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Abstract: In this study, the modification of the quantum multi-swarm optimization algorithm is
proposed for dynamic optimization problems. The modification implies using the search operators
from differential evolution algorithm with a certain probability within particle swarm optimization
to improve the algorithm’s search capabilities in dynamically changing environments. For algorithm
testing, the Generalized Moving Peaks Benchmark was used. The experiments were performed
for four benchmark settings, and the sensitivity analysis to the main parameters of algorithms is
performed. It is shown that applying the mutation operator from differential evolution to the personal
best positions of the particles allows for improving the algorithm performance.
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evolutionary algorithms

1. Introduction

The development of computational intelligence approaches has allowed applying these
methods in different areas nowadays. In particular, the evolutionary computation (EC) [1]
methods and swarm-based algorithms proved themselves to be problem-independent and
universal approaches for solving optimization tasks with different types of complexity.
Most of these algorithms are developed to address stationary environments, where the
objective function does not change over time. However, optimization in dynamic environ-
ments has become popular in the last three decades, which is indicated in several surveys
of the state-of-the-art [2–4]. Many real-world applications can be formulated as a dynamic
optimization problem (DOP), where the problem itself changes over time. The changing
environment during the optimization process is a challenging task for most bio-inspired
algorithms, as they are mainly developed under an assumption that a single best final
solution should be found by the end of the computational resource, and the goal function
does not change.

In the non-stationary environment, the goal consists in tracking the optimum po-
sitions during the optimization process. The problems which are formulated as DOPs,
are found in different areas of human activity such as path planning [4,5], pollution con-
trol [6], searching for survivors with unmanned aerial vehicles (drones) [7], and others.
The development of novel approaches for DOPs relies on well-established benchmarks,
namely the classical Moving Peaks Benchmark (MPB) [8], Generalized Dynamic Benchmark
Generator (GDBG) [9], or the recently proposed Generalized Moving Peaks Benchmark
(GMPB) [10,11] and the Deterministic Distortion and Rotation Benchmark (DDRB) [12].

The dominating methods often applied for DOPs are the particle swarm optimization
(PSO)-based algorithms and their modifications such as multi-swarm approaches [13,14],
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however, certain studies used Differential Evolution (DE) [15] or, for example, Artificial
Bee Colony (ABC) algorithm [16]. Yet little has been done for the development of hybrid
approaches, which would use the advantages of different methods. Thus, the goal of
this study is to establish the ways in which DE can be added to PSO-based approaches,
improving the resulting performance.

In this study, the multi-swarm Quantum Swarm Optimization (mQSO) [13] algorithm
is modified with the Differential Evolution search operator. Several versions of the resulting
mQSODE algorithm with different mutation operators are considered, and the sensitivity
analysis for main parameters is conducted. The experiments are performed on the Gener-
alized Moving Peaks Benchmark [10] with four scenarios. The main contributions of the
current study can be summarized as follows:

1. It is shown that applying differential mutation to current positions of the particles is
inferior to the variant when it is applied to personal best positions;

2. The probability of applying differential evolution search should be relatively small,
and the PSO should be the main search engine to achieve competitive results;

3. The scaling factor in differential mutation should be carefully chosen, as it signifi-
cantly influences performance, whereas crossover rate does not seem to have any
significant influence;

4. Applying differential mutation with a small probability results in higher diversity in
the population compared to mQSO given the same population size;

5. The GMPB favors larger population sizes than recommended values, derived from
testing on other benchmarks.

The rest of the paper is organized as follows: the next section describes related work,
i.e., algorithms and methods applied to dynamic optimization, after this the generalized
moving peaks benchmark used in this study is given, next, the proposed approach is
presented, after that, the experimental setup and results are provided, and finally, the
conclusions are given.

2. Materials and Methods
2.1. Related Work

Without loss of generality, we can state the classic unconstrained single-objective
continuous DOP as follows.

optimize f (x, ϕ, t), x ∈ F(t) ⊆ S, t ∈ T (1)

where S ∈ Rd, d is the search space dimensionality, S is the search space, t denotes the
time, ϕ is the set of parameters of the current environment, f : S× T → R , is the objective
function that returns a value ( f (x, ϕ, t)) ∈ R using the feasible solution from the search
space at time t, F(t)—is a set of feasible solutions at time t.

There are a lot of approaches that have been proposed to handle DOPs, some of them
are described below:

• Detection-based approaches. This group of methods can be divided into two sub-
categories: a solution reevaluation [8,17] and detection changes in an algorithm’s
behavior [18,19]. The solution reevaluation is based on the reevaluation of some so-
lution at a given frequency. If the fitness value of this solution is changed, then the
environment is changed too. The second way is based on monitoring the drop in the
average performance of an algorithm over several generations. Additionally, some
algorithms evaluate the diversity of fitness values.

