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Abstract: The group sparse representation (GSR) model combines local sparsity and nonlocal simi-
larity in image processing, and achieves excellent results. However, the traditional GSR model and
all subsequent improved GSR models convert the RGB space of the image to YCbCr space, and
only extract the Y (luminance) channel of YCbCr space to change the color image to a gray image
for processing. As a result, the image processing process cannot be loyal to each color channel,
so the repair effect is not ideal. A new group sparse representation model based on multi-color
channels is proposed in this paper. The model processes R, G and B color channels simultaneously
when processing color images rather than processing a single color channel and then combining
the results of different channels. The proposed multi-color-channels-based GSR model is compared
with state-of-the-art methods. The experimental contrast results show that the proposed model is an
effective method and can obtain good results in terms of objective quantitative metrics and subjective
visual effects.

Keywords: image restoration; group sparse model; multi-color channel; nonlocal self-similarity;
adaptive parameter

1. Introduction

Image restoration is one of the fundamental tasks in image processing and computer
vision, and it aims to recover the original image x from the observed degraded image y.
Image restoration is an ill-posed inverse problem and can be chartered by the following
Formula (1):

y = Hx + n (1)

Here, x and y represent the original image and the degraded image respectively, H
denotes the degenerate operator, and n denotes additive Gaussian noise. H is modeled
according to different image processing tasks. When H is a unit matrix, Formula (1)
represents an image denoising task [1,2]. When H is a blurring operator, Formula (1)
represents an image deblurring task [3]. When H is a mask, Formula (1) represents image
restoration [4,5]. When H is a random projection matrix, Formula (1) represents image
compressive sensing applications [6,7].

The image restoration task is studied in this paper. In order to overcome the ill-posed
characteristic and recover a satisfied copy of the original image, image priors are used to
regularize the minimal problem,

argmin
x

1
2
‖Hx− y‖2

2 + λΨ(x) (2)

where the first term 1
2‖Hx− y‖2

2 represent the data fidelity term, Ψ(x) represents the
regularization term of the image a priori, and λ is a regularization parameter. Image priors
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play an important role in image restoration, and many relevant algorithms are proposed,
such as total-variation-based methods [8–10], sparse-representation-based methods [11–14],
nonlocal self-similarity-based methods [1,2,15] and deep-convolutional-neural-network-
based methods [16–18].

Sparse representation is an effective technique in image processing. Sparse
-representation-based algorithms can be divided into two categories, i.e., patch sparse
representation (PSR) [11,19] and group sparse representation (GSR) [12,13,15]. In the PSR
model, the basic sparse representation unit is the image block. PSR assumes that each block
of the image to be repaired can be perfectly modeled by a sparse linear combination of some
fixed or learnable basic elements. These basic elements are called atoms and constitute a set
called a dictionary. The PSR model not only does well in image denoising [20], but also can
be applied to various other image processing and computer vision tasks [21]. However, the
PSR model with an over-complete dictionary usually produces visual artifacts which are
not expected in image restoration [22]. In addition, the PSR model assumes that the coded
image blocks using sparse representation are independent and ignores the correlation
among similar image blocks [13,23], which results in image degradation. To solve the above
problems, the GSR model uses an image group as its basic processing unit to integrate
the local sparsity with the nonlocal self-similarity of images. GSR shows great potential
in various image processing tasks, and many literatures are provided. Zhang et al. [13]
proposed the traditional GSR model for image restoration, which is essentially equal to
the low rank minimization model [24]. Dong et al. [25] proposed an effective Gaussian
scale mixing-based image restoration model under the GSR framework. Zha et al. [26]
proposed a group-based adaptive dictionary, which connects the GSR model with the low
rank minimization model. Zha et al. [14] combined the PSR and GSR models to reduce their
shortcomings, respectively. Zha et al. [27] introduced the group sparse residual constraints
to the GSR model to further define and simplify the problem of image restoration.

The traditional GSR model and the improved GSR models usually transform the RGB
space of the image into YCbCr space and extract the Y (luminance) component for image
processing. The Y channel in YCbCr space contains much valuable information about edge,
shadow, object, texture and others. Moreover, human vision is sensitive to the change of
the Y channel. These good characteristics make the GSR model and its improved models
very successful in various image processing tasks. However, these methods only extract the
Y channel, and cannot be loyal to each color channel of the color image. In this paper, the
color channels refer to red (R), green (G), and blue (B) channels in RGB space. In order to
exploit all the three channels, we propose a new GSR model based on multi-color channels.
Compared with the traditional GSR model, which only extracts the Y channel in YCbCr
space, the proposed model preserves as much image information as possible.

