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Abstract: A new hybrid metaheuristic method for optimizing the objective function on a paral-
lelepiped set of admissible solutions is proposed. It mimics the behavior of a school of river perch
when looking for food. The algorithm uses the ideas of several methods: a frog-leaping method,
migration algorithms, a cuckoo algorithm and a path-relinking procedure. As an application, a wide
class of problems of finding the optimal control of deterministic discrete dynamical systems with a
nonseparable performance criterion is chosen. For this class of optimization problems, it is difficult to
apply the discrete maximum principle and its generalizations as a necessary optimality condition and
the Bellman equation as a sufficient optimality condition. The desire to extend the class of problems
to be solved to control problems of trajectory bundles and stochastic problems leads to the need
to use not only classical adaptive random search procedures, but also new approaches combining
the ideas of migration algorithms and swarm intelligence methods. The efficiency of this method is
demonstrated and an analysis is performed by solving several optimal deterministic discrete control
problems: two nonseparable problems (Luus–Tassone and LiHaimes) and five classic linear systems
control problems with known exact solutions.

Keywords: bio-inspired algorithms; metaheuristic; optimal control; discrete dynamical system;
migration algorithm; perch; population

1. Introduction

Global optimization methods are widely used in engineering calculations when de-
signing complex technical systems, problems of information processing, decision making
and optimal control, machine learning, etc. [1–7]. As a rule, the application of the necessary
optimality conditions for finding the optimal open-loop control of discrete deterministic
systems is associated with the solution of a boundary value problem for a system of dif-
ference equations, the computational complexity of which greatly increases with the state
vector dimension. The use of quasi-gradient optimization methods often leads to obtaining
locally optimal solutions. The use of direct optimization methods, such as the Luus–Jaacola
method, makes it possible to obtain a result with the desired accuracy with an acceptable
number of runs of the algorithm. Objective functions can be multi-extremal, nondifferen-
tiable, difficult to calculate, or generally described by a black box model. Therefore, the
application of necessary and sufficient optimality conditions, as well as quasi-gradient
methods of the first and second orders, could be difficult. Among the zero-order methods,
in which the search direction is determined only by information about the value of the objec-
tive function, two groups can be distinguished: stochastic metaheuristic algorithms [8–16]
and deterministic methods of mathematical programming [17–19]. The former have gained
popularity among applied mathematicians and engineers because they use various original
heuristics driven by higher-level algorithms. Proof of convergence for these algorithms
is usually complex and, thus, hard to provide, but they are able to obtain solutions of
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sufficiently good quality in an acceptable time. The second group of methods is popular
among mathematicians, since, under certain conditions, it can guarantee convergence to
the global extremum. In the first group, it is conditionally possible to single out four
well-known areas of research.

The first one includes evolutionary methods, in which the search process is associated
with the evolution of a solutions population. These include Genetic Algorithms, Differential
Evolution, Artificial Immune Systems, Covariance Matrix Adaptation Evolution Strategy,
Scatter Search, Variable Mesh Optimization, Memetic Algorithms, Weed Colonization,
Cuckoo Search, Self-Organizing Migrating Algorithms, etc.

The second area is represented by Swarm Intelligence algorithms: Particle Swarm
Optimization, Artificial Bee Colony, Ant Colony Optimization, Bat-Inspired Algorithm,
Cat Swarm Optimization, Firefly Algorithm, Grey Wolf Optimizer, Whale Optimization
Algorithm, Bacterial Foraging Optimization, Fish School Search, Glowworm Swarm Opti-
mization, Shuffled Frog-Leaping Algorithm, Krill Herd, Imperialist Competitive Algorithm,
Stochastic Diffusion Search, Human Group Optimization Algorithm, etc. In this area, new
original algorithms are being created and considered [20]. In the methods of this group,
members of the populations exchange information during the search process and use
information about the whole population leaders, local leaders among neighbors, and their
own best results.

The third area is represented by physics-based algorithms: Central Force Optimization,
Simulated Annealing, Adaptive Simulated Annealing, Harmony Search, Big Bang–Big
Crunch, Spiral Dynamics Algorithm, Fireworks Algorithm, Grenade Explosion Method,
Intelligent Water Drops Algorithm, Electromagnetism-like Mechanism, etc.

The fourth area is represented by multistart-based algorithms: Greedy Randomized
Adaptive Search, Tabu Search, etc. In the four listed areas, a group of bio-inspired algo-
rithms can be distinguished due to their nature-inspired interpretations [2,16].

