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Abstract: Although graph theory has already been introduced in spatial reasoning, current spatial
database systems do not provide out-of-the-box routing on geometric points that are not matched on
the graph. Methods that connect new reference locations to the graph render different routing results.
Moreover, current solutions break reasoning down to local analysis. We bridge the gap between
routing networks and spatial geometry by a global matching of geometric points to routing networks.
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1. Introduction

With the growth of the number of new query dimensions that address spatial and
temporal properties, business intelligence analysts claim that the buzz-word term Big
Data [1] does nowadays put less emphasis on the sheer size of data but focuses more
on the v-terms variety and veracity, which translate to the context of spatial data in the
following ways.

Variety Spatial reference systems encode spatial data by relative location (e.g., coordinates
on a local projection) or absolutely (e.g., WGS84 [2] or the Mercator projection [3]) in
various formats.

Veracity Every dataset that provides spatial data is incomplete and inaccurate in the
open-world assumption, for instance, the dynamic reshaping of infrastructure.

This can be seen by two facts: On the one hand, in most parts of the world, modern
network data are approaching nearly a perfect mapping between digital representation and
real-life infrastructure. On the other hand, diverse sources of spatial data emerge due to the
vast availability of mobile gadgets that collect location data (e.g., geotagging, -caching, etc.).
This phenomenon involves structured geoinformation data sources such as Open Street
Map (OSM), as well.

Nowadays, spatial database systems have already taken the bait to provide useful
query access to data with spatial information [4]. They enable fast spatial queries that may
involve routing, but they do not provide the easy aggregation of diverse data formats.
This comes apparently to light when dealing with routing networks and spatial objects.
Common spatial systems map the network locally on a plane such that the Euclidean metric
can be used for fast geographic reasoning.

On the one side, adding, moving or deleting vertices or edges can be naturally inter-
preted geometrically. On the other side, naïve approaches neglect the following problems:

1. First, the network’s graph might not be planar. When projecting a non-planar graph to
a plane, the image has intersecting lines that represent two edges. By merely looking
at the image, we cannot differentiate whether it is a crossing or whether one street
tunnels under the other. A geometrical query, unaware of this fact, might deliver
results that do not match real-world expectation. Let us, for instance, consider a long
bridge crossing a valley. A query for the nearest access point to the routing network
of the valley might suggest this bridge as a result, although it is not directly accessible
from the valley.
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2. A second problem arises when very distant points are taken into consideration. For
large routing networks, it is not possible to project them on a compact plane that
respects both the angles and distances of the Earth. That is because the Earth is not
isomorphic to any compact flat model. For instance, let us take a look at the Mercator
projection [3]. It gained popularity due to its accuracy of angles and is still used for
course information in marine navigation systems [5]. Furthermore, the projection
provides a good approximation for nearby spatial reasoning. Unfortunately, the pro-
jected shapes of the objects get distorted with respect to angle and length. More
precisely, the distortion correlates with the objects’ distances to the equator. Hence,
the projection exaggerates the distances and sizes of spatial objects near pole regions.
This makes spatial objects with large differences in latitude incomparable, and is
a main complaint of the Mercator projection. In order to cope with large-distance
reasoning, we have to leave the concept of a single chart and move towards a concept
that represents a “truer” form of the Earth. In other words, distances between distant
objects are retrieved by a geodesic line instead of some projection.

Having recognized these facts, we want to deal with the following emerging problem.

Research Hypothesis. Given a (global) routing network that is based on a geometric
representation, we want to enhance the network in such a way that queries based on geo-
metric information are answered by matching the geometric position with the network. This
should be conducted in such a way that respects the nature of the geometric representation.

Nowadays, most current spatial systems are based on the World Geodetic System [2].
Its underlying model shapes the Earth as a spheroid. In fact, when neglecting local height
differences, e.g., mountains and valleys, it is a good approximation.

Remark 1 ([6]). The representation of the Earth as a spheroid can be formalized by the local
parametrizations

φj : [0, π]× Ij → R3, (θ, ψ) 7→
a sin θ cos ψ

b sin θ sin ψ
c cos θ

,

with I1 = (0, 2π) and I2 = (−π, π), j = 1, 2, where the variables a, b, c ∈ (0, ∞) have to be
chosen such that the overall error is minimized [7]. Here, θ denotes the inclination (i.e., latitude)
and ψ the azimuth (i.e., longitude). The intervals Ij are chosen in such a way that there are no
degenerated points, i.e., each inverse function and its derivate are continuously defined.

In this article, we show an approach combining a routing network with a geometrical
representation that respects distances globally. In simple terms, we augment a given routing
network’s graph with new vertices in such a way that the new graph can give us routing
information from and to the newly created vertices that reference geometrical points that
were not yet represented by the routing network. To keep it short, we use the term linkage
for such a procedure.