The main contribution of the paper is to propose the multi-color-channels-based
GSR model for image restoration. In this proposed model, three channels are exploited
simultaneously, and hence as much image color information as possible is retained. The
paper is organized as follows. Section 1 introduces briefly the image restoration models
and the development of the sparse-representation-based methods. Section 2 describes the
traditional GSR model. The proposed multi-color-channels-based GSR model is provided
in Section 3. Section 4 provides the visual and quantitative experimental results. Finally,
conclusions are given in Section 5.

2. GSP Model

Compared with the patch sparse representation (PSR) model, the traditional group
sparse representation (GSR) model uses the image group instead of a single image block
as the basic unit of sparse representation, which produces satisfactory results in image
processing tasks [13,28,29]. The model proposed in this paper is based on the traditional
GSR model, which is briefly introduced here.
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2.1. Image Group Construction

The construction of the image group in GSR model is illustrated in Figure 1. The
image x with the size of

√
N ×

√
N is divided into n overlapped patches with the size of√

b×
√

b. The overlapped patches are denoted by xi where i = 1, 2, . . . , n. For each xi, its
m similar matched patches are constructed using the Euclidean distance as the similarity
metric in a training window with the size of W ×W. The similar matched patches form a
set denoted by Si. All the similar patches in Si form a matrix with the size of b×m, denoted
by Xi ∈ Rb×m. Each element in Si is a column of the matrix Xi, i.e., Xi = {xi,1, xi,2, . . . , xi,m}.
The column xi,j denotes the jth similar patch of the ith image group corresponding to
xi. The matrix Xi includes all the similar patches as columns, and hence is referred to as
a group.
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Figure 1. The construction diagram of the image group.

2.2. Sparse Representation Model

After constructing the image group, a sparse representation model is established in
the image group. In order to obtain the sparse representation model of the image group, a
dictionary, denoted by Di is given, which is usually learned from the image group, such as
the graph-based dictionary [30] and principal component analysis (PCA) dictionary [31].
The aim of the sparse representation is to present the image group using as few atoms
of the dictionary as possible. That is, the task is to code the dictionary sparsely using a
sufficiently sparse vector. Each sparse representation, denoted by β̂i, corresponding to the
image group Xi, is obtained via minimizing the L0 norm using the following Formula (3).

β̂i = argmin
βi

(
1
2
‖Xi − Diβi‖2

2 + λ‖βi‖0

)
, ∀i (3)

Here, βi denotes the group sparse coefficient corresponding to the ith image group Xi.
1
2‖Xi − Diβi‖2

2 is the fitting term used to measure the similarity between the image to be
repaired via the sparse representation model and the original image. λ is a regularization
parameter, and ‖‖0 denotes the L0 norm used to calculate the no-zero terms of each column
in βi. Since L0 norm minimization is NP-hard, L1 norm minimization is used instead of L0
norm minimization via the following Formula (4).

β̂i = argmin
βi

(
1
2
‖Xi − Diβi‖2

2 + λ‖βi‖1

)
, ∀i (4)

The original image x is not available in the image restoration task, and the image
groups are from the degraded image y ∈ RN . The image y is segmented into n overlapped
patches with the same size of

√
b×
√

b, i.e., a vector with the length of b. The m similar
matched patches are found to generate the image groups corresponding to the n overlapped
patches. Each image group denoted by Yi ∈ Rb×m is a matrix with the size of b×m, which
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also can be written as Yi = {yi,1, yi,2, . . . , yi,m}. Now, the image restoration task is to
restore Xi from Yi using the GSR model via the following Formula (5).

β̂i = argmin
βi

(
1
2
‖Yi − Diβi‖2

2 + λ‖βi‖1

)
, ∀i (5)

After obtaining β̂i, i = 1, 2, . . . , n, the restored whole image x̂ can be represented by
a set of sparse codes

{
β̂i
}n

i=1.

2.3. Learning a Dictionary

Sparse representation aims to obtain the sparsest representation of the original signal
on the learned dictionary, and the signal is represented as a linear combination of a small
number of dictionary atoms [32]. Therefore, in the framework of sparse representation,
the construction of the dictionary is the key step of image restoration. However, in image
restoration tasks, the original image x is unknown, and the original image group Xi cannot
be obtained directly. The dictionary is only constructed according to the degraded image y.
The image y is first initialized using the bilinear interpolation algorithm. The following
operations are similar to the procedures depicted in Section 2.1. Specifically, the estimated
image group ri corresponding to the original image group Xi is extracted from the initialized
image y. Then the singular value decomposition is performed on the estimation group ri
via the following Equation (6).