This article is devoted to the development of the swarm intelligence group of methods
based on observing the hunting of a school of river perches and hybridization mechanisms.
Given the validity of the free lunch theorem [21], the problem of designing new optimization
methods aimed at solving a certain class of applied problems remains relevant. The
problem of creating new metaheuristic algorithms is important, since there is no universal
optimization algorithm suitable for solving all problems of finding a global extremum.
Therefore, almost constantly, new search procedures are proposed.

The aim of this work is to develop a new metaheuristic optimization algorithm that can
be effective for solving a wide class of problems in optimal control theory. The metaheuristic
algorithm proposed in this article can be applied to solve a wide class of problems of
parametric optimization of continuous and discrete, deterministic and stochastic control
systems in the presence of uncertainty in setting the initial conditions, parameters of the
object model and the measuring system. In particular, the method should allow for solving
both classical and nonclassical nonseparable optimization problems for nonlinear discrete
deterministic dynamical control systems [1]. In addition to classical problems, problems of
model predictive control theory could be solved [22].

A method for optimizing the objective function on a parallelepiped set of admissible
solutions is proposed herein. It mimics the behavior of a school of river perch when looking
for food. The method is hybrid because it uses the ideas of migration algorithms [23],
methods that imitate the behavior of cuckoos [24] and frogs [25], and path-relinking
procedures [26]. The advantage of the proposed optimization algorithm lies in the ability
of feasible solutions to leave the area of attraction of local extremum points. This is
achieved both through the main technique, which implements the movement of perches
inside the perch cauldron, and through the high-level management of the use of well-
established heuristic techniques such as Levy flights to explore distant areas of the set
of feasible solutions, regular mixing of schools in order to exchange information, and
path-relinking procedures.
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The efficiency of this method is demonstrated and an analysis is performed by solving
optimal deterministic discrete control problems: two nonseparable problems (Luus–Tassone
and Li–Haimes) and five classic linear systems control problems with known exact solutions.

2. Materials and Methods
2.1. Open-Loop Control Problem

Let us consider a nonlinear dynamical system described by a difference equation

x(t + 1) = f (t, x(t), u(t)), (1)

where t represents discrete time, t ∈ T = [0, 1, . . . , N − 1]; the number of stages N is
given; x is the state vector, x ∈ Rn; u is the control vector, u ∈ U(t) ⊆ Rq; U(t) is the
control values feasible set which, for each t, comprises the direct product of segments
[ai(t), bi(t)],i = 1, 2, . . . , q; and f (t, x, u) = ( f1(t, x, u), . . . , fn(t, x, u))T is a continuous
vector function.

The initial state vector is given:

x(0) = x0. (2)

It is assumed that only the discrete time information t is used in the control law, so
open-loop control is considered.

The set of allowable processes D(0, x0) is a set of pairs d = (x(·), u(·)), where
x(·) = {x0, x(1), . . . , x(N)} is a trajectory, u(·) = {u(0), u(1), . . . , u(N − 1)} is an admis-
sible control, and u(t) ∈ U(t), satisfying the state Equation (1) and initial condition (2).

The cost functional on the set D(0, x0) is defined as

I(d) =
N−1

∑
t=0

f 0(t, x(t), u(t)) + F(x(N)), (3)

or
I(d) = F(x(0), . . . , x(N); u(0), . . . , u(N − 1)), (4)

where f 0(t, x, u), F(x), F(x(·), u(·)) are given continuous functions.
It is required to find a pair d∗ = (x∗(·), u∗(·)) ∈ D(0, x0) that minimizes the cost

functional, i.e.,
I(d∗) = min

d∈D(0,x0)
I(d). (5)

The required trajectory x∗(·) = {x0, x∗(1), . . . , x∗(N)} and control
u∗(·) = {u∗(0), u∗(1), . . . , u∗(N − 1)} (elements of a pair d∗) are the optimal trajectory
and optimal control, correspondingly.

To solve the problem (5), an algorithm that imitates the behavior of a perch school
is proposed. This algorithm belongs to the class of nature-inspired metaheuristic swarm
intelligence algorithms [9,11,16]. This problem was also solved using the Sparrow Colony
Optimization Method, with results close to those received in this paper [27].