• Introducing diversity when changes are detected. When solving the stationary op-
timization problem, the population has to converge to an optimum. When solving
DOP, if the whole population is converged to some optimum and the environment
is changed, the algorithm cannot react to the change quickly and effectively. The
following approach has been proposed to diversify the population. In [18], a par-
tial hypermutation step has been proposed. It replaces a predefined percentage of
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individuals, generated randomly from the feasible search space. The proposed ge-
netic programming approach [19] increases the mutation factor, reduces elitism, and
increases the probability of crossover when the environment is changed.

• Maintaining diversity during the search. Methods from this group do not detect
directly when the environment is changed. They are based on keeping the diversity of
the population on the same level. In the random immigrants method [20], a predefined
number of randomly generated individuals are added to the population in every
generation. The sentinel placement method [21] initializes the predefined number of
points that cover the search space. Authors use the proposed method to cover the
search space more uniformly.

• Memory approaches. If the changes in the environment are periodical, i.e., the land-
scape of the problem can return, it is useful to contain previous solutions to save
computational resources. The previous good solutions are stored in a direct mem-
ory [22,23].

• Prediction approaches. In this case, a heuristic tries to find some patterns that are
predictable and use this information to increase the search performance when the
environment is changed. A prediction of the optima movement is described in [24].
The prediction model is based on a sequence of optimum positions found in the
previous environments.

• Multi-population approaches. The idea of the approach is to share responsibilities
between populations. For example, the first population may focus on searching for
the optimum while the second population focuses on tracking any environmental
changes. The approach [25] uses the predefined number of small populations to find
better solutions and one big population to track changes. Another method [26] uses
the main big population to optimize the current environment and dedicates some
small populations to track the changes in the environment.

Most of the modern approaches utilize the multi-population concept, for example,
in [27], a general adaptive multi-swarm framework is proposed, in which the number of
swarms is dynamically adapted and some of the swarms are set to an inactive state to
save computational resource. In the AMP framework proposed in [28], several heuristics
are applied, including population exclusion, avoidance of explored peaks, population
hibernation and wakening, as well as the Brownian movement.

Other studies, such as [29] or [30], propose the use of clustering methods for dividing
the population into sub-swarms, and depending on a threshold condition, close swarms
could be merged into one. In some papers, such as [31,32] it was shown that the idea of
having multiple dynamic swarms could be efficiently applied also to static test suites such
as the well-known Congress on Evolutionary Computation competition problems [33], real-
world problems, such as energy consumption optimization [34] or constrained optimization
problems [35].

Although there is a certain amount of studies on dynamic optimization, which use
DE-based algorithms, such as DynPopDE [15], most of them are focused on PSO due to
its simplicity and ability to converge fast. However, in stationary environments, hybrid
approaches are well-known, for example, in [36], a hybrid algorithm is applied to the
optimal design of water distribution systems, in [37], the algorithm with repulsive strategy
is proposed, and in [38], the soft island model with different types of populations is
proposed. Considering these studies, the development of hybrid approaches combining
PSO and DE could be a promising research direction.

2.2. Generalized Moving Peaks Benchmark

As mentioned before, real-world dynamic optimization problems have complex land-
scapes and, therefore, algorithms applied to them have to be able to find desirable solutions
while also reacting to the environmental changes. The latter is important due to the fact
that these changes cause the shift of the optimal solution, namely, the previously found
solution becomes suboptimal and the new one should be found for a current environment.
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Thus, in order to evaluate the performance of the proposed algorithms, it is crucial to use
benchmark problems that can be described by the following features:

• Easy implementation;
• High configurability with respect to the number of components, the shape of compo-

nents, dimension, environmental change frequency, and severity;
• Variety of characteristics (modularity, components with different condition numbers,

different intensity of local and global modality, heterogeneity, different levels of irreg-
ularities, symmetric and asymmetric components, and so on).

One of the most popular and well-known generators for DOP benchmarks is the
Moving Peaks Benchmark (MPB) [8], which is based on changing the components and their
locations over time. However, this benchmark generator cannot be considered useful or
practical due to its irrelevance to real-world problems. Therefore, the Generalized Moving
Peaks Benchmark (GMPB) generator was later proposed [10]. GMPB is a benchmark
generator with fully controllable features: it is capable of generating problems with fully
non-separable to fully separable structure, with homogeneous or highly heterogeneous,
balanced or highly imbalanced sub-functions, with unimodal or multimodal, symmetric or
asymmetric and smooth or highly irregular components.