ri = Ui∑
i

VT
i
=

n1

∑
j=1

γi,j

(
ui,jvT

i,j

)
(6)

Here, γi denotes [γi,1, γi,2, . . . , γi,n1], ∑i denotes a diagonal matrix, γi,j denotes the
main diagonal elements of ∑i , d represents each atom of the dictionary Di, and n1 is defined
as the minimum of d and m. ui,j and vT

i,j denotes the column vectors of the matrixes Ui and

VT
i , respectively. Each atom di⊗j ∈ Rb×m of the adaptive dictionary Di is defined as follows,

di⊗j = ui,jvT
i,j, j = 1, 2, 3, . . . , n1 (7)

In this way, the adaptive dictionary Di, corresponding to each image group can be
represented as follows:

Di =
[
di⊗1, di⊗2 . . . , di⊗n1

]
(8)

The singular value decomposition is only needed to be performed on each group once
to learn the adaptive dictionary corresponding to the image group. After the dictionary is
learned, the sparse representation model is updated and then the L1 norm minimization
is solved. Finally, the split Bregman iteration (SBI) algorithm [13] is used for iterative
optimization to obtain the final restoration result.

3. Proposed Multi-Color Channels Based GSR Model

The image restoration algorithm based on the GSR model has achieved good results
in applications. However, most image restoration algorithms based on the GSR model
transform the image into YCbCr space when processing color images, and only process
the Y channel. Finally, the processed Y channel image is combined with other unprocessed
channels to obtain the final restoration image. Although the Y channel of the image is
formed by the integration of the three channels of a RGB color image in a certain proportion,
it cannot preserve the maximum fidelity of the original R, G and B channels. This paper
proposes a new GSR model based on multi-color channels, which processes three color
channels of a RGB color image at the same time.
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3.1. Construction of the Proposed Model
3.1.1. Construction of Image Groups

For an input degraded image y, the image group Yi
Ch, Ch ∈ {R, G, B}, is constructed

based on the multi-color channel image, where R, G and B denote the corresponding image
channels. The construction of each channel image group Yi

Ch is the same as that of Yi in
Section 2.2. Given a RGB image, in each channel, m similar patches of the repairing patch
with the size of

√
b×
√

b are found in the training window with the size of W×W. Yi
R, Yi

G,
and Yi

B denote the image groups corresponding to the R, G and B channels, respectively.
The three image groups form the total image group Yi

C as Formula (9).

Yi
C =

 YR
i,1 YR

i,2 . . . YR
i,m

YG
i,1 YG

i,2 . . . YG
i,m

YB
i,1 YB

i,2 . . . YB
i,m

 ∈ R3b×m (9)

Yi =
[
YY

i,1 YY
i,2 . . . YY

i,m

]
∈ Rb×m (10)

The above Formula (10) denotes the image group constructed using the Y channel in a
traditional GSR model. The traditional GSR model and its improved models transform the
RGB space into YCbCr space and extract the Y component for processing. The advantage of
traditional GSR model is that human vision is sensitive to the change of the Y component
in YCbCr space, and the Y component requires fewer storage units than the three color
channels in RGB space, which is conducive to transmission and processing. However, the
Y component cannot be loyal to each color channel in image processing. In this paper, as
shown in Equation (9), stacking the image groups of three different color channels R, G and
B in a matrix make it possible to tackle the three channels simultaneously. The total image
group Yi

C standing for the three color channels can be directly decomposed by singular
value decomposition to obtain an adaptive dictionary and the sparse representation model.
In the proposed model, the total image group is processed at the same time to avoid
the loss of information caused by the transformation from RGB space to YCbCr space.
Moreover, the rich information between different color channels can make up for each
other [33]. On the other hand, there is no need to set and adjust the parameters of each
color channel respectively when processing three color channels simultaneously, compared
with separately processing the image group of each color channel to fuse different results
to form the final combination results. Therefore, the proposed construction of image
groups is more accurate that of the traditional GSR model. The advantages of the proposed
multi-color-channels-based GSR model are low computational cost, low time cost and
high efficiency.

3.1.2. Proposed Sparse Representation Model

After constructing a multi-color channel image group Yi
C, a sparse representation

model can be established based on the image group. By taking the traditional model
Formula (5) and Yi

C in Formula (9) in the regularization framework of Formula (2), the
group sparse representation model based on multi-color channels of the proposed model
in this paper is obtained.