1.1. Related Work

Spatial reasoning can be conducted on graph-theoretical foundations only if all inter-
esting points are represented by the graph. Moreover, a connected graph is necessary for
useful routing queries. In most common techniques, missing parts of the street infrastruc-
ture are either:

1. Extracted from digital imagery;
2. Collected by sensors (e.g., GPS-enabled tracking devices);
3. Created manually.

Every case may lead to an inaccurate or incomplete routing network. If the position
is uncertain or the information about the area is incomplete, it is not possible to exactly
match a location point with a vertex on a routing network. In scenario (1), the captured
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images can be used to reverify the constructed routing network. Wiedemann and Ebner’s
algorithm [8] uses detour lengths and connection completeness as criteria when analyzing
imagery. In terms of case (2), this problem is common for navigation systems that have
to figure out on which path an object is moving by analyzing its trajectory. In fact, this
process is so frequent that it has a name of its own—the map matching problem [9]. For
instance, Haunert and Budig [10] used collected trajectories to discover missing road parts.
Alternatively, Lou et al. [11] took an initial candidate list and use transition probability
to minimize the error of choosing the right trajectory. For case (3), we have in general
no additional information to ensure our decision for linking a non-mapped point to the
network. The easiest setting is a planar routing network mapped on a surface: For each
point of interest (POI) we want to connect, we just add an edge to the closest location of
the graph. For proximity analysis, Dahlgren and Harrie [12] connected each geolocation
with the nearest reference point of the routing network. de Jong and Tillema [13] took
the Delaunay triangulation of their existing road network as a criterion for linking non-
connected points. They further discarded those parts of the Delaunay graph that intersected
with obstacles. Last but not least, Aronov et al. [14] emphasized possible detours when
propagating their method to link new points to the network. They called the newly created
edge a feed-link. Savic and Stojakovic [15] further proposed an algorithm to compute this
feed-link in linear time.

For mobile ad hoc networks, Blazevic et al. [16] proposed so-called terminode routing
to address holes in mobile network topologies. Durocher et al. [17] reviewed various
geometric routing strategies for wireless network protocols.

Although some of these approaches share similarities with the techniques introduced
in this article, they differ in the problem statement. In fact, to the best of our knowledge,
we are unaware of any former study adding points to spatial systems based on geomet-
ric distances. Our problem setting has not been treated in terms of spatial databases that
may store wide routing networks along with spatial representations of both the routing
networks’ vertices and POIs. We provide in this paper a conceptional foundation for
describing routing networks globally on Earth’s surface that is then translated to the field
of spatial databases.

1.2. Structure of the Paper

More verbosely, we start with some preliminaries that introduce graphs and manifolds
in Section 2. Briefly, we want to represent our routing network as a special class of graphs
that can be mapped on a surface that is used for geometric reasoning. A modification of
the routing network is conducted based on the geographic representation of the graph.
Basically, we use manifolds for geometric reasoning. In order to connect the actual network
with geometric points, we demand the routing network to be projectable on the manifold.
This will allow us to do geometrical distance measuring. For that, we introduce a lower
bound in Section 2.4 that we use to elaborate upon a theoretical solution in Section 3. The
provided approach is a solution to the research hypothesis with respect to the fact that the
geometrical shape of the manifold gets truthfully respected. Translation to spatial databases
is conducted in Section 4. We further evaluate the implementation in Section 4.1 while
providing an outlook in Section 4.3.

2. Preliminaries

Let us recollect some essential text-book concepts such as graphs, manifolds and
metrics. To this end, we can formulate our problem in terms of this section.

2.1. Graphs

In order to represent a routing network on the Earth, let us recall the definition of a
graph [18]:
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Definition 1. A directed weighted graph G := (V, E, c) is a triple consisting of a vertex set V, an
edge set E ⊆ V ×V and a cost measure c : E→ [0, ∞). Let us denote for two vertices v1, v2 ∈ V
with (v1, v2) ∈ E the edge that connects v1 to v2. To avoid the excessive usage of brackets, we
simplify the expression c((u, v)) to c(u, v) for an edge (u, v) ∈ E. A walk P := (v1, . . . , vn)
is a consecutive succession of vertices for an arbitrary n ∈ N such that there exists an edge
(vi, vi+1) ∈ E for each i ∈ {1, . . . , n− 1}. If the vertices vi and vj of a walk P := (v1, . . . , vn)
are pairwise different for all i 6= j, we call P a path. We say the walk P with n ∈ N vertices
follows “from a ∈ V to b ∈ V” when v1 = a and vn = b. We call G connected if there exists a
walk from a to b for all a, b ∈ V. Moreover, we define the length of the walk P = (v1, . . . , vn) by
`(P) := ∑n−1

i=1 c(vi, vi+1). Further, we denote with `(a, b) the infimum of the lengths of all walks
from a to b, i.e.,

`(a, b) := inf{`(P) : P walk from a to b}.