2.2. Bio-Inspired Metaheuristic Optimization Method

The problem of finding the global extremum of the objective function f (x) = f (x1, . . . , xn)
on the set of feasible solutions of the form D = [a1, b1]× · · · × [an, bn] is considered.

The Perch School Search method (PSS) imitates the behavior of a European river perch
school. Medium-sized perches make schools of 5–12 individuals in order to find food. The
smallest perches make schools of approximately 100 individuals. Generally, they take the
fish-prey into a circle (perch boiler) and hold it there. Perches attack prey at the boiler
edge, moving to its center. To find new food sources, perches use a migration mechanism.
Usually, bigger perches swim at the depths, in holes and deep water, hunting by themselves.
Rarely, they also make schools, like small ones do, in order to fight with other predatory
fish (pikes and sanders). The river perch uses a very aggressive hunting model: it actively
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pursues the prey, sometimes jumping out even on the surface of the water. The biggest
perches are solitary and independent predators. The reason for this is that the big perches
do not need to hunt collectively. These perches can hunt by themselves on any size fish
available. In the case of feed places, lacking a regular habitat, perch begin to move and
search for places full of small fish and other food.

Finite sets I =

{
xj = (xj

1, xj
2, . . . , xj

n)
T

, j = 1, 2, . . . , NP
}
⊂ D of possible solutions,

named populations, are used for solving the problem of finding a global constrained mini-
mum of an objective function, where xj is a perch-individual (potential feasible solution)
with number j, and NP is the population size.

In the beginning of the process, the method creates a population by the uniform
distribution law on a feasible solution set, D, illustrated in Figure 1a. All solutions are
ordered by increasing objective function value. After that, the created population is divided
into several schools. The schools form a sequence: The best solution is placed in the
first school, the next is placed in the second, etc. The M-th is placed in the M-th school,
and the (M + 1)-th is then placed in the first school, and so on. This process is shown
in Figure 1b. The described process corresponds to the information exchange among
population members for an efficient approach to the global extremum.
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Figure 1. Hunting behavior of the river perch; (a) creation a population by the uniform distribution
law on a feasible solution set, (b) separation of the whole population into schools, (c) realization of
the perch boiler in each school.

In each school, the leader (the best possible solution in the school) is determined by
the value of the objective function. Every school makes a perch boil in which there is a
hunt, illustrated in Figure 1c. At that time, every perch in the school moves to its leader,
exploring the boil edge. During this movement, perches remember their best position. As a
result, new leaders’ and members’ positions for each school are found. Among the school
leaders, the best and the worst leaders are found.

The perch boiler in the school with the best leader is realized, so perches of this school
search the entire area in depth. As a result, the new absolute leader is found.

After that, among all schools, the school with the worst leader is chosen. This leader
then moves into another area of the feasible solution set. For that, the school leader’s
movement is realized by a Lévy distribution with verification of belonging to the feasible
solution set. The uniform distribution law on the parallelepiped set generates the remaining
members of the school. A doubled distance from the leader to the nearest edge of set D
describes the size of the parallelepiped set. The received school realizes a perch boil and a
new leader is found.

The rest of the schools swim in the direction of the current absolute leader of the whole
feasible set. At this time, each local school leader moves in a straight line to the global
leader. Other members of the school move parallel to the global leader. In this movement,
all perches remember their best position and stay there.
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In the end of the migration of all schools, the absolute leader is put into the Pool set.
Then, the division of the entire population into schools begins again. Therefore, another
new global iteration starts until it reaches a given number.

At the final step, leaders in the Pool set (identified at each global iteration of the
algorithm) interact with each other. After a given number of times in the Pool set, three
perches are chosen, and a path-relinking operation [26] is realized. As a result, this set is
replenished by one more solution.

After the end of the path-relinking operation among the Pool set elements, the best answer
is found, which is considered to be an approximate solution of the optimization problem.

The proposed method corresponds to hybrid algorithms because it contains ideas de-
scribed in Shuffled Frog-Leaping Optimization (division into schools) [28], Cuckoo Search
(Lévy flights) [29], Self-Organizing Migrating Algorithm (movement to the leader) [23] and
the path-relinking algorithm [26] (searching in the Pool set).

