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Abstract: Life-cycle population follow-up data collection is time-consuming and often takes decades.
General cohort data studies collect short-to-medium-term data from populations of different age
groups. The purpose of constructing a life-cycle simulation method is to find an efficient and reliable
way to achieve the way to characterize life-cycle disease metastasis from these short-to-medium-term
data. In this paper, we have presented our effort at construction of a full lifetime population cohort
simulation framework. The design aim is to generate a comprehensive understanding of the disease
transition for full lifetime when we only have short-or-medium term population cohort data. We
have conducted several groups of experiments to show the effectiveness of our method.

Keywords: population cohort simulation; chronic comorbidity; chronic disease risk

1. Introduction

With the aging trend of the world population, the prevalence of chronic and comorbid
diseases is rising rapidly in various countries around the world [1–5]. A study showed that
most elderly people in China are suffering from one or more chronic diseases [6]. Since
ensuring the health of residents has become a major task for the country, chronic diseases
and their comorbidities place a heavy burden on patients’ families as well as on the Chinese
national healthcare system.

Although with the continuous improvement of national medical facilities, elderly
patients can detect physical chronic diseases earlier and obtain treatment earlier, Chinese
scholars have also carried out various related studies on chronic diseases and their co-
morbidities. However, most of the current studies on chronic diseases generally have
shortcomings such as single survey content and only analysis of related symptoms. Some
studies have also carried out chronic disease analysis based on population cohort obser-
vation, but they cannot substantially reflect the disease course and influencing factors of
patients with chronic diseases and their comorbidities from the perspective of the observed
population alone. Because each patient has different disease courses, the different stages of
the comorbidity of chronic diseases evolve under the combination of different conditions
and factors.

In the modern social living environment, there are many risk factors for chronic
diseases. In addition to social, environmental, and population-related accidents, these risk
factors are also closely related to the lives of people with chronic diseases. A prerequisite
for precision medicine is to estimate subsequent disease progression from the current
patient status. The factors that affect the development of patients’ diseases include age,
sex, constitution, and previous chronic diseases, which should be taken into account in
the study. Different individuals in the population have different physical conditions,
different living habits and eating habits, which may lead to different chronic diseases and
their comorbidities.

In the field of chronic diseases and their comorbidity research [7,8], many researchers
have made many attempts to study the development process and risk factors of chronic
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diseases comorbidity. Recently, the approach of analytical studies using collected resident
medical data or population cohorts has been increasingly adopted by many researchers,
and multiple quantified indicators have been considered. However, there is no clear way
to describe how multiple chronic diseases evolve over time under different conditions.
Traditional statistical learning methods are very useful for evaluating a single disease,
but multiple diseases are linked to coevolve and incorporating other conditions into the
analysis requires a better model or method.

Although the population cohort method can assist in the study of comorbid transfer of
chronic diseases, the population cohort collection requires a lot of manpower and material
resources and takes too long. The data simulation method can simulate large populations in
a relatively short time, so as to verify which factors will be the key factors for the occurrence
and transfer of comorbidities. The focus and goal of this study is to explore a way to build
a relatively accurate simulation framework for the evolution of chronic diseases and their
comorbidities in the whole life cycle of the population cohort. We will continue to explore
adding more factors into the simulation framework, so as to more accurately simulate the
influence of each factor.

In this work, we focus on three main chronic conditions either as isolated presentation
or combined with the others: ischemic heart disease (IA), ischemic stroke (IS), type II
diabetes (DM), ischemic heart disease and ischemic stroke (IA and IS), ischemic heart
disease and type 2 diabetes (IA and DM), and ischemic stroke and type 2 diabetes (IS and
DM). The simulated population cohort of all individuals starts at health status and ends
at death status, and the simulated age range starts from 30 to 90 years. All individuals in
the simulated population cohort were in a healthy state at the beginning, and aged year
by year during the simulation until the simulation ended after all individuals entered the
dead state. This study assumes that individuals will only enter the enumerated health
or diseased state, and that all comorbid states develop from monomorbid states, and
that individuals will not move directly from health to comorbidity or return to health
from illness.

2. Related Works

In 2011, Sun Xiaoyu et al. [9] analyzed the ECG data of 1042 patients, including
374 non-CHD patients and 668 CHD patients. Based on the 24-h ECG data of patients,
Gaussian kernel function was used to build the SVM model, and the experimental results
were verified to have better classification effect compared with logistic regression. It can
improve the diagnostic accuracy of coronary heart disease.