We further want to examine a special class of graphs whose path length function ` is
restricted in such a way that we can find a metric that is a lower bound of `. This restricts `
to be member of the following function class:

Definition 2. Let V be a set. A mapping ` : V ×V → R is called a quasimetric if it is a metric
which does not need to fulfill the symmetry property.

Remark 2. For our approach, we neglect a possible symmetry property of routing networks. In
fact, cost functions based on fuel or calorie consumption and estimated time are valid examples for
directed networks that are in general non-symmetric.

Definition 3. If E 6= ∅ and c of a connected graph G := (V, E, c) supports the conditions

(v, v) ∈ E for each v ∈ V (reflexivity),

c(u, v) = 0 if and only if u = v (definiteness),

then ` : V×V → R is a quasimetric. We then call G a quasimetric network and ` the quasimetric
induced by c.

See [19] for an indexing data structure built on a quasimetric network.

Lemma 1. ` respects the triangle inequality, although c is not required to hold this property.

Proof. Because c(e) ≥ 0 for all e ∈ E, a shortest walk will always be a simple path: Every
walk that contains a circle is not a path. It can be made simple by removing all circles.
However, this will also shorten the length of the walk. Hence, the definition of ` stays the
same when taking the infimum of the length of all paths. We will call a walk that meets
this condition a shortest path. Hence, we yield:

• From `(P) ≥ 0 ∀P, we obtain the non-negativity of `.
• As `(P) > 0 for all walks from u to v ∈ V, u 6= v, we obtain by definition `(u, v) > 0 for

all u, v ∈ V, u 6= v. As c(v, v) = 0 for each v ∈ V, we can conclude that `((v, v)) = 0
for each v ∈ V. Thus, we yield the positive definiteness of `.

• If we define the concatenation of walks by (v1, . . . , vn) ◦ (w1, . . . , wn) :={
(v1, . . . , vn, w2, . . . , wn) if vn = w1,
undefined otherwise,

the triangle inequality is simple to show: For arbitrary u, v, w ∈ V, let Puv be a path
from u to v and Pvw a path from v to w. Then, we can generate a walk Puw :=
Puv ◦ Pvw by combining both paths, so we have `(Puw) = `(Pvw) + `(Puv). Applying
the infimum over all walks from u to w yields the triangle inequality.
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Remark 3. In some technical scenarios, the definiteness is too restrictive. For instance, a database
user may want to store two vertices with zero distance when one node shall represent the actual POI
and the other the street segment at which the POI is located. If we drop definiteness in Definitions 2
and 3, we have to take care with the definition of the embedding i below, cf. Example 5.

2.2. Manifolds

With regards to the vast number of encoding formats for spatial data, we describe our
approach on a theoretical level, independently of any encoding. Therefore, we emphasize
the concept of manifolds [20] in order to model space. The core idea is that we use several
charts

{
ϕj : Vj → R2}

j∈J that map locally to a plane. The images of these charts can be
glued to transit local reasoning over multiple planes. The following definition gives a
precise characterization:

Definition 4 ([20]). A compact n-dimensional manifold is a compact topological space M for
which a finite family of homomorphisms

{
ϕj : Vj → Rn}

j∈J exists with Vj ⊆ M open for each
j ∈ J such that:

•
⋃

j∈J Vj = M.
• ∀j, k ∈ J : Vj ∩ Vk 6= ∅ ⇒ ϕj ◦ ϕ−1

k : ϕk(Vk ∩ Vj) → ϕj(Vk ∩ Vj) is a homomorphism,
called the transition map.

Each ϕi is called a chart, and
{

ϕj : ϕj : Vj → Rn}
j∈J is called an atlas of M.

In differential geometry, the earth is often modeled as an oriented surface M ⊂ R3, i.e.,
a two-dimensional, topological manifold that embeds to the space R3 equipped with the
Euclidean metric. We use the transition map in order to prolong geodesics over multiple
maps. The Vj are open, connected subsets of M that cover M. For example, any sphere or
spheroid is a surface and φ1 and φ2 are the charts of this manifold. Further, every oriented
surface has a Gauss map [21] that defines the normal field ν : M → R3 ⊂ S2. Informally,
M encodes the position on the surface, while ν allows us to express elevation relative to
the surface.

2.3. Routing Networks

We now introduce another manifold N that accounts for routing networks. In general,
we will allow N 6⊂ M, i.e., bridges, tunnels or other partially inaccessible street segments
can be expressed by this model.