β̂ = argmin
β

1
2
‖y− DCβC‖+ λ

n

∑
i=1
‖βC

i ‖1 (11)

Here, DC denotes all the adaptive dictionaries obtained via performing singular
value decomposition on

{
YC

i
}n

i=1, i.e., DC =
[
DC

1 , DC
2 , . . . , DC

n
]
. βC represents the sparse

coefficient of all multi-color channel image groups
{

YC
i
}n

i=1, i.e., βC =
[
βC

1 , βC
2 , . . . , βC

n
]
.

It can be seen from Formula (11) that the proposed model simultaneously processes the
image groups of multi-color channels.
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3.1.3. Adaptive Dictionaries

An important problem of the proposed multi-color-channels-based GSR model is the
selection of the dictionary. The dictionary is usually learned from natural images. Com-
pared with the dictionaries of traditional analysis and design [33], such as wavelet, curvelet
curve and discrete cosine transform, the dictionary directly learned from images can better
adapt to the local structure of images, enhance the sparsity, and hence obtain higher perfor-
mance. For example, the well-known K-SVD over-complete dictionary not only preserves
the local structure of images, but also provides excellent denoising results [20]. However,
the sparse representation on the over-complete dictionary is very computationally expen-
sive and easily leads to artifacts in the image restoration [34]. In order to better adapt to
the local structure of images, an adaptive dictionary Di

C is learned for each group Yi
C.

The learning procedures of the adaptive dictionary Di
C are similar to those depicted in

Section 2.3. Firstly, the bilinear interpolation algorithm is used to initialize the degraded
image y, and the estimation group rC

i as in Formula (12) is obtained from the initialized
image. Then singular value decomposition is performed on the estimation group, and the
adaptive dictionary Di

C of each group is learned through the estimation group rC
i .

ri
C =

 rR
i,1 rR

i,2 . . . rR
i,m

rG
i,1 rG

i,2 . . . rG
i,m

rB
i,1 rB

i,2 . . . rB
i,m

 ∈ R3b×m (12)

3.2. Implementation of the Proposed Method
3.2.1. Solution of the Coefficients

In this paper, an alternating minimization algorithm [15] is used to solve the minimiza-
tion problem of Equation (11). Solving the GSR model based on multi-color channels is to
solve the βi minimization problem in Equation (11). This subsection provides implementa-
tion details of solving the βi minimization problem. Before solving the model proposed in
this paper, the following theorem [13] is introduced.

Theorem 1. Let x, y ∈ RN , and Xi, Yi ∈ Rb×m. e ∈ RN is the error vector, i.e., e = x− y. ej
is the jth element of the error vector. Suppose that ej is independent and comes from a Gaussian
distribution with zero mean and variance σ2

s . Then for any v > 0, we have the following property
to describe the relation between 1

N ‖x− y‖2
2 and 1

S ∑n
i=1 ‖Xi −Yi‖2

2, that is

lim
N → ∞
S→ ∞

P

(∣∣∣∣∣ 1
N
‖x− y‖2

2 −
1
S

n

∑
i=1
‖Xi −Yi‖

2

2

∣∣∣∣∣ < v

)
= 1 (13)

where P() represents the probability and S = b×m× n. (The proof is referred to in [13]).

Based on Theorem 1, Formula (11) is transformed into the following formula:

{
β̂i

C
}n

i=1
= arg min

{βi
C}n

i=1

n

∑
i=1

(
1
2
‖Yi

C − Di
Cβi

C‖2
2 + τ‖βi

C‖1

)
(14)

where τ = λS
N , and S = b× m× n. Formula (14) may be tackled as the solution to the

traditional GSR model, where the problem is divided into n sub-problems corresponding



Algorithms 2022, 15, 176 7 of 15

to each Yi
C. In order to adapt to the local structure of the images, each Yi

C corresponds to a
learning adaptive dictionary Di

C. Formula (14) is transformed into

{
β̂i

C} = arg min
{βi

C}n
i=1

n
∑

i=1

(
1
2‖Yi

C − Di
Cβi

C‖2
2 + τ‖βi

C‖1

)
= arg min

{βi
C}n

i=1

n
∑

i=1

(
1
2‖ri

C − Di
Cβi

C‖2
2 + τ‖βi

C‖1

)
= arg min

{βi
C}n

i=1

n
∑

i=1

(
1
2‖γi

C − βi
C‖2

2 + τ‖βi
C‖1

) (15)

where Yi
C = Hri

C and ri
C = Di

Cγi
C. The minimization problem of the Formula (14) is

simplified to the solution to the problem of Formula (15). Different from the traditional
GSR model, the proposed method obtains the coefficients via a soft threshold [35] as
Formula (16).