Below is a detailed description of the algorithm.
Step 1. Set the parameters of the method:

• Controlling parameter NStep, which specifies number of steps before the end of
the movement;

• Number of schools in the population, M;
• Number of perches in a school, s;
• Number of perches in the population, NP = s ·M;
• Stop parameter Itermax, which specifies the maximum number of iterations;
• Levy distribution parameter λ;
• Step size α;
• Maximum number of path-relinking operations, PRmax;
• Number of steps in the path-relinking operation, ∆pr.

Step 2. Creation of the initial perch population.

Step 2.1. Create population I =
{

xj = (xj
1, xj

2, . . . , xj
n)

T
, j = 1, 2, . . . , NP

}
⊂ D of NP

solutions (perches) with randomly generated coordinates xi from the segment [ai, bi] using
a uniform distribution:

xj
i = ai + randi[0, 1] · (bi − ai),i = 1, . . . , n; j = 1, . . . , NP

where randi[0, 1] is the uniform distribution law on the segment [0; 1].
Step 2.2. For each solution (perch) in the population, calculate the value of the

objective function.
Set the value: iter = 0 (global iteration count).
Step 3. Separation of the whole population into schools.
Step 3.1. Arrange the solutions in the population in ascending order of objective

function values.
Step 3.2. Make M-many schools of s perches each: The best solution (with the smallest

value of the objective function) is put into the first school, the next is put into the second,
etc. The M-th is put into the M-th school, and the M + 1 -th is put into the first school, etc.
As the result, there are M-many schools of s perches each, so NP = M · s. The first perch
placed in a school is its leader xloc,m, m = 1, . . . , M. The leader of the first school is also the
leader of the whole population (the global leader): xloc,1 = xglob.

Step 4. Realization of the perch boiler in each school.
Step 4.1. For each school m = 1, . . . , M, do the following.
Move each perch to the school’s leader near its border:

xj,m,k = xj,m + k

(
xloc,m − xj,m

)
Nstep

, k = 0, 1, . . . , [σ · Nstep]; j = 1, . . . , s;
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where xj,m is the initial position of perch j in school m; xj,m,k is a position of this perch
during movement; xloc,m is a position of the school leader numbered m; [·] is the integer part
of a number; and boiler parameter σ ∈ [0, 1; 0, 5] is generated via the uniform distribution
law at each iteration for each school independently.

After all steps, find the best step for each perch (the step at which the value of the
objective function was the smallest); the perch must be in this best position xj,m,new:

xj,m,new = argmin
k=0,1,...,[σ·Nstep]

f
(

xj,m,k
)

, j = 1, . . . , s.

Step 4.2. Choose a new leader in each school: xloc,m,new, m = 1, . . . , M.
Step 4.3. Arrange the schools in the population in ascending order of objective function

values of its leaders. The global leader is in the first school: xloc,1 = xglob; local leaders are
in other schools: xloc,m, m = 2, . . . , M; and the maximum value of the objective function
among leaders is in the school numbered M.

Step 5. School swimming with the global leader.
Step 5.1. Move each perch toward the global leader, moving along the line connecting

them (approaching and then receding in the same direction):

xj,1,k = xj,1 + k

(
xglob − xj,1

)
Nstep

, k = 0, 1, . . . , [σ1 · Nstep]; j = 1, . . . , s;

where boiler parameter σ1 ∈ [1; 1, 5] is generated via the uniform distribution law at
each iteration.

Step 5.2. After all steps, find the best step for each perch (the step at which the value
of the objective function was the smallest); the perch must be in this best position xj,1,new:

xj,1,new = argmin
k=0,1,...,[σ1·Nstep]

f
(

xj,1,k
)

, j = 1, . . . , s.

Step 5.3. Choose a new leader in the school, xloc,1,new = xglob,new.
Step 6. School swimming with the worst leader.
Step 6.1. Leader swimming: A new position for the leader is randomly generated via

the Levy distribution:

xloc,M,new
i = xloc,M

i +
α

iter
· Levyi(λ), i = 1, . . . , n,

where xloc,M
i is the position coordinates of the school’s leader in the current iteration, α is the

step size, and λ ∈ (1; 3]. To generate a random variable according to the Levy distribution,
the following is required:

For each coordinate xi = Levyi(λ), generate a number Ri, i = 1, . . . , n via the uniform
distribution law on the set [ε; bi − ai], where ε = 10−7 is the distinguishability constant,
and do the following:

• Generate numbers θi = Ri · 2π and Li = (Ri + ε)−
1
λ , i = 1, . . . , n, where λ is a

distribution parameter;
• Calculate values of coordinates using the formulas below:

xi(λ) = Li sin θi, i = 1, . . . ,
[n

2

]
; xi(λ) = Li cos θi, i =

[n
2

]
+ 1, . . . , n

If the obtained value of the coordinate xi does not belong to the set of feasible solutions,
that is, xi /∈ [ai; bi], then repeat the generation process for the coordinate xi.
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Step 6.2. Generate new positions of school members xj,M via the uniform distribution
on a parallelepiped formed by the direct product of segments [xloc,M

i − x̂i, xloc,M
i + x̂i],

where x̂i = min
{
(xloc,M

i − ai), (bi − xloc,M
i )

}
.

Step 6.3. Make a perch boiler in the obtained school.
Move each perch to a school’s leader near its border:

xj,M,k = xj,M + k

(
xloc,M,new − xj,M

)
Nstep

, k = 0, 1, . . . , [σ3 · Nstep]; j = 1, . . . , s;

where boiler parameter σ3 ∈ [0, 1; 0, 5] is generated via the uniform distribution law at
each iteration.

After all steps, find the best step for each perch (the step at which the value of the
objective function was the smallest); the perch must be in this best position xj,M,new:

xj,M,new = argmin
k=0,1,...,[σ3·Nstep]

f
(

xj,M,k
)

, j = 1, . . . , s.

Step 6.4. Choose a new leader for the school, xloc,M.
Step 7. Swimming of the remaining schools.
For all schools where m ∈ {2, . . . , M− 1}, do the following.
Step 7.1. Move the school’s leader to the current absolute (best) leader:

xloc,m,k = xloc,m + k

(
xglob,new − xloc,m

)
Nstep

, k = 0, 1, . . . , [σ2 · Nstep];

where boiler parameter σ2 ∈ [0, 6; 0, 8] is generated via the uniform distribution law at each
iteration for each school, independently.

Step 7.2. Make the movement of other school members parallel to that of the absolute leader:

xj,m,k = xj,m + k

(
xglob,new − xloc,m

)
Nstep

, k = 0, 1, . . . , [σ2 · Nstep]; j = 1, . . . , s.

After all steps, find the best step for each perch (the step at which the value of the
objective function was the smallest); the perch must be in this best position xj,m,new:

xj,m,new = argmin
k=0,1,...,[σ2·Nstep]

f
(

xj,m,k
)

, j = 1, . . . , s.

Step 7.3. Every school member must take their best position reached in the swimming
process. Choose a new school leader with position xloc,m, m ∈ {2, . . . , M− 1}.

Step 8. Finding the new global leader of the population among the schools’ leaders.
Choose the best solution among the solutions, corresponding to the leaders, and put it

into the set Pool.
Step 9. Checking the stop conditions.
If iter = Itermax, go to Step 10. Otherwise, set iter = iter + 1 and go to Step 3.
Step 10. Intensive searching in the set Pool.
Step 10.1. Set the value pr = 1.
Step 10.2. Choose three different random solutions xp

pool , xq
pool , xr

pool in Pool.
Step 10.3. Find the solution

xpq
pool = arg min

j=1,...,∆pr−1
f
(

xp
pool + j (xq

pool − xp
pool)/∆pr

)
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Step 10.4. Add the solution

xnew = arg min
j=1,...,∆pr−1

f
(

xpq
pool + j (xr

pool − xpq
pool)/ ∆pr

)
into Pool. Set the value pr = pr + 1.

Step 10.5. If pr > PRmax, go to Step 11. Otherwise, go to Step 10.2.
Step 11. Choosing the best solution. Among the solutions in Pool, find the best one,

which is considered to be an approximate solution of the optimization problem.
During the creation and testing of this algorithm, the following recommendations

were developed for choosing parameters.
Parameter selections within the following ranges provide better results: controlling

parameter NStep ∈ [50; 100]; number of schools in the population M ∈ [3; 10]; number of
perches in a school s ∈ [15; 100]; stop parameter Itermax ∈ [50; 4000]; maximum number of
path-relinking operations PRmax ∈ [10; 20]; number of steps in path-relinking operation
∆pr ∈ [5; 10]; Levy distribution parameter λ ∈ (1; 3]; step size α ∈ [0.2; 0.6].

The proposed algorithm can be applied in the theory of optimal control using spectral
and pseudospectral methods for representing trajectories and control laws in the form of
expansions in basic systems with indeterminate coefficients.

