8. The results of performance measures.

Performance
Measure

Hybrid Strategy
Experiment No.

1 2 3 4 5 6 7 8 9

avg(Z1)/(104)
LS-GA 8.96 14.71 19.42 16.47 26.44 34.84 23.32 37.28 50.29

HGA-PSO1 8.96 14.71 19.31 16.47 26.44 34.76 23.32 37.26 50.27
HGA-PSO2 8.95 14.71 19.27 16.46 26.45 34.75 23.31 37.26 50.29

avg(Z2)
LS-GA 15.78 15.66 18.83 25.21 25.75 30.23 32.76 36.00 37.45

HGA-PSO1 15.83 15.52 18.07 25.21 25.39 29.58 32.80 36.50 37.70
HGA-PSO2 16.08 15.61 17.26 25.53 25.75 29.63 33.08 36.47 37.97

Runtime/(S)
LS-GA 75.28 87.86 102.54 152.64 177.57 204.66 276.56 300.18 348.90

HGA-PSO1 73.57 69.64 79.40 124.25 126.31 129.35 192.50 227.47 341.08
HGA-PSO2 78.22 106.39 99.46 120.52 123.45 127.95 204.67 230.62 210.89

M1

LS-GA 60 88 115 28 28 110 42 22 31
HGA-PSO1 64 87 110 28 23 107 45 24 33
HGA-PSO2 66 90 98 17 24 101 26 15 34

M2

LS-GA, HGA-PSO1 −0.03 −0.08 −0.87 0.21 −0.20 −0.46 0.18 0.09 −0.28
LS-GA, HGA-PSO2 −0.08 −0.09 −0.97 0.58 0.18 −0.35 0.35 0.06 0.24
HGA-PSO1, LS-GA 0.03 0.08 0.87 −0.21 0.20 0.46 −0.18 −0.09 0.28

HGA-PSO1,
HGA-PSO2 −0.05 −0.08 0.14 0.23 0.39 0.07 0.05 −0.08 0.54

HGA-PSO2, LS-GA 0.08 0.09 0.97 −0.58 −0.18 0.35 −0.35 −0.06 −0.24
HGA-PSO2,
HGA-PSO1 0.05 0.08 −0.14 −0.23 −0.39 −0.07 −0.05 0.08 −0.54
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Table 8. Cont.

Performance
Measure

Hybrid Strategy
Experiment No.

1 2 3 4 5 6 7 8 9

MID
LS-GA 23.97 33.43 43.17 41.50 58.83 76.02 57.00 82.81 107.34

HGA-PSO1 23.99 33.36 42.82 41.49 58.67 75.64 57.03 82.99 107.38
HGA-PSO2 24.14 33.40 42.38 41.66 58.83 75.62 57.17 82.97 107.51
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From the comparison results of performance measures avg(Z1), avg(Z2), M1 and
MID, there is little difference in the performance of LS-GA, HGA-PSO1, and HGA-PSO2
algorithms. From the algorithm running time, HGA-PSO1 and HGA-PSO2 algorithms
have less average runtime than the LS-GA strategy, and the larger the problem scale, the
greater the difference in running time. Moreover, the M2 in Table 8 shows that the overall
performances of HGA-PSO1 and HGA-PSO2 are slightly better than that of LS-GA, and
there is no significant difference between HGA-PSO1 and HGA-PSO2 strategies. The
obtained solutions of three hybrid strategies are compared in Figure 14. The results show
that there is no significant difference in the number of nondominated sets obtained by the
three hybrid strategies.
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egies, are designed to solve the model, and the experiments are performed on some testing 
examples. The computational results indicated that the determination of the feasible range 
of product output and the number of workers in the workforce can reduce the search 
scope and improve the efficiency of the algorithm. HGA-PSO1 and HGA-PSO2 strategies 
have less average runtime than the LS-GA strategy, and the larger the problem scale, the 
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Figure 14. Comparison of calculation results for three strategies.

5. Discussion and Conclusions

The increasingly fierce market competition makes enterprises face the changing market
environment. The diversity of products and fierce competition make the stability of the
manufacturing industry and supply chain more important than ever. In order to adapt to
the rapidly changing market demand, more and more manufacturing enterprises choose
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the coexistence of order-oriented and inventory-oriented multi-variety and small batch
production. The change in demand level will lead to a change in enterprise employment,
and the change in employees will lead to a change in workers’ labor efficiency and labor
cost. Therefore, decision makers pay great attention to the impact of labor changes, and the
stability of workers has become more important than ever.

Due to the decline of actual production capacity or the shortage of production materi-
als, production enterprises may be backordered. Generally, the method of penalty cost is
adopted to deal with the BC, and the BC per unit time is fixed, and most of them do not
consider the difference in the time to replenishment. In fact, the longer the replenishment
time and the greater the backorder quantity, the greater the possibility of a loss of sales
and the worse the customer satisfaction. Therefore, the impact of early and late delivery
is analyzed, and the threshold for customer loss and the BC per unit time is defined by
considering the dual effects of replenishment time and backorder quantity.