Definition 5. Let (V, E, c) be a quasimetric network. Further, let i : V ↪→ N, E → P(N)
be an embedding in a manifold N ⊂ R3, where P(N) is the power set of N. Let the following
conditions hold:

• i |V : V ↪→ N ⊂ R3 with
⋃

e∈E i(e) = N;
• For each n ∈ N, there exists an m ∈ M and an h ∈ R such that m+ hν(m) = n (embedding

property). This property is based on the fact that street segments may not be on the surface.
Informally, the parameter h counts for the altitude difference between the ground and street;
e.g., bridges have positive heights and tunnels negative heights. This separation between
spherical data and altitude is also common when dealing with the WGS84 format that encodes
points on M by latitude and longitude [22].

• Let πM ◦ i : V → M be the (canonical) projection of the graph onto M. Then, we assume that
for all e ∈ E there exists some j ∈ J with πM ◦ i(e) ⊂ Vj, i.e., we stipulate that the complete
image of each edge is contained in at least one chart’s image (containment property).

• For each edge e = (a, b) ∈ E, there is a line γe : [0, 1]→ N with γe(0) = i(a), γe(1) = i(b),
and i(e) = Im γe, i.e., γe is a linear continuous, parameterized, geodesic line with a and b as
endpoints (line-string property).
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• Two of these lines γ1 and γ2 are called equivalent when γ1 = γ2 or γ1(1− ·) = γ2. If
we denote equivalence with ∼ and define the quotient set Γ := {γe : e ∈ E}/ ∼, then
{γ(0, 1) : γ ∈ Γ} shall be a disjoint partition of N \ i(V) (disjoint property).

We then call the tuple G = (V, E, c, i, N) a routing network. i(V) ⊂ N, since G is
connected. In particular, if there exists an injection N ↪→ Vj ⊂ R2 for some j ∈ J, then the routing
network G is planar. Let us use the symbol G for the class of routing networks.

Remark 4. The equivalence relation Γ can be understood as a lift of an equivalence relation that
renders a directed graph undirected by

E/ ∼ := {{u, v} : (u, v) ∈ E or (v, u) ∈ E}.

Let us consider the scenario of a spatial recommender system that uses the current lo-
cation of a user to search for close POIs. The geolocation is collected by a mobile navigation
system. Hence, the recommender has to map this polled location to its routing network in
order to compute distances. The query point might not even be in the image of i. We have
to add these points to the graph by enhancing the number of vertices and edges in such
a way that these particular points can be accessed by our network, as well. A vertex on
which a geographic point is mapped is called a location reference. We will show some ideas
on how to model location references so that shortest path evaluation should retrieve good
results in relation to real-world expectation.

2.4. Lower-Bounding Metrics

The cost function c of a routing network can express various measures: distance length,
travel time, fuel consumption, etc. The definiteness of c does not allow us to add new
vertices to networks with edges of zero cost. In fact, we want to give the new reference
location a penalty for the expense to travel from (to) the current location to (from) the
routing network. Most scenarios inherit a lower bound for this expense, e.g., the beeline
when c encodes travel distances. We discuss some further scenarios and show possible
lower bounds, which we formalize in the following definition:

Definition 6. We call a metric d : N ∪M× N ∪M → R such that d(i(a), i(b)) ≤ `(a, b) for
all vertices a, b ∈ V, where ` denotes the quasimetric induced by c, a lower-bounding metric of `.
For a set U ⊆ N and a point n ∈ N, we use the common shortcut d(U, n) := infu∈U d(u, n) with
d(∅, n) = ∞.

Example 1. Let G = (V, E, c, i, N) be a routing network in which i(e) shall represent a street
segment for an arbitrary e ∈ E. For each street segment e, the network can query with c(e) the
estimated time needed to get from the start point of e to its end point. The induced quasimetric `
respects the triangle inequality: For each start and end point s, t ∈ V, the obtained value of `(s, t) is
the length of a shortest path from s to t, i.e., a path whose accumulated, estimated time is shortest.

Example 2. Let c(u, v) be the Euclidean distance between the mappings of i(u) and i(v) to a local
plane. Such a mapping exists for each edge due to the containment property. For such a c, the
following metrics are valid lower bounds:

• A common local lower-bounding metric is the beeline when the network is mapped to a local
plane. It would be tedious to adhere multiple charts by the transition map in order to calculate
the beeline between two distant points. Fortunately, it is easy to calculate the geodesic on M
by approximation [23]. For example, Vincenty’s algorithm [24] is a good approximation for
calculating geodesics between two different points on the surface of the Earth.