3. Results
3.1. Example 1. The One-Dimensional Optimal Control Problem with an Exact Solution

The behavior of the control object is described by the difference equation:

x(t + 1) = x(t) + u(t),

where x ∈ R; t = 0, 1, . . . , N − 1; u ∈ R.
The cost functional on the feasible set of processes is:

I = 1
2

N−1
∑

t=0
γ−tu2(t) + x(N), γ > 1 .

The problem is to find the minimum value of the cost functional and optimal process
(x∗(·), u∗(·)).

Analytical solution: u∗(t) = −γt; x∗(t) = x0 +
(1−γk)

γ−1 ; minI = x0 +
1−γN

2(γ−1) .

Initial condition: x(0) = 0; control constraint: −2 · 104 ≤ u ≤ 2 · 104. Number of
stages: N = 50. The exact value of the functional is minI = −581.954264398477.

The obtained approximate value of the functional was I∗ = −581.954264313551, with
a runtime of 5.36 min. We used C# (7.2) with NET Framework (4.7.2), Windows Forms
to implement this algorithm and solve the optimal control problems. A 3.3 GHz Intel
Core i7-2860QM was used to solve this problem and the others below. Table 1 shows the
parameters of the method for solving this problem. Figure 2 shows the obtained control
and corresponding trajectory.

Table 1. Parameters of PSS for solving the problem in Example 1.

NStep M s Itermax λ α PRmax ∆pr

50 6 50 4000 1.4 0.2 20 9
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To establish the relationship between the parameters and the effectiveness of the
method, we solved the problem with other parameters of the method, which are shown
in Table 2. The initial condition, control constraint, and number of stages were the same.
Figure 3 shows the obtained control and corresponding trajectory.

Table 2. Parameters of PSS for solving the problem in Example 1.

NStep M s Itermax λ α PRmax ∆pr

50 6 25 1000 1.4 0.2 20 9
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The obtained approximate value of the functional was I∗ = −569.064908725205, and
the runtime was 0.31 min. In this case, the obtained approximate value of the functional
was worse than that before because of the different parameters.

Below is a solution of the same problem from Example 1, but the number of stages was
N = 80; this is shown in order to demonstrate the growth of time for finding the solution.
The parameters of the method are shown in Table 1. Figure 4 shows the obtained control
and corresponding trajectory.
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The problem is to find the minimum value of the cost functional and optimal process 

( )* *( ), ( ) .x u   

Initial state vector (0) (2; 5; 7) ;Tx =  control constraints: 10 ( ) 4;u t   20 ( ) 4u t  ; 

30 ( ) 0.5u t  . Number of stages: 20.N = The best known value of the cost functional 
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Figure 4. Obtained optimal control and corresponding optimal trajectory in Example 1.

The exact value of the functional is minI = −10237.001072927329. The obtained
approximate value of the functional was I∗ = −10237.0010729268, and the runtime was
09:31 min.

Example 1 demonstrates the possibility of solving optimal control problems for eco-
nomic models with a quality criterion that includes discounting. A similar problem occurs
in machine learning problems such as deep reinforcement learning.
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3.2. Example 2. Luus–Tassone Nonseparable Control Problem

The behavior of the control object is described by the system of difference equations:

x1(t + 1) = x1(t)
1+0,01u1(t)(3+u2(t))

;

x2(t + 1) = x2(t)+u1(t)x1(t+1)
1+u1(t)(1+u2(t))

;

x3(t + 1) = x3(t)
1+0,01u2(t)(1+u3(t))

,

where x ∈ R3, t = 0, . . . , N − 1, and u ∈ R3.
The cost functional on the feasible set of processes is:

I = x1
2(N) + x2

2(N) + x2
3(N)+

+

[(
N
∑

k=1
x2

1(k− 1) + x2
2(k− 1) + 2u2

3(k− 1)
)(

N
∑

k=1
x2

3(k− 1) + 2u2
1(k− 1) + 2u2

2(k− 1)
)] 1

2

.

The problem is to find the minimum value of the cost functional and optimal process
(x∗(·), u∗(·)).

Initial state vector x(0) = (2; 5; 7)T ; control constraints: 0 ≤ u1(t) ≤ 4; 0 ≤ u2(t) ≤ 4;
0 ≤ u3(t) ≤ 0.5. Number of stages: N = 20.