β̂i
C = so f t

(
γi

C,
√

2τ
)

, ∀i (16)

3.2.2. Adaptive Parameters

In general, λ is set to a fixed value empirically. However, a fixed value cannot guaran-
tee the stability of the whole algorithm. In order to overcome this challenge, an adaptive
parameter-setting scheme is used to make the proposed multi-color-channels-based GSR
model more stable and practical. Using spatially adaptive Laplacian priors, the regulariza-
tion parameters adaptively update in each iteration [36]:

λi =
2
√

2σ2
w

σi + ε
(17)

Here σi is the ith local estimated variance, and ε is a sufficiently small constant to
guarantee a no-zero denominator. The likelihood estimation [36] of σi can be represented as

σ̂i =
√

max
(
γ̂2

i /m− σ2
m, 0
)

(18)

where γ̂i denotes the singular value of the estimation rC
i , and m is the number of similar

patches. The proposed method adopts an iterative regularization strategy [8] to alternatively
update the estimation of the noise variance σw and the signal variance σi.

σ̂k
w = κ

√
σ2

w − ‖y− yk+1‖2
2 (19)

σ̂i
k+1 =

√
max

((
γ̂k

i
)2/m−

(
σk

m
)2, 0

)
(20)

Here κ is the scale factor controlling the noise variance, and k is the number of iterations.
The complete description of the proposed GSR model based on multi-color channels is
shown in the following Algorithm 1.



Algorithms 2022, 15, 176 8 of 15

Algorithm 1 The proposed multi-color-channels-based GSR model

Procedures of multi-color-channels-based GSR model
Initialization: set x̂(0) = y, λ = λ0;
For k = 1, . . . , Iter do
Construct image group Yi

C.
For Each group Yi

C do
Construct Di

C via SVD
Update λ via (17)
Update β̂i

C via (16)
Update X̂C

i = Di
C β̂i

C

end for
end for
Output: the final restored image x̂

4. Experimental Results

This section provides lots of experimental results to verify the effectiveness of the
proposed GSR model based on multi-color channels. In the restoration experiments, four
types of corrupted images corresponding to different pixel missing rates are used as
examples. The selected four pixel missing rates are 80%, 70%, 60%, and 50%. The pixels are
lost randomly under different missing rates. The size of image block,

√
b×
√

b, is set to
5× 5, the overlap width between adjacent blocks is set to 1 pixel, the size of search window,
W ×W, is set to 20× 20, the number of similar blocks, m, is set to 75, and the constant, ε, is
set to 0.2.

The quality of the restored images is evaluated according to objective quantitative
metrics and subjective visual effects. Peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [37] are used as objective metrics. The PSNR is calculated as shown in
Formulas (21) and (22),

MSE =
1

H ×W

H−1

∑
i=0

W−1

∑
j=0
‖X(i, j)−Y(i, j)‖2 (21)

PSNR = 10 · log10

(
(2n − 1)2

MSE

)
(22)

Here, X and Y denote the original image and the repaired image, respectively. H and
W denote the height and the width of the of the image, respectively. Formula (21) is used
to calculate the mean square variance (MSE) of the original image and the repaired image.
Formula (22) is used for calculating PSNR, where n is the number of bits per pixel. The
larger the value of PSNR, the smaller the distortion. The calculation of SSIM is shown in
Formulas (23)–(27),

l(X, Y) =
2uXuY + C1

u2
X + u2

Y + C1
, c(X, Y) =

2σXσY + C2

σ2
X + σ2

Y + C2
, s(X, Y) =

2σXY + C3

σXσY + C3
(23)

uX =
1

H ×W

H

∑
i=1

W

∑
j=1

X(i, j) (24)

σ2
X =

1
H ×W − 1

H

∑
i=1

W

∑
j=1

(X(i, j)− uX)
2 (25)

σXY =
1

H ×W − 1

H

∑
i=1

W

∑
j=1

((X(i, j)− uX)(Y(i, j)− uY)) (26)

SSIM(X, Y) = l(X, Y) · c(X, Y) · s(X, Y) (27)
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SSIM is measured according to brightness, l, contrast, c, and image structure, s, in
Formula (23). H and W denote the height and the width of the original image X and the
repaired image Y. uX and uY denote the mean value of X and Y. σX and σY denote the
variance of X and Y, respectively, and σXY denotes the covariance of X and Y. C1, C2 and
C3 are constants to be introduced to avoid the denominator being zero. The range of SSIM
is [0, 1]. The SSIM metric is closer to a human’s subjective feelings. The larger SSIM value
indicates that the two images are more similar and the restoration effect is better.