In 2013, Lappenschaar et al. [10] proposed a multilevel temporal Bayesian [11] network
to capture the joint evolution of multiple chronic diseases. Based on about 1.5 million patient
data extracted from 90 general practice registries in the Netherlands, the study eventually
captured the progression trajectory of six chronic cardiovascular diseases and found that
the cumulative incidence of chronic comorbidities increased rapidly with the number of
diseases already present at baseline.

In 2014, Jensen et al. [12] compiled the data of 6.2 million people registered in 14.9 years
into 1171 important disease progression trajectories, and finally found that the diagnosis
of Chronic Obstructive Pulmonary Disease (COPD) and gout greatly increased the risk
of comorbid chronic diseases. The same year, Strauss et al. [13] have used LCGA to
understand the effects of the incidence of chronic diseases in the elderly over time in the
elderly. The survey was conducted by adopting UK primary medical consultation data,
covering data from 24,615 patients aged 0–50 years during 2003–2005, and chronic diseases
including 42 consensus definitions. Using LCGA identified different populations with
similar progression of multimorbidity over time and ultimately identified five groups of
individuals representing different trajectories of life.

In 2015, Foguet-Boreu et al. [14] used cluster analysis studies to determine the diag-
nostic clustering of elderly patients with multiple diseases. Factors such as sex and age
groups were analyzed by targeting patient registration data from 251 health centers in
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Spain. The cluster analysis showed that the most common diseases in both the age group
and sex groups were chronic diseases of the metabolic circulation class, while including
musculoskeletal diseases was the second most common disease diagnosis.Through cluster
analysis, doctors can provide corresponding clusters for reference for clinical treatment
to achieve more effective treatment. Furthermore, in 2015, Sinnige et al. [15] analyzed the
prevalence of multiple diseases through the clinical data of 120,000 patients older than
55 years from 2002 to 2011, and adjusted for the actual situation, the number of disease
types and the time of patient data registration. They calculated the prevalence of chronic
diseases such as heart failure, diabetes, migraine, and dementia, using multi-layer statis-
tical models showing that middle-aged and elderly people over 55 had an 86% chance
of comorbidity. Same year, Hsu et al. [16] has used the trajectory modeling method, by
targeting the health status data of patients in Taiwan from 1993 to 2007, which covers
cardiovascular diseases, lung diseases, arthritis, and other chronic diseases, analysis and
verified the combined trajectory of chronic multiple diseases in Taiwan, and checked the
related factors and predicted the aging results. Through trajectory analysis methods based
on multiple groups, four trajectory groups of multiple diseases were finally identified,
and the changes in population health risk evolving with age were demonstrated through
multiple disease trajectories.

In 2019, Weiqiang Lin et al. [17] studied a subcohort of 1215 systolic and 1345 diastolic
blood pressures. There were 78 new CHD cases in the systolic blood pressure subcohort,
86 cases of new CHD in the diastolic blood pressure subcohort. Cox regression model
analysis was conducted on the two subcohorts to explore whether the change trajectory
of blood pressure would cause the occurrence of CHD. The conclusion was that the high
and rapid increase or high and rapid decrease in blood pressure change trajectory would
increase the risk of new CHD.

In 2020, Cao et al. [18] used the Cox [19,20] proportional hazards model to analyze the
comprehensive score association of six common and high-incidence chronic diseases, in-
cluding dementia, cancer, diabetes, lung disease, cardiovascular disease, and hypertension,
with the risk of all-cause mortality in the elderly.

In 2021, Yucheng Guo et al. [21] studied the change trajectory of disease perception in
192 stroke patients. The patients were surveyed at baseline during the onset of the disease
and followed up at 1, 3, and 6 months after the onset, decision tree model was used to
analyze the core influencing factors of the change trajectory of disease perception level.
Finally, hope was found to be the core influencing factor of the trajectory among such
factors as hope, anxiety, occupational status, and age.

In 2022, CAO Zhiwei et al. [22] analyzed 54,258 patients with new cardiovascular
and cerebrovascular disease (CVD), and investigated the effect of baseline Triglyceride
glucose index(TyG) longitudinal trajectory on new CVD. The conclusion of the study is
that the incidence of CVD increases when the level of TyG trajectory increases. In the same
year, Han Juan et al. [23] conducted a study on 598 elderly patients with comorbidities
requiring surgery. The patients were investigated 3 days after surgery, at discharge, and
1 week after discharge to form the trajectory of nursing dependence. The trajectory data
were analyzed by using the latent growth mixed model, and the results showed that age,
education level, monthly income, living environment and other factors would affect the
trajectory of nursing dependence.