The best known value of the cost functional obtained for this problem is minI =
209.26937 [1].

The obtained approximate value of the functional was I∗ = 209.429533683522, and the
runtime was 49.92 s. Table 3 shows the parameters of the method for solving this problem.
Figures 5 and 6 show the obtained control and corresponding trajectory.

Table 3. Parameters of PSS for solving the problem in Example 2.

NStep M s Itermax λ α PRmax ∆pr

100 3 50 900 1.4 0.3 15 7
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3.3. Example 3. Li–Haimes Nonseparable Control Problem

The behavior of the control object is described by difference equations:

x(1) = x(0)u(0); x(2) = (1 + u(1)) · x(1); x(3) = x(2) + u(2),
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where x ∈ R, t = 0, 1, 2, and u ∈ R.
The cost functional on the feasible set of processes is:

I = [x2(0) + x2(1) + (2x2(2) + x2(3)) exp(x2(1))]× [50 + u2(0) + (u2(1) + u2(2)) exp(u2(0))]1/2.
The problem is to find the minimum value of the cost functional and optimal process

(x∗(·), u∗(·)).
Initial condition: x(0) = 15; control constraint: −1 ≤ u(t) ≤ 1, t = 0, 1, 2. Number of

stages: N = 3. The best known value of the cost functional obtained for this nonseparable
control problem is minI = 1596.4796778 [1].

The obtained approximate value of the functional was I∗ = 1596.47967783389, with a
runtime of 00.19 s. Table 4 shows the parameters of the method for solving this problem.
Figure 7 shows the obtained control and corresponding trajectory; the numerical solution
of the problem is presented in Table 5.

Table 4. Parameters of PSS for solving the problem in Example 3.

NStep M s Itermax λ α PRmax ∆pr

100 4 20 65 3 0.6 15 5
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Table 5. Obtained optimal control and optimal trajectory (numerically).

t u x

0 −0.42716 15.00000
1 −0.09897 0.31450
2 −0.08238 0.28337
3 0.20099

Examples 2 and 3 are devoted to solving a class of optimal control problems with
nonseparable cost functionals, for which it is difficult to apply necessary and sufficient
optimality conditions for discrete deterministic dynamical systems.

3.4. Example 4. The Two-Dimensional Lagrange Optimal Control Problem with an Exact Solution

The behavior of the control object is described by a system of difference equations:

x1(t + 1) = x1(t) + u(t); x2(t + 1) = 2x1(t) + x2(t),

where x ∈ R2, t = 0, 1, and u ∈ R.
The cost functional on the feasible set of processes is:

I =
1

∑
t=0

[
x1

2(t) + x2
2(t) + u2(t)

]
The problem is to find the minimum value of the cost functional and optimal process

(x∗(·), u∗(·)).



Algorithms 2022, 15, 157 12 of 16

Initial state vector x(0) = (2; 1)T ; control constraint: −105 ≤ u ≤ 105. Number
of stages: N = 2. The exact solution could be found as u∗ = {−1; 0}; x∗1(·) = {2; 1; 1};
x∗2(·) = {1; 5; 7}. The exact value of the cost functional is minI = 32.

The obtained approximate value of the functional was I∗ = 32, and the runtime was
01.58 s. Table 6 shows the parameters of the method for solving this problem. Figure 8
shows the obtained control and corresponding trajectory.

Table 6. Parameters of PSS for solving the problem in Example 4.

NStep M s Itermax λ α PRmax ∆pr

100 4 100 110 3 0.6 15 5
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3.5. Example 5. The Two-Dimensional Meyer Optimal Control Problem with an Exact Solution

The behavior of the control object is described by a system of difference equations:

x1(t + 1) = x2(t); x2(t + 1) = x1(t)− u(t),

where x ∈ R2, t = 0, 1, and u ∈ R.
The cost functional on the feasible set of processes is:

I = x1
2(2) + x2

2(2)

The problem is to find the minimum value of the cost functional and optimal process
(x∗(·), u∗(·)).

Initial state vector x(0) = (2;−3)T ; control constraint: −1 ≤ u ≤ 1. Number of stages:
N = 2. The exact value of the cost functional is minI = 5.

The obtained approximate value of the functional was I∗ = 5.00000000000002, with a
runtime of 00.25 s. Table 7 shows the parameters of the method for solving this problem.
Figure 9 shows the obtained control and corresponding trajectory; the numerical solution
of the problem is presented in Table 8.