The GMPB benchmark generator, introduced in [10], has the following baseline function:

f (t)(x) = max
k∈{1,...,m}

{
h(t)k −

√
T
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)T
R(t)T

k , k
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In these formulas the following notations are used: x is a solution vector, d is the
number of dimensions, m is the number of components, c(t)k is the vector of center positions

of the k-th component at time t, R(t)
k is the rotational matrix of component k in the environ-

ment t, W(t)
k is a width matrix (it is a d× d diagonal matrix where each diagonal element

is the width of the component k), and, finally, η
(t)
k,l , l = 1, 4, and τ

(t)
k are the irregularity

parameters of the component k. Here, for each component, the height, width, irregularity,
and all other parameters change as soon as the environmental change happens.

The mentioned function (1) can be used with basic parameters, thus, in the simplest
form: in the case where the generated DOP would be symmetric, unimodal, and smooth,
the result would be easily optimized. To make the generated problems more complex, the
irregularity parameters η

(t)
k,l and τ

(t)
k should be changed. By setting different values to those

parameters the end-user can get irregular and/or multimodal optimization tasks.
The higher values of the irregularity parameters (η(t)

k,l and τ
(t)
k ) increase the number

of local optima in a given peak. It should be noted that identical values of the irregularity
parameters η

(t)
k,l lead to the symmetric DOPs, while the components with different η

(t)
k,l

values are asymmetric. Additionally, each component’s intensity of irregularities, number
of local optima, and asymmetry degree change over time due to the fact that parameters
η
(t)
k,l and τ

(t)
k change over time.

The rotation matrix R(t)
k is obtained for each component k by rotating the projection

of solution x onto all existing unique planes of the search space by a given angle. For that
purpose, a Givens rotation matrix is constructed, which is firstly initialized as an identity
matrix and then altered. Besides, it should be noted that the initial rotation matrix is
obtained by using the Gram-Schmidt orthogonalization method on a matrix with normally
distributed entries.
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For DOPs obtained by the MPB generator, the width of each component or peak is, in
other words, the same in all dimensions, therefore, the shape of components is cone-like
with circular contour lines. It was changed for the GMPB benchmark generator, namely,
each peak’s width was changed from a scalar variable to a vector with d dimensions. Thus,
a component generated by GMPB has a width value in each dimension.

The condition number of a component is the ratio of its largest width value to its
smallest value, and if a component’s width value is stretched in one axis’s direction more
than the other axes, then, the component is ill-conditioned. As result, the ill-conditioning
degree of each component can be determined by calculating the condition number of the
diagonal matrix W(t)

k . So, the GMPB generator, unlike the MPB generator, is capable of
creating components with various condition numbers, i.e., it can additionally generate
ill-conditioned peaks.

The modularity can be obtained by composing several sub-functions generated by the
GMPB (in that case each sub-function is obtained from the baseline function by varying its
parameters listed above). Each sub-function in composition can have a different number of
peaks and dimensions, thus, the landscapes of sub-functions can have different features,
and, as result, the generated compositional function can be heterogeneous. Additionally,
compositional DOPs generated by the GMPB have a lot of local optima in their landscape,
which can change to the global optimum after environmental changes.

2.3. mQSO Algorithm

The multi-swarm Quantum Swarm Optimization algorithm is a well-known approach
for dynamic optimization proposed in [13]. The main features of the mQSO are the usage of
several swarms at the same time, application of exclusion, anti-convergence, and charged
and quantum swarms. The swarm is divided into several sub-swarms with the aim to let
every small swarm seek and track different local optima. However, a simple division into
several small swarms is not enough: if there will be no interaction between sub-swarms,
then some of them may converge to the same local optimum.

In mQSO, two forms of swarm interaction are applied: exclusion and anti-convergence.
The exclusion mechanism makes sure that two or more swarms are not clustering around
the same peak. To prevent this, a competition between swarms is used, in particular, when
their swarm attractors, i.e., best solutions, are within the exclusion radius rexcl , the swarm,
which is further from the optimum, is excluded.

The anti-convergence mechanism works as follows: when all of the swarms have
converged to their corresponding local optima, the worst swarm is reinitialized, thus,
some part of the total population is always searching for new local optima. The anti-
convergence implements global information sharing between all swarms. The convergence
to the local optimum is detected when the neutral swarm size is smaller than the predefined
convergence radius rconv.