• The Euclidean metric in R3 is a lower-bounding metric. In particular, this metric is also a
lower bound of the local beeline because it is allowed to neglect the curvature of the manifold
M, cf. Figure 1.
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g(u, v)

v

u

‖u− v‖R3

2

Figure 1. Curvature on an ellipsoid embedded in R3. The ellipsoid’s surface is visualized in dashed
green color. We take two points u and v on this ellipsoid. If we cut the ellipsoid along these two
points, we obtain a circle on which both points lie. The arc (blue color) that connects both points is a
geodesic g(u, v) of the surface [25]. A straight line (red color) would be shorter than the geodesic and
hence the l2-norm ‖·‖R3

2 is a lower bound.

Definition 7. Let G = (V, E, c, i, N) be a routing network and d a metric. If d is a lower-bounding
metric of `, where ` is the quasimetric induced by c, we say that G respects the metric d.

3. Linkage to Network

Let us again formulate our posed problem on a surface M: Given a routing network
G = (V, E, c, i, N) ∈ G, its geometric representation N and a lower-bounding metric d, we
want to add a new vertex v′ 6∈ V to G in such a way that:

• The resulting routing network stays valid. In particular, the graph shall remain
connected, i.e., there is an edge with v′ as an end.

• The modified geometric representation i′ maps i′(v′) to M.
• i(v′) ∈ M. Informally, this means that a pedestrian can access v′ from the ground.
• d is still a valid lower-bounding metric.

We call this transformation a linkage and pose now a formal definition of it:

Definition 8. Let G = (V, E, c, i, N) ∈ G and ` be the quasimetric induced by i. A linkage
is some mapping σ : M × G → G with the property that the resulting quasimetric network
G′ := (V′, E′, c′, i′, N′) := σ(a, G) holds the conditions:

• i′ : E′ ∪V′ → N′ with i′ |V= i |V and i′ |(E∩E′)= i |(E∩E′).
• V′ = V ∪ {v′} with i′(v′) = a for some v′ (that is not necessarily part of V).
• i′(V′ ∪ E′) ⊂ N′; hence, a ∈ N′ ∩M.
• There exist some x, y ∈ V with (v′, x) ∈ E′ and (y, v′) ∈ E′.
• c′ : E′ → R with c′ |E∩E′= c.
• G′ respects the metric d.

Hence, `(x, y) = `′(x, y) for all vertices x, y ∈ V where ` and `′ are the quasimetrics induced
by i and i′, respectively.

The crux of this problem lies in the construction of appropriate edges or vertices that
sustain the properties of a routing network. In the following, we introduce some construction
steps to elaborate a simple but complete solution in the end. First, we treat the special case
that we want to add some point a ∈ M∩N that belongs to G, i.e., the location reference v ∈ V
with i(v) = a already exists. Hence, nothing has to be done. Second, a ∈ M ∩ N may be in
the image i(e) of some edge e ∈ E. Then, we split e into two pieces by linear interpolation
and add the location reference of a as an intermediate piece. Formally, we have:

Example 3. We define the linear interpolation G′ := σ(a, G) of G := (V, E, c, i) ∈ G for a point
a ∈ M as follows:

1. If there exists some v ∈ V such that i(v) = a, then G′ := G.
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2. If there exists an edge e ∈ E such that a ∈ i(e) \ i(V), then there is some λ ∈ (0, 1) such that
γe(λ) = a, where γe is the line induced by i(e) due to the line-string property. Let x, y ∈ V be
the vertices connected by e such that e = (x, y). We add a new vertex v′ 6∈ V with i(v′) = a.
Let us set c′(x, v′) := λc(x, y) and c′(v′, y) := (1− λ)c(x, y). If (y, x) ∈ E, we further
set, due to Im γ(x,y) = Im γ(y,x), c′(v′, x) :=

←−
λ c(y, x) and c′(y, v′) := (1−←−λ )c(y, x)

with
←−
λ ∈ (0, 1) such that γ(y,x)(

←−
λ ) = a. In the end, we define E′ as the set E without

{(x, y), (y, x)}, but with the new edges used above - {(x, v′), (v′, y)}, and {(v′, x), (y, v′)}
if (y, x) ∈ E.
Let ` and `′ be the quasimetrics that are induced by c and c′, respectively. Then, `′ |V×V= `
holds due to `(x, y) = c(x, y) = c′(x, v′) + c′(v′, y) = `′(x, y). Thus, we yield the beeline
property with i′(x, v′) = γe([0, λ]), i′(v′, y) = γe([λ, 1]). With the same arguments, we are
able to preserve the properties of a routing network for (y, x), if (y, x) ∈ E. Because we have
not changed the image of i, we can just set N′ := N and hence we are finished.

3. Otherwise, we are certain that a 6∈ N. We use a not yet defined method to create a new
network G′ = (V′, E′, c′, i′, N′) with some E′, c′ and N′.