Then, the maximum tolerant backorder quantity of customers in different delay peri-
ods is calculated according to the demand for products. In considering the waiting time
and the quantity of backorder, the delayed delivery cost varying with the waiting time is
designed, and the cost of delayed delivery and loss of sales is determined. Considering the
production cost, raw material cost, inventory cost, staff cost, stockout, and lost sales cost,
an early/delayed multi-objective optimization model is developed for an APP problem
of multi-product.

Moreover, three algorithms, GA, LS, and DMOPSO, and three different hybrid strate-
gies, are designed to solve the model, and the experiments are performed on some testing
examples. The computational results indicated that the determination of the feasible range
of product output and the number of workers in the workforce can reduce the search
scope and improve the efficiency of the algorithm. HGA-PSO1 and HGA-PSO2 strate-
gies have less average runtime than the LS-GA strategy, and the larger the problem scale,
the greater the difference in running time. In the future, the uncertainty of product de-
mand and production capacity will be taken into account to design the related APP model
and algorithm.
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Appendix A

Table A1. Production capacity of experiments.

Experiment
No. i

t

1 2 3 4 5 6 7 8

1
1 50 90 190 260 – – – –
2 40 40 50 100 – – – –

2
1 50 80 180 250 200 200 – –
2 50 50 50 100 100 90 – –

3
1 50 80 175 260 210 200 150 150
2 50 50 50 100 80 80 80 80

4

1 50 100 150 280 – – – –
2 50 80 50 80 – – – –
3 50 50 70 70 – – – –
4 100 110 100 110 – – – –

5

1 50 110 150 250 250 200 – –
2 50 80 80 80 80 80 – –
3 60 60 60 70 70 70 – –
4 100 110 100 100 100 120 – –

6

1 50 100 150 260 250 200 150 150
2 50 80 80 100 80 80 80 80
3 60 60 60 70 80 80 80 70
4 100 100 100 120 120 120 100 100

7

1 60 100 200 200 – – – –
2 60 70 70 80 – – – –
3 60 60 70 70 – – – –
4 120 110 100 120 – – – –
5 70 70 70 70 – – – –
6 90 90 100 90 – – – –

8

1 70 150 200 250 220 200 – –
2 80 80 80 80 80 80 – –
3 70 70 70 80 80 80 – –
4 80 100 100 150 100 150 – –
5 80 80 80 80 80 80 – –
6 90 100 100 90 100 100 – –

9

1 60 70 150 250 220 200 200 200
2 80 80 100 100 100 100 100 80
3 70 70 70 80 80 80 80 80
4 90 150 100 150 150 150 100 100
5 90 85 80 80 90 100 95 90
6 100 95 105 100 100 95 105 100
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Table A2. Parameters of production and raw materials.

Parameters i, j
t

1 2 3 4 5 6 7 8

PDit
(unit)

1 85.0 125.0 175.0 250.0 200.0 180.0 150.0 120.0
2 30.0 45.0 50.0 80.0 70.0 65.0 55.0 60.0
3 50.0 55.0 60.0 70.0 55.0 75.0 60.0 65.0
4 100.0 120.0 90.0 110.0 100.0 120.0 90.0 85.0
5 50.0 70.0 65.0 70.0 50.0 80.0 85.0 90.0
6 80.0 85.0 95.0 75.0 80.0 85.0 90.0 95.0

PCi
(Yuan/unit)

1 28.8 28.8 28.8 28.8 28.8 28.8 28.8 28.8
2 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
3 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
4 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0
5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
6 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22.0

PWik
(h/unit)

1 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
2 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7
3 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
5 5 5 5 5 5 5 5 5
6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

PNit
(unit)

1 100.0 170.0 200.0 255.0 220.0 210.0 200.0 200.0
2 80.0 80.0 150.0 110.0 100.0 100.0 100.0 80.0
3 70.0 75.0 75.0 75.0 80.0 80.0 95.0 90.0
4 150.0 150.0 160.0 150.0 150.0 140.0 150.0 140.0
5 90.0 85.0 80.0 80.0 90.0 100.0 95.0 90.0
6 100.0 95.0 105.0 100.0 100.0 95.0 105.0 100.0

RCjt
(Yuan/unit)

1 2.0 2.0 3.0 1.0 2.0 2.0 2.0 3.0
2 3.0 2.0 3.0 3.0 2.0 2.0 3.0 2.0
3 3.0 3.5 3.0 2.8 3.0 4.0 3.0 3.5

Table A3. Parameters of inventory and raw materials.

Parameters
i

1 2 3 4 5 6

CIi1 (unit) 65.0 29.0 10.0 20.0 15.0 25.0
CKi (Yuan) 15.0 2.0 3.0 3.0 4.0 3.0
CNi (unit) 100.0 50.0 70.0 100.0 55.0 60.0

Rij (unit)
1 0.8 0.3 0.2 0.5 0.4 0.1
2 0.5 0.5 0.3 0.2 0.2 0.4
3 0.0 0.4 0.3 0.6 0.1 0.2
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