The mQSO starts by randomly initializing Ns swarms of Np particles each within
the D-dimensional search space with positions xnij, n = 1, 2, . . . , Ns, i = 1, 2, . . . , Np,
j = 1, 2, . . . , D. In the implementation in this study, the mQSO uses two types of particles:
neutral and quantum, but not charged, as used in [10]. The update rule for the neutral
particles is as follows:

→
uni ← w

[ →
uni + c1

→
ε1 �

( →
png −

→
xni

)
+ c2

→
ε2 �

( →
pni −

→
xni

)]
,

→
xni =

→
xni +

→
uni,

(4)

where i = 1, 2, . . . , Np is the particle index in the population,
→
uni is the velocity of i-th

particle in n-th swarm, n = 1, 2, . . . , Ns,
→
xni is current particle position,

→
pni is the personal

best position,
→
ε1 and

→
ε2 are random vectors in [0, 1]D, c1 and c2 are social and cognitive

parameters, w is the inertia factor, png—is the global best solution, � denotes the element-
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wise product. The quantum particles in mQSO are sampled within the D-dimensional ball
of radius rcloud around the best particle as follows:

→
xni ∈ Bn(rcloud). (5)

The quantum local search is performed for Nq steps for all the best solutions
→

png in
each swarm n.

2.4. Proposed Algorithm

In this study, the modification of the mQSO algorithm is proposed, in which the search
operators from the differential evolution are applied. One of the most common DE search
operators is the rand/1, in which the position of the individual is updated based on the
position of three randomly chosen individuals with indexes r1, r2, and r3, and the scaling
factor F. In this study this operator is applied as follows:

→
vni =

→
xnr1 + F

( →
xnr2 −

→
xnr3

)
, (6)

where F is the scaling factor parameter, usually within the [0, 1] interval, and
→
vni is the

mutant solution for individual i in swarm n.
As some of the previous studies have shown, the DE is not very efficient compared to

PSO in optimizing dynamically changing environments. This is mainly due to the much
faster convergence of PSO-like algorithms. However, they often suffer from premature
convergence, which is usually not the case for DE-based algorithms. Thus, in this study, the
rand/1 operator is applied to the particles’ positions with a small probability of PDE. There
are two possible options for applying the rand/1 strategy within PSO, namely applying it
to the current positions of particles, as in Equation (6), or to the personal best positions. In
other words, the following equation can be applied instead:

→
vni =

→
pnr1 + F

( →
pnr2 −

→
pnr3

)
. (7)

Setting the proper value for the scaling factor F is one of the key problems in parameter
adaptation methods for DE, as the method is highly sensitive to this value. In this study,
the scaling factor parameter F was sampled using the Cauchy distribution with location
parameter mF and scale parameter 0.1 (denoted as randc(mF, 0.1)). The F value was
generated until it fell within the [0, 1] interval. The usage of Cauchy distribution was
originally proposed in the JADE [39] algorithm, where F values were tuned based on
their successful application. Although the success-based adaptation of scaling factors is
not considered in this study, sampling F values should allow for improving the search
by increasing the diversity of generated trial solutions. The mF parameter, used as a
location for Cauchy distribution, could be set to any value within [0, 1] to get different
search properties.

In differential evolution the mutation step is followed by crossover, in particular,
the binomial crossover is usually applied with probability Cr. The binomial crossover is
described as follows:

unij =

{
vnij i f rand(0, 1) < Cr or j = jrand
xnij otherwise

, (8)

where jrand is a randomly chosen index from [1, D].
After crossover, in classical DE the selection operation is performed, where new

solutions are remembered only if their fitness is better than the fitness of the corresponding
parent. Unlike DE, in the proposed mQSODE algorithm the newly generated positions are
always remembered independent of the fitness values.

The pseudocode of the proposed mQSODE algorithm is shown in Figure 1.
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3. Results
3.1. Experimental Setup

The experiments in this study are performed on the GMPB test suite, the parameters
are set equal to those in [10] and given in Table 1.

Table 1. The set of Generalized Moving Peaks Benchmark (GMPB) parameters.

Parameter Symbol Value

Dimension d 10
Shift severity s̃ 2, 4

Number of components m 10, 25
Angle severity θ̃ π/9
Height severity h̃ 7
Width severity w̃ 1

Irregularity parameter τ severity τ̃ 0.05
Irregularity parameter η severity η̃ 2

Search range [Lb, Ub]d [−50, 50]d

Height range [hmin, hmax] [30, 70]
Width range [wmin, wmax]

d [1, 12]d

Angle range [θmin, θmax] [−π, π]
Irregularity parameter τ range [τmin, τmax] [0, 0.4]
Irregularity parameter η range [ηmin, ηmax] [10, 25]

Initial center position c(0)k U[Lb, Ub]d

Initial height h(0)k
U[hmin, hmax]

Initial width w(0)
k U[wmin, wmax]

d

Initial angle θ
(0)
k

U[θmin, θmax]

Initial irregularity parameter τ τ
(0)
k

U[τmin, τmax]

Initial irregularity parameter η η
(0)
k U[ηmin, ηmax]

d

Initial rotation matrix R(0)
k GS

(
Norm(0, 1)d×d

)
Change frequency ṽ 2500, 5000

Number of Environments T 100

There settings considered in this study were: a standard computational resource of
5000 function evaluations between changes, decreased to 2500 function evaluations; with
the number of peaks increased to 25, and shift severities increased from 2 to 4. The settings
are provided in Table 2.