In both specified cases, the linear interpolation is a linkage, i.e., σ(G) := (V′, E′, c′, i′, N)
fulfills the properties of Definition 8. See Figure 2 for an illustration.

i(x)

i(y)

γe(λ) = a
e

G G′

i(x)

i(y)

λc(x, y)

(1− λ)c(x, y)
a

Figure 2. Linking a point a by linear interpolation of an edge e.

Note that Example 3 takes care just for points that are already part of N. In the
following, we try to fill case (3). Here, we can be sure that the point a ∈ M to add does not
belong to the image of i; hence, a 6∈ N. In order to keep the graph connected, we have to
add some edges after inserting the location reference of a. For the search of suitable access
points, we take only those segments of the routing network into account that intersect with
the manifold M. Informally, the intersection takes account for accessibility from the ground.
For example, we consider the internal segments of a tunnel (“below M”) or bridge (“above
M”) inaccessible. To access a tunnel or bridge, a path to the entrance of a tunnel or the
vertex that connects the bridge with M has to be found. For a query point a ∈ ϕjVj, if the
routing network can be drawn on the surface, i.e., the condition πVj N = N ∩Vj holds, then
we do not have to care about inaccessible points.

The first example tries to solve the problem by simply adding an edge to the closest
accessible vertex of the routing network, see Figure 3 for an example. Unfortunately,
the resulting graph may not be a routing network anymore. Nevertheless, we can use this
approach to elaborate upon Example 4.

i(x)

i(y)

e
a

G G′

i(x)

i(y)

e
a

d(a, i(x))

Figure 3. Vertex linkage. We link a point a to the node i(x) of the routing network.
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Counter-Example 1. We define the vertex linkage G′ := σ(a, G) of G := (V, E, c, i, N) ∈ G
for a point a ∈ M that is based on linear interpolation. Case (3) of Example 3 is implemented as
follows: Define V′ := V ∪ {v′} with some v′ 6∈ V, and set i′(v′) := a and i′ |V= i otherwise.
Further, let u := argminv∈V:i(v)∈M d(i(v), a). We then define E′ := E ∪ {(u, v′), (v′, u)} with
c′(u, v′) = c′(v′, u) = d(a, i(u)). In general, σ(G) := (V′, E′, c′, i′, N ∪ i′(u, v′)) is not a valid
linkage with regards to Definition 8. The problem arises when there exists an edge e ∈ E with
i(e)∩ i(u, v′) 6= ∅. This is possible because there might exist an edge e =: (x, y) with the following
properties (cf. Figure 4):

• d(i(e), a) < d(i(u), a) and hence d(i(e), a) ≤ min{d(i(x), a), d(i(y), a)};
• There exist α < 0, w ∈ γ̇⊥e (0) and λ, µ ∈ [0, 1] such that

γe(λ) + w = i(v) and γe(µ) + αw = a,

where γe is the geodesic of e induced by i.

i(x)

i(y)

e

ai(u)

Figure 4. Vertex linkage creating a new edge intersecting with e. After this operation, the graph is no
longer planar, a setting we want to avoid.

Instead of the closest vertex, we can also take some route segment as an access
point; we split an edge like the linear interpolation of Example 3 in such a way that
the intermediate piece ṽ acts as the new reference location. The image i(e) of a suitable
edge e should have a point b = i′(ṽ) ∈ i(e) ∩M that is close to a. On a plane ϕjVj with
πVj N = N ∩Vj, the point b is determined by the perpendicular from a to the closest edge
with respect to a. In the general case, we have to follow the shortest geodesic from a to the
routing network. This approach is visualized in Figure 5.

i(x)

i(y)

b

a

e

G G′

i(x)

i(y)a

λc(x, y)

(1− λ)c(x, y)d(a, b)

b

Figure 5. Edge Linkage. We link a point a to a newly created node b splitting the former edge e of the
routing network.

Example 4 (Edge Linkage). We define the edge linkage G′ := σ(a, G) of G := (V, E, c, i, N) ∈ G
for a point a ∈ M that is based on linear interpolation and implement the last procedure as follows:
First, search for an

e := argmine∈E d(i(e) ∩M, a)

and set λ := argminλ∈[0,1] d(γe(λ), a), where γe is the geodesic line induced by i(e). Let x, y ∈ V
be the vertices attached by e such that e = (x, y) and δ := d(γe(λ), a). There are now two cases
to consider:
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1. λ = 0 or λ = 1, i.e., d(i(e), a) = d(i(x), a) or d(i(e), a) = d(i(y), a). Without loss of
generality, let the equation d(i(e), a) = d(x, a) hold. Now we can apply a vertex linkage on
G by Counter-Example 1 (setting u← x). This linkage holds the disjoint property.