In this paper, 10 images as shown in Figure 2 below are selected as test images. The
quantitative experimental results and visual restoration effects given in the subsection are
obtained on these images. The names of the images are Bahoon, Butterfly, Cowboy, Flower,
Girl, Lake, Lena, Mickey, Mural, and Nanna, respectively.
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4.1. Objective Assessment

The proposed model in this paper is compared with 11 state-of-the-art models. These
models used for comparison include SALSA [38], BPFA [4], GSR [13], NGS [39], TSLRA [40],
JPG-SR [14], GSRC-NLP [27], MAR-LOW [41], HSSE [42], IR-CNN [17], and IDBP [43].
Among the comparison models, GSR [13], JPG-SR [14], GSRC-NLP [27], and HSSE [42]
are based on traditional GSR or improved GSR models, which are the same type as the
proposed multi-color-channels-based GSR model in this paper. In order to comprehensively
evaluate the performance of the proposed model for image restoration, the proposed model
is also compared with non-GSR-based image restoration models. The BPFA [4] model uses
the nonparametric Bayesian dictionary learning method for image sparse representation.
The SALSA [38] model proposes an algorithm belonging to the extended Lagrangian
method family to deal with constrained problems. The NGS [39] model proposes a new
gradient regularization framework using nonlocal similarity. The TSLRA [40] and MAR-
LOW [41] are the type of low rank minimization methods. The MAR-LOW [41] combines
spatial autoregression with low rank minimization methods and achieves excellent results.
The IR-CNN [17] and IDBP [43] are deep-learning-based methods.

Tables 1 and 2 show the PSNR values of the restoration results on different images
under the four pixels missing rates of 80%, 70%, 60% and 50% of the proposed model and
the comparison models. In the tables, the best results are highlighted in bold. Table 3 shows
the SSIM values of the results on different images under the four pixel missing rates of
the proposed model and the comparison models, and the best results are highlighted in
bold. Tables 1 and 2 show the comparison results between the proposed model and the
traditional models, and Table 3 shows the comparison results between the proposed model
and the deep-learning-based models. In order to reduce the burden of experiments, the
result data of NGS [39], TSLRA [40], and HSSE [42], provided in HSSE [42], are used here
directly to avoid repetitive implementations. The experimental data of the deep learning
methods IR-CNN [17] and IDBP [43] are directly from JPG-SR [14] and GSRC-NLP [27].
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Table 1. PSNR values of the proposed method and some state-of-the-art methods with pixel missing
rates 80% and 70%.

Pixel Missing Rate Methods Bahoon Butterfly Girl Lena Mural Nanna Average

80%

SALSA 24.41 21.91 23.03 27.32 22.45 23.20 23.72
BPFA 23.25 21.06 22.47 27.56 21.10 22.38 22.97
GSR 24.57 26.03 25.50 31.41 26.01 25.24 26.46
NGS 24.89 23.85 24.27 28.87 23.78 24.58 25.04
TSLRA 25.49 25.32 25.15 30.58 25.21 25.55 26.22
JPG-SR 25.40 26.58 25.55 31.25 26.29 25.92 26.83
GSRC-NLP 25.55 26.78 26.02 30.51 26.56 26.17 26.93
MAR-LOW 26.40 30.86 29.21 33.83 29.66 29.68 29.94
HSSE 25.57 26.61 26.12 31.83 26.23 26.27 27.11
Proposed 26.43 30.90 29.28 33.85 29.67 29.70 29.97

70%

SALSA 25.71 24.85 24.99 29.62 24.69 25.34 25.87
BPFA 24.57 23.95 24.71 30.37 23.34 24.47 25.24
GSR 26.17 28.92 27.86 33.54 28.46 27.89 28.81
NGS 26.08 26.36 26.18 30.77 26.29 26.35 27.01
TSLRA 26.72 27.76 27.09 32.64 27.22 27.32 28.13
JPG-SR 26.80 29.24 27.96 33.40 28.50 28.24 29.02
GSRC-NLP 26.98 29.47 28.20 33.85 28.71 28.51 29.29
MAR-LOW 28.70 33.82 32.14 36.21 32.26 32.75 32.65
HSSE 26.87 29.29 28.25 33.86 28.57 28.49 29.22
Proposed 28.72 33.90 32.26 36.23 32.30 32.77 32.70

Table 2. PSNR values of the proposed method and some state-of-the-art methods with pixel missing
rates 60% and 50%.