3. Method
3.1. Overview

If a population cohort approach is used to study the effects of various factors on
chronic diseases and their comorbidities in the whole life cycle, the data collection will
take a long time. General cohort data studies collect short-to-medium-term data from
populations of different age groups. It could provide a way to build a life-cycle simulation
framework for studying of the evolution of chronic diseases and their comorbidities.
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This work is carried out based on CKB (China Kadoorie Biobank) data [24,25]. CKB
data includes baseline data and outcome event data. Baseline data is the information of all
the enrolled respondents collected at the beginning of the queue. The outcome event data
is the disease event or death event data of all the respondents in regular questionnaires,
local hospital records, or medical insurance database records. Baseline data included
512,891 respondents, and each respondent was determined by a unique ID. A total of
716 columns of physical information such as age and gender and dietary habits were
recorded for each respondent, and no data were missing. The outcome event data mainly
records a total of 156 outcome events for all the baseline data respondents, in which each
outcome event is marked by an independent, unrepeated number, corresponding to a class
of disease state. The specific classification of disease state selection is mainly based on one
or several codes under the ICD10 classification standard, and also records the date and
time of each outcome event.

We first constructed a probabilistic graph model of disease progression metastasis for
chronic disease and its comorbidities based on CKB data, and then constructed a lifetime
population cohort simulation framework. The input of the simulation framework is a state
transition probability map by age, which will conduct full life-cycle simulation sample by
sample in the simulated population cohort to obtain the disease progression trajectory of
chronic diseases and their comorbidities in the population cohort, and compare it with
CKB data to verify the validity of the designed simulation framework.

One of the most basic simulation routes in the population cohort full life cycle simula-
tion is from birth to death. However, the samples were enrolled at over 30 years old in CKB
data, so information before 30 years cannot be obtained from the CKB data. Therefore, the
transfer probability map calculated in this study corresponds to the age starts at 30 years,
and the age of the population cohort simulation starts at 30 years, so here assume that the
individuals in the simulated population cohort are healthy until 30 years, that is, the basic
simulation route of this study starts at 30 years and ends with death.

3.1.1. Simulation States

The states that would be simulated in our study are defined as:

• Health: Represents an individual without IA, IS, DM, or any comorbidities;
• IA: Represents an individual has IA, but without IS, DM, or any comorbidities;
• IS: Represents an individual has IS, but without IA, DM, or any comorbidities;
• DM: Represents an individual has DM, but without IA, IS, or any comorbidities;
• IA and IS: Represents an individual has IA and IS converted from IA or IS, but without

DM or any comorbidities;
• IA and DM: Represents an individual has IA and DM converted from IA or DM, but

without IS or any comorbidities;
• IS and DM: Represents an individual has IS and DM converted from IS or DM, but

without IA or any comorbidities;
• Death: Represents an individual is dead.

3.1.2. Setting of the Category of Time Interval

The main considerations behind the setting of the category of time interval are:

• First, all disease states selected in this study were chronic or chronic comorbid states.
If the time interval is set too small, it may result to a transfer probability close to 0 due
to the small or no samples of chronic disease conversion in the interval;

• Second, if the time interval is set too large, the specific disease state transfer time
cannot be accurately expressed, resulting in a large deviation of the average transfer
age in the simulation results.

Therefore, under comprehensive consideration, three groups of time interval groups
were selected for trial and comparison, namely, 1-year interval group, 2-year interval group,
and 5-year interval group.
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3.1.3. Data Preprocessing

The preprocessing of CKB data mainly includes two parts: data cleaning and data
collation. The data cleaning process is mainly responsible for removing the samples with
missing data, samples with unreasonable data range, and samples that are not within the
selected state range of this study. Data collation is the foundation for the calculation of
transfer probability map in the three groups of time interval groups.

Since this study has assumed that subjects in health will first enter monomorbidity
and then turn to comorbidity, but not directly from health to comorbidity, the selected
comorbidity states in this study only include the coexistence of two chronic diseases, and
there is no assumption that the three chronic diseases will coexist. Therefore, in the step
of data cleaning, the samples with the coexistence of two chronic diseases diagnosed on
the same day in the CKB source data were excluded first, and then the samples with the
coexistence of three chronic diseases in the CKB source data were excluded.