Table 7. Parameters of PSS for solving the problem in Example 5.

NStep M s Itermax λ α PRmax ∆pr

100 4 15 120 1.5 0.4 10 5
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Table 8. Obtained optimal control and optimal trajectory (numerically).

t u x1 x2

0 1 2 −3
1 −1 −3 1
2 1 −2

Examples 4 and 5 demonstrate the application of the proposed method to a class of
linear-quadratic control problems.

3.6. Example 6. The Two-Dimensional Bolza Optimal Control Problem with an Exact Solution

The behavior of the control object is described by a system of difference equations:

x1(t + 1) = x2(t); x2(t + 1) = 2x2(t)− x1(t) + 1
N2 u(t),

where x ∈ R2, t = 0, 1, . . . , N − 1, and u ∈ R.
The cost functional on the feasible set of processes is:

I = −x1(N) +
1

2N

N−1

∑
t=0

u2(t)

The problem is to find the minimum value of the cost functional and optimal process
(x∗(·), u∗(·)).

Analytical solution: u∗(t) = N−t−1
N ; minI = − 1

3 + 3N−1
6N2 + 1

2N3

N−1
∑

t=0
t2.

Initial state vector x(0) = (0; 0)T ; control constraint: 0 ≤ u ≤ 100. Number of stages:
N = 10. The exact value of the cost functional is minI = −0.1425.

The obtained approximate value of the functional was I∗ = −0.142499999999796, with
a runtime of 07.39 s. Table 9 shows the parameters of the method for solving this problem.
Figures 10 and 11 show the obtained control and corresponding trajectory.

Table 9. Parameters of PSS for solving the problem in Example 6.

NStep M s Itermax λ α PRmax ∆pr

100 3 30 750 1.7 0.6 10 5
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3.7. Example 7. The Two-Dimensional Meyer Optimal Control Problem with an Exact Solution

The behavior of the control object is described by a system of difference equations:

x1(t + 1) = x1(t) + 2u(t); x2(t + 1) = −x2
1(t) + x1(t) + u2(t),

where x ∈ R2, t = 0, 1, and u ∈ R.
The cost functional on the feasible set of processes is: I = −x2(2).
The problem is to find the minimum value of the cost functional and optimal process

(x∗(·), u∗(·)).
Initial state vector x(0) = (3; 0)T ; control constraint: −5 ≤ u ≤ 5. Number of stages:

N = 2. The exact value of the cost functional is minI = −19. Note that the discrete
maximum principle does not hold for this example.

This problem has two solutions: x1∗
1 (·) = {3;−1; 9}, x1∗

2 (·) = {0;−5; 19}, u1∗(·) =
{−2; 5} and x2∗

1 (·) = {3;−1;−11}, x2∗
2 (·) = {0;−5; 19}, u2∗(·) = {−2;−5}; the algorithm

finds each of them.
The obtained approximate values of the functional were I1∗ = −18.9999999999354,

with a runtime of 00.30, and I2∗ = −18.9999999999939, with a runtime of 00.31 s. Table 10
shows the parameters of the method for solving this problem. Figures 12 and 13 show
the obtained control and corresponding trajectory (for the first and second solutions,
correspondingly); the numerical solutions of the problem are presented in Tables 11 and 12.

Table 10. Parameters of PSS for solving the problem in Example 7.

NStep M s Itermax λ α PRmax ∆pr

100 6 20 75 1.3 0.2 10 5
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Table 12. Obtained optimal control and optimal trajectories for the second solution (numerically).

t u x1 x2

0 −2 3 0
1 −5 −1 −5
2 −11 19

4. Conclusions

In this paper, we proposed a new bio-inspired metaheuristic optimization algorithm,
Perch School Search, for finding the solution to open-loop control problems for discrete
deterministic dynamical systems.

The proposed algorithm combines the ideas of several well-known metaheuristic algo-
rithms, providing an appropriate-quality solution for many practical optimization tasks.

The efficiency was shown in Examples 1–7, where the values of the cost functional
obtained via the algorithm were equal or close to the analytical solution or to the best
known results.

The direction of further development of this work is the application of the proposed
global optimization metaheuristic algorithm to the problems of optimal control of bundles
of trajectories of nonlinear deterministic discrete dynamical systems, discrete stochastic
systems, and systems of joint estimation and control.
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