Pixel Missing Rate Methods Bahoon Butterfly Girl Lena Mural Nanna Average

60%

SALSA 26.78 27.02 26.79 31.42 26.50 26.97 27.58
BPFA 25.82 26.06 26.68 32.38 25.17 26.14 27.04
GSR 27.74 31.09 29.54 35.80 29.98 30.13 30.71
NGS 27.29 28.37 27.83 32.81 27.99 28.06 28.73
TSLRA 27.92 29.42 28.91 34.26 29.07 29.17 29.79
JPG-SR 28.14 31.15 29.87 35.44 30.15 30.37 30.85
GSRC-NLP 28.31 31.46 30.17 35.95 30.33 30.59 31.14
MAR-LOW 30.78 36.33 34.58 38.30 34.64 35.44 35.01
HSSE 28.25 31.54 30.20 35.93 30.31 30.53 31.13
Proposed 30.80 36.41 34.70 38.34 34.70 35.55 35.08

50%

SALSA 27.98 29.03 28.32 33.26 28.17 28.57 29.22
BPFA 27.13 28.16 28.46 34.15 27.20 28.17 28.88
GSR 29.42 32.78 31.93 37.64 31.73 32.16 32.61
NGS 28.49 30.28 29.60 34.56 29.88 29.71 30.42
TSLRA 29.15 31.01 30.48 35.52 30.62 30.87 31.28
JPG-SR 29.61 32.83 31.77 37.18 31.72 32.21 32.55
GSRC-NLP 29.75 33.02 31.95 37.64 31.88 32.36 32.77
MAR-LOW 32.88 38.70 37.01 40.24 36.98 38.22 37.34
HSSE 29.79 33.29 32.19 37.84 31.95 32.50 32.93
Proposed 32.91 38.80 37.15 40.30 37.10 38.37 37.44
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Table 3. PSNR and SSIM values of the proposed method and two deep-learning-based methods with
four different pixel missing rates.

Images
Pixel Missing Rate 80% Pixel Missing Rate 70% Pixel Missing Rate 60% Pixel Missing Rate 50%

IR-CNN IDBP Proposed IR-CNN IDBP Proposed IR-CNN IDBP Proposed IR-CNN IDBP Proposed

Cowboy 25.47 24.43 29.38 27.54 27.15 32.31 29.95 28.97 35.36 31.96 31.40 38.12
0.8622 0.8400 0.9343 0.9163 0.8955 0.9621 0.9479 0.9273 0.9770 0.9660 0.9522 0.9854

Girl
25.36 25.03 29.28 27.78 27.45 32.26 30.10 29.32 34.70 32.10 31.09 37.15
0.8135 0.7999 0.9212 0.8910 0.8698 0.9549 0.9327 0.9102 0.9720 0.9564 0.9371 0.9823

Flower
28.41 28.12 32.14 30.77 30.49 35.11 32.97 32.16 37.59 35.28 34.15 40.00
0.8586 0.8413 0.9381 0.9140 0.8943 0.9652 0.9460 0.9264 0.9786 0.9661 0.9508 0.9864

Lake
25.24 25.39 28.86 27.59 27.87 31.33 29.75 29.53 33.76 31.80 31.47 35.84
0.8278 0.8203 0.9115 0.8914 0.8805 0.9433 0.9302 0.9155 0.9623 0.9535 0.9421 0.9743

Mickey 26.45 25.40 29.57 29.66 28.69 32.24 31.82 31.18 34.51 34.25 33.14 36.62
0.8671 0.8436 0.9260 0.9220 0.9023 0.9532 0.9474 0.9319 0.9687 0.9637 0.9517 0.9787

Mural
25.75 25.26 29.67 28.73 27.68 32.30 30.58 29.79 34.70 32.20 31.35 37.10
0.7923 0.7694 0.8960 0.8721 0.8388 0.9393 0.9091 0.8824 0.9633 0.9361 0.9148 0.9780

Average 26.11 25.61 29.82 28.68 28.22 32.59 30.86 30.16 35.10 32.93 32.10 37.47
0.8369 0.8191 0.9211 0.9011 0.8802 0.9530 0.9356 0.9156 0.9703 0.9570 0.9415 0.9808