In the process of data collation, since the CKB source data only contains the specific
events and time of the disease event or death event for each object, it is necessary to combine
the age of the object and the occurrence time of the outcome event, and finally the age of
various outcomes is generated for the objects in the data one by one.

3.2. Construction of the State Transition Probability Graph
3.2.1. Calculation of the transition probability

The transition probability is calculated according to the Jaccard coefficient, which is
used to compare the similarity and differences between the two effective sample sets A
and B, and describe the dissimilarity between the sets. The larger the Jaccard coefficient
indicates the higher the similarity, and the smaller the Jaccard coefficient, the lower the
similarity. The specific formula for the Jaccard coefficient J(A, B) between sample set A
and B is as follows:

J(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∪ B| (1)

For disease states, the transition probability was calculated as the proportion of people
moving from one state to the next after the specified interval year.

3.2.2. Transition Probability Graph of the 3 Interval Groups

The transition probability graph of the 1-year interval group is shown in Figure 1.
Each node with different color represents a state, corresponding to all the above eight
states. Each edge represents the transition from a state to another state, a total of 16 edges.
Each edge records the range of the values for transition probabilities from ages 30 to 90,
reflecting fluctuations in transition probabilities across time periods. Since it was previously
assumed that comorbidity develops from monomorbidity, there are no edges from health
to comorbidity status.

The transition probability graphs of the 2-year interval group and 5-year interval
group are shown in Figures 2 and 3, respectively.

3.3. Design of the Lifetime Population Cohort Simulation Framework

There are two queues in this simulation framework (as shown in Figure 4): living
queue and the death queue. At the beginning of the simulation, all individuals in the
population cohort were in the living queue. The simulated individuals start from a health
state and end in the death state. Repeat simulation time elapsed until all individuals enter
the death queue or at the maximum allowing age.
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Figure 1. Transition probability graph of 1-year interval group.

Figure 2. Transition probability graph of 2-year interval group.
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Figure 3. Transition probability graph of 5-year interval group.

The whole simulation framework constructs of three parts:

• Initialization phase: All individuals are in the living queue, and are set to age 30 with
healthy state. The death queue is empty at the initialization phase. Each individual in
the cohort has two important attributes, one being age, representing the individual’s
current age, and one being state, representing the individual’s current status;

• State determination phase: Based on state transition probability to decide the next state
of the individual. This phase adopts the idea of the Markov Monte Carlo approach.
For each independent object i, a random value p obtained from the sampling of a
normally distributed uni f (0, 1) is given as the transition probability sample value for
the next year. To determine whether object i remains in its original state or transferred
to another disease state by comparing the p value with the calculated transfer state
risk threshold;

• Aging and death process phase: For each individual in the living queue, a simulation
was conducted at each age, with the age increasing with grouping (1-year, 2-year, or
5-year interval). The result of the simulation may be to maintain the current state,
enter the next state, or enter the dead state.

Figure 4. Flow of the whole framework.
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4. Results and Discussion

The population of the simulation framework is set to 100,000 individuals in this work.
We have conducted several groups of experiments to verify the effectiveness of our method.

4.1. Disease Progression Trajectory

For 1-year interval group, there are 10 different classes of disease progression trajectory.
Figure 5 shows the top five categories of progress trajectory. The number of populations in
the top five trajectories reached about 70% of the total cohort population.

Figure 5. Disease progression trajectory of 1-year interval group.

It could be found that traces containing the IA or IS state represented a large proportion
of the cohort population, except for the first trajectory (Health-> Death). It could also be
observed from all 10 trajectories that the healthy population in the cohort developed chronic
monomorbidity at an average of 67 years and then chronic comorbidity at an average of
74 years.

For 2-year interval group, there also exists 10 different classes of disease progression
trajectory, shown in Figure 6. The result of 5-year interval group is shown in Figure 7.

Figure 6. Disease progression trajectory of 2-year interval group.
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Figure 7. Disease progression trajectory of 5-year interval group.

4.2. Disease Transition Mode and Timing

To study disease metastasis throughout the life cycle, we also map the overall disease
metastasis. The overall map of disease metastasis is based on the transition probability
graph architecture. The overall trend in the disease progression trajectory of the population
is presented from left to right. The proportion of the state transfer population and the mean
transfer time are indicated along the state transfer edges. The thickness of the connection
edge reflects the proportion of the transferred population to the total population cohort.
The combination of the connection edge and the data can more intuitively reflect the overall
state transition trend of the population cohort.