2. Otherwise, λ ∈ (0, 1). Hence, there exists some b ∈ N with b ∈ i(e) and d(i(e), a) = d(b, a).
We apply linear interpolation on G with b and yield a new network σ(b, G) =: G̃ :=
(Ṽ, Ẽ, c̃, ĩ, N) with ĩ(ṽ) = b for some ṽ ∈ Ṽ. Note that the rule applied by linear interpolation
will not modify N. If we exchange G with G̃, the first case holds, since there exists an edge
ẽ := argminṽ∈Ẽ d(ĩ(ṽ), a) with minλ̃∈[0,1] d(γẽ(λ̃), a) ∈ {0, 1}.

Proof. For (2), we need to show that there is no e′ ∈ E′ that intersects with E′ \ {e′}. Let us
assume that such an e′ ∈ E′ exists. As we have merely exchanged e with {(x, v), (v, y)} in E,
e′ has to intersect either (x, v′) or (v′, y).Then, d(i(e′), a) < min{d(i(x, v′), a), d(i(v′, y), a)}
= d(i(e), a), a contradiction to the selection of e = (x, y) to be the closest edge to a.

Retrieving the closest edge/vertex is usually conducted by a nearest-neighbor search
on the database index. A common spatial index structure is the R-tree [26] that builds
bounding boxes of geometries. For instance, Roussopoulos et al. [27] elaborated upon a
branch-and-bound algorithm that evaluates distances between bounding boxes.

When used in real-world scenarios, it is often the case that some point a ∈ M is
very close to a mapped vertex, but the coordinates do not match exactly. More precisely,
for an ε > 0 small enough, we have minv∈V d(i(v), a) < ε. Let us consider that we have a
huge collection of sensor-collected geolocations that shall be linked to an existing routing
network. For the same location, measured values tend to have small differences. Hence, it
might be advisable for practical reasons to condense very close points to one vertex. If we
redefine the properties of i in such a way that we have i(v) ⊂ N instead of i(v) ∈ N, then
we could do the following trivial optimization:

Example 5 (Fuzzy matching). If there exists some v ∈ V with minv∈V d(i(v), a) < r, then add
a to i(v), i.e., i′ |V\{v}= i and i′(v) = i(v) ∪ {a}. We define the r-snap σr : M× G → G with
a threshold 0 ≤ r < ∞ as a modification of our linear interpolation approach (Example 3), which
makes the above rule its highest priority. Choosing the right r is situation-dependent, e.g., a small r
would be more preferable in network-dense areas. Note that this approach resembles “snapping” in
computer graphics.

To recap, we first studied linear interpolation as a method to add a point a to the
routing network for the special case that a is on an already-existing edge, which we split
at a. Next, we studied ways in how to link a when a is on no existing edge of the routing
network. There, we observed that the vertex linkage linking a to the closest vertex does
not retain planarity in general. Luckily, we could show that the edge linkage retains this
property, making it a suitable candidate for tackling our linkage problem. Finally, we
introduced the r-snap technique, which allows us to apply linear interpolation for close
enough points while sacrificing accuracy. In what follows, we present an implementation
of the edge linkage approach on a database system.

4. Implementation

The key extension of SQL with respect to geoscience is the technical report “Simple
Features for SQL” of the Open Geospatial Consortium (OGC) [4,28]. Common databases
already offer an addition to its core framework to address this concept. For PostgreSQL,
there exists the extension PostGIS [29] that follows OGC’s described standard. Hence, we
describe our implementation in terms of the OGC standard.

While the extensions pgRouting and PostGIS are written in C/C++, our middleware
was implemented in Java. The linkage and routing queries were conducted by JDBC
commands with OGC’s SQL extension. By restricting ourselves to JDBC calls, our solution
was independent of a specific relational database management system, as long as OGC’s
spatial extensions to SQL are provided.
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We have already employed the implementation described below in one demonstra-
tion [30]. There, the end user could mark arbitrary locations as favorable points by simple
mouse-clicks on a map overlay. According to the generated, geometric objects, a database
query on a routing network was issued. Because the user was not restricted to selecting
points on the routing network, a linkage had to be performed. For this scenario, we used
the OSM map of Munich (of the year 2013) that we imported statically into the PostgreSQL
database. Access to the routing network was obtained by the additional extension pgRout-
ing [31], which sits on top of PostGIS. Figure 6 depicts the software layers of our employed
solution. Note that there are also other frameworks with similar concepts, cf. [32]. The
translation of our linkages to the language of OGC was performed easily:

• d was given by ST_Distance.
• ` was computed by a shortest path algorithm on pgRouting’s network. Common

algorithms such as Dijkstra and A* were available.
• ST_ShortestLine represented the geodesic function g.
• argmina∈A d(a, v) with A ⊆ E or A ⊆ V: We used ST_DWithin as a pre-filter for

distant edges/vertices before the exact distances to all remaining edges/vertices
were calculated.