In addition to PSNR and SSIM values of each test image, the average PSNR and SSIM
values of all test images under different pixel missing rates corresponding to different
models are calculated for overall comparison. It can be seen from Tables 1–3 that the
proposed multi-color-channels-based GSR model in this paper obtains better results than
other competitive models. Firstly, the proposed model is compared with the non-GSR-
based image restoration models. In terms of the average metric values, the proposed model
is 7.20 dB higher than the SALSA model, 7.77 dB higher than the BPFA model, 6.00 dB
higher than the NGS model, 4.94 dB higher than the TSLRA model, and 0.06 dB higher
than the MAR-LOW model. Among the GSR based models, the JPG-SR method combines
the PSR model with the GSR model, and it not only preserves the advantages of the two
models, but also reduces their disadvantages, and therefore the sparse representation model
is unified. The GSRC-NLP method introduces group sparse residual constraints to the
traditional GSR model to approximate the group sparsity of the original group and improve
the quality of image restoration. The HSSR model combines the external GSR model with
the internal GSR model using the NSS prior knowledge of degraded images and external
data sets to optimize the image. However, the above three GSR-based-models and many
other improved models not compared in this paper transform the color image into YCbCr
space, and only extract the Y channel for processing. In this way, image processing cannot
be loyal to each color channel of the original color image, which makes the effect of image
restoration poor. The proposed method utilizes three color channels in image restoration
to obtain better results, and Tables 1 and 2 prove this conclusion. Compared with the
aforementioned three GSR-based models in terms of average PSNR metric values, the
proposed model is 4.15 dB higher than the traditional GSR model, 3.99 dB higher than the
JPG-SR model, 3.77 dB higher than the GSRC-NLP model, and 3.70 dB higher than the
HSSE model. It can be concluded from Tables 1 and 2 that the PSNR of the proposed model
in this paper on the images with 80%, 70%, 60%, and 50% pixel missing rates are higher
than the nine state-of-the-art comparison methods.

Table 3 provides the comparison results of the proposed model with deep-learning-
based IR-CNN and ISBP models. In terms of average metric values, the PSNR and SSIM
values of the proposed model are 4.1 dB and 0.049 higher than those of the IR-CNN
model, and 4.72 dB and 0.067 higher than those of the IDBP model, respectively. It can
be seen from the PSNR and SSIM values in Table 3 that the proposed model based on
multi-color channels is better than the IR-CNN and IDBP models. The experimental results
in Tables 1–3 show that the model proposed in this paper is effective and can obtain good
restoration results compared with the state-of-the-art models.



Algorithms 2022, 15, 176 12 of 15

4.2. Subjective Assessment

In order to further demonstrate the effectiveness of the proposed multi-color-channels-
based GSR model, Figures 3 and 4 respectively show the visual butterfly and girl restoration
results of the proposed model and some state-of-the-art models with an 80% pixel missing
rate. As can be seen from Figures 3 and 4, the SALSA model cannot restore sharp edges and
fine details. The BPFA model can have better visual effects than the salsa model, but it still
has undesirable visual artifacts, such as ringing artifacts in Figure 4d. The GSR, JPG-SR and
GSRC-NLP models produce over-smoothing effects. Compared with the model proposed
in this paper, the MAR-LOW has a similar visual effect, which is not easy to distinguish
with the naked eye. However, according to the experimental results in Tables 1–3, the
proposed model has better objective evaluation results. In general, the visual effects of
Figures 3 and 4 show that the GSR model based on multi-color channels proposed in
this paper performs best in image restoration. It not only preserves fine details, but also
effectively removes visual artifacts.
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Figure 3. The restoration results of butterfly with pixel missing rate of 80%. (a) Butterfly, (b) butterfly
with pixels missing rate 80%, (c) SALSA [38] (PSNR = 22.85), (d) BPFA [4] (PSNR = 21.06), (e) GSR [13]
(PSNR = 26.03), (f) MAR-LOW [41] (PSNR = 30.86), (g) JPG-SR [14] (PSNR = 26.58), (h) GSRC-NLP [27]
(PSNR = 26.78), (i) our model (PSNR = 30.90).
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Figure 4. The restoration result of girl with pixel missing rate of 80%. (a) Girl, (b) girl with pixels miss-
ing rate 80%, (c) SALSA [38] (PSNR = 23.79), (d) BPFA [4] (PSNR = 22.47), (e) GSR [13] (PSNR = 25.50),
(f) MAR-LOW [41] (PSNR = 29.21), (g) JPG-SR [14] (PSNR = 25.55), (h) GSRC-NLP [27] (PSNR = 26.02),
(i) our model (PSNR = 29.28).

5. Conclusions

In order to improve the performance of the traditional GSR model in image restoration,
the paper extends the GSR model to a new multi-color-channels-based case, and process R,
G, and B color channels of an image simultaneously. The problem of image restoration is
transformed into how to use multi-color channels for sparse representation. The alternating
minimization method with an adaptive parameter setting strategy is used to solve the
proposed multi-color-channels-based model. The proposed method is compared with
state-of-the-art methods. The experimental results show that the proposed model can
obtain good results in terms of visual effects and quantitative metrics.
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