The overall disease metastasis for 1-year interval group is shown in Figure 8. Although
judging from the average age of death of the top-ranked disease progression trajectory,
the average age of death of individuals with chronic disease is later than the progression
trajectory from health to death alone, that is, patients with chronic disease tend to live
longer than those without disease. However, it can be inferred that patients with chronic
diseases or chronic comorbidities tend to pay more attention to their physical health than
healthy people who are not sick, which leads to a large number of individuals with slightly
longer lives but not healthy bodies in the simulated cohort.

Figures 9 and 10 show the results for 2-year interval group and 5-year interval group.

4.3. Analysis of the Influence of Time Interval

In order to evaluate the influence of different time interval for the simulation result,
we have also conducted several comparisons.

4.3.1. IA

The transition status of IA for different time interval groups is shown in Figure 11.
As can be seen from Figure 11, the mean age of transition from the health state to IA state
in the 5-year interval group is quite different compared to the 1-year and 2-year interval
groups. However, the distribution of transition proportions, the distribution of IA status to
comorbidity or death status, and the mean age did not differ much among the three groups.

It can also be seen that with the increase in the time interval, the proportion of people
moving directly from the IA state to the death state gradually increases.
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Figure 8. Overall disease metastasis of 1-year interval group.

Figure 9. Overall disease metastasis of 2-year interval group.
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Figure 10. Overall disease metastasis of 5-year interval group.

Figure 11. IA transition status for different time interval groups.

4.3.2. IS

The transition status of IS for different time interval groups is shown in Figure 12.

Figure 12. IS transition status for different time interval groups.
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The average transfer time from the health state to IS state is 39.6 years for the 1-year
interval group, and for the 2-year interval it is 36.6 years and in the 5-year interval group
it is 31.7 years. The value of this average transfer time decreases in these three sets of
simulations. After a preliminary analysis, we believe that the possible reason is that the
transfer probability of this path is gradually increased and more accurate because the
number of samples in the 5-year interval grouping is more accurate.

Moreover, by observing the transfer of IS state to IA and IS or IS and DM state in the
three time interval groups, respectively, we could find that the corresponding values of the
three interval groups are not very different. After analysis, it was found that even in a small
interval of 1 or 2 years, the proportion of samples transformed from IS monomorbidity
state to comorbidity state was basically equal to the proportion of simulated result sample
at the 5-year interval, so the change of data was not obvious in the conversion map of
grouped data.

4.3.3. DM

The transition status of DM for different time interval groups is shown in Figure 13.

Figure 13. DM transition status for different time interval groups.

It can be found that the three groups of data are not particularly different in terms of
the average transfer time or the percentage of transfer. This is mainly because the number
of new cases of diabetes in the cohort is relatively stable, resulting in the calculated transfer
probability under different groups reflects the trend of stable metastasis. However, in a
nuance, the longer the interval, the average transfer time still becomes smaller.

4.3.4. Comorbidity

The transition status of IA and IS, IA and DM, and IS and DM for different time
interval groups are shown in Figure 14–16.

Figure 14. IA and IS transition status for different time interval groups.
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Figure 15. IA and DM transition status for different time interval groups.

Figure 16. IS and DM transition status for different time interval groups.

5. Conclusions

In this paper, we have presented our effort at the construction of a full-lifetime pop-
ulation cohort simulation framework. The design’s aim is to generate a comprehensive
understanding of the disease transition over a full lifetime when we only have short-or-
medium term population cohort data.

We have chosen IA, IS, and DM with their comorbidities as the simulation states.
Three different time interval groups are simulated to decide the influence of time interval
on the simulation result.

Overall, some differences were found in the three groups of simulation results. Ac-
cording to the analysis, due to the short simulation interval of the 1-year interval group, the
statistical transfer probability is somewhat different from the real time of chronic disease
transfer, and it is vulnerable to the fluctuation of the original data. However, because the
time interval of each simulation round is short, the average transfer time is more accurate.
For simulation results with 2- or 5-year time intervals, the influence of data fluctuations is
reduced due to the increase in observed intervals. The number of chronic disease conver-
sion subjects in each round of simulation was relatively stable. However, the disadvantage
is that the long simulation interval leads to the average statistical transfer time is somewhat
less accurate compared to the 1-year time interval simulation result.
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