• The split of an edge (u, v) into (u, v′) and (v′, u) with i(v′) ∈ i(u, v) was performed
by calling ST_Line_Locate_Point and then generating both new edges with two calls
of ST_Line_Substring.

User

Java Middleware

pgRouting Database

Spatial Database

PostGIS/pgRouting Syntax

JDBC with OGC’s SQL extension

1.SQL Query

3.Linkage

2.Fetch POIs

4.Routing Answer

Figure 6. Architecture design chart. Our Java middleware parses a query from a user, fetches POIs
from a spatial database, amends temporarily the routing network and finally runs a routing query on
the pgRouting database.

On a query, the network would be modified in such a way that the user’s specified
geolocations were represented in the routing network. After the query was evaluated, we
restored the network back to its initial state.

4.1. Evaluation

We evaluated the edge linkage as part of our demonstration [30]. Our evaluation was
conducted on top of our middleware in Java using JDBC as a connection (cf. Figure 6). 100
to 800 points on the map were randomly marked for linkage. After each point was linked
to the routing network, distances to a fixed set of POIs were calculated by pgRouting’s
Dijkstra implementation. The execution times of Table 1 were gathered on a single Debian
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6.0 node with an Intel(R) Xeon(R) CPU E5540. For each geometric point a user specified,
the framework linked this point to the routing network and calculated the distances to
some fixed POIs. It is easy to see that the routing with Dijkstra was by far more costly than
the linkage.

Table 1. Running time for linkage and routing on the setting described in Section 4.1. The ratio
of execution time between linkage and routing is almost constant with variance in the number of
nodes |V|.

|V | Linkage Routing Ratio

100 0.40 s 8.06 s 4.96%
200 0.74 s 15.21 s 4.87%
400 1.33 s 32.26 s 4.12%
800 2.47 s 59.69 s 4.14%

4.2. Expectations on Larger Datasets

The naive Dijkstra implementation runs in O(|E|+ |V| lg |V|) time [33,34]. Since its
running time super-linearly depends on the number of vertices, its performance deteriorates
when scaling up the number of vertices. Here, indexing data structures for routing networks
have been proposed, such as hierarchical hub labels [35], contraction hierarchies [36–39]
or a combination of those [40,41]. To adapt our approach for such an indexed routing
network, we not only have to perform the linkage on the plain routing network, but we
must also update the underlying indexing data structure, which is used for the shortest
path query. Updating hub labels [42] and contraction hierarchies [43] have been studied,
but it is unclear whether we can put the update time in relation to a shortest path query.

4.3. Outlook

One may argue that the here-proposed edge linkage is still a naive implementation
because it neglects possible detours. Fortunately, by the introduction of both vertex and
edge linkage, it is straight-forward to construct a valid linkage that creates a feed-link [14]
from the non-connected point. Another complaint may arise that the complete use of
M is quite naive. Let us imagine that the edge created to link an off-road point to the
routing network leads over a river, lake, mountain gorge, etc. Pedestrians or travelers with
common means of transportation are not able to overcome these obstacles and have to seek
an alternate route. Real datasets such as OSM represent obstacles by a polygon in which
the actual obstacle is contained, such as in Figure 7. If we stipulate that every chart of M is
large enough such that every obstacle can be rendered in at least one chart’s image, any
lower-bounding metric can be modified to respect the presence of obstacles. The additional
computation can be conducted, for example, by Hershberger and Suri’s algorithm [44]
which solves the shortest path problem on a plane with obstacles. Lastly, we could adapt
our introduced concept to more detailed routing networks. New models enrich network
information, for instance, with affordance [45] to describe possible physical actions.
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O

a

vl

vr

vr+1

vr+2

vl+1

u v w

Figure 7. Linking point a to a routing network with the beeline crossing an obstacle O (dark blue).
We consider the vertices on the convex hull of O and start creating a path (green arrows) from a to
along the vertices on the convex hull of O to the routing network, where we find u and w to be the
two closest nodes to a with respect to the Euclidean distance.

5. Conclusions

Mixing graph theory with geospatial information is a still-emerging topic that gives
answers to interesting, novel questions. We have reasoned about several approaches on
how to add off-road points to a routing network. A vertex linkage has the simple advantage
that it is easy to implement and in most cases offers the desirable outcome. An edge linkage,
on the other hand, is more fine-grained, because its constructed segment often is shorter
than the new edge of the vertex linkage. Besides the fact that it is more time-consuming
than a simple vertex linkage, it additionally exchanges an edge with a constructed vertical.
Without the knowledge of additional information, such as terrain, unrecorded new street
segments or temporary construction works, it goes without saying that our proposed
approaches are far away from being optimal solutions.
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