Table 2. Tested settings.

Parameter Symbol Setting 1 Setting 2 Setting 3 Setting 4

Shift severities s̃ 2 4 2 2
Numbers of components m 10 10 25 10

Change frequency ṽ 5000 5000 5000 2500

The following algorithms parameters were set for both mQSO and mQSODE algorithms:

• Number of swarms Ns = 10 (independent of the number of components),
• Number of quantum points Nq = 5,
• w = 0.7298, c1 = 2.05 and c2 = 2.05,
• rcloud = 2, rconv = rexcl = 0.5(Ub− Lb)/Nd

s
• Number of algorithm runs: 31.

The number of individuals in each swarm Np, probability of applying differential
mutation and binomial crossover PDE, type of mutation operator, mF and Cr were varied
in the experiments:
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• Np = {5, 9, 13, 17, 21, 25, 29, 33}
• PDE = {0.1, 0.2, 0.3}
• Type of mutation: based on current points and based on personal best
• mF = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}
• Cr = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}

The tested variants further in the text are marked as mQSONp , mQSODEmF,Cr
Np,PDE ,x for

mutation based on current positions, and mQSODEmF,Cr
Np,PDE ,p for mutation based on personal

best positions. If the upper indexes for mQSODE are missing, e.g., mQSODENp,PDE ,x, then
mF = 0.3, Cr = 1.

There were two performance indicators used in this study: EBCC, and EO. The EBCC is
calculated as follows:

EBCC =
1

Tṽ

T

∑
t=1

ṽ

∑
ϕ=1

(
f (t)(

→
x
◦(t)

)− f (t)(
→
x
∗(t)

)

)
, (9)

where
→
x
◦(t)

is the optimum position at time t, and
→
x
∗(t)

is the best-found position. The
offline error EO is calculated as the average error of the best-found position over all
fitness evaluations:

EO =
1

Tṽ

T

∑
t=1

ṽ

∑
ϕ=1

(
f (t)(

→
x
◦(t)

)− f (t)(
→
x
∗(t−1)ṽ+ϕ

)

)
(10)

In the next subsection, the results of sensitivity analysis to the mentioned parameters
are provided.

3.2. Results of Computational Experiments

In the first series of experiments, the influence of the population size on the perfor-
mance of the mQSO algorithm is determined. In Table 3 the mean and standard deviations
of the performance indicators are shown. The best results in Tables 3–9 are highlighted in
bold case.

Table 3. Comparison of mQSO with different population sizes.

Algorithm
Setting 1 Setting 2

EBBC EO EBBC EO

mQSO5 25.53 ± 5.54 29.72 ± 5.94 32.67 ± 5.39 39.09 ± 5.67
mQSO9 14.29 ± 3.07 18.05 ± 3.18 17.97 ± 3.53 24.11 ± 3.60
mQSO13 11.71 ± 1.89 15.47 ± 1.98 15.22 ± 2.67 21.27 ± 2.80
mQSO17 10.16 ± 1.81 14.03 ± 1.94 13.30 ± 2.25 19.38 ± 2.46
mQSO21 9.40 ± 2.21 13.18 ± 2.21 12.60 ± 1.52 18.60 ± 1.71
mQSO25 9.12 ± 1.58 13.13 ± 1.77 12.31 ± 1.60 18.47 ± 1.75
mQSO29 9.00 ± 1.64 12.99 ± 1.76 12.66 ± 1.90 18.85 ± 2.19
mQSO33 8.70 ± 1.29 12.76 ± 1.43 12.55 ± 1.50 18.86 ± 1.68

Algorithm
Setting 3 Setting 4

EBBC EO EBBC EO

mQSO5 24.36 ± 3.40 28.09 ± 3.68 27.21 ± 5.82 31.86 ± 6.23
mQSO9 14.22 ± 1.97 17.68 ± 2.08 16.96 ± 2.84 21.34 ± 2.99
mQSO13 11.83 ± 1.34 15.31 ± 1.41 14.42 ± 2.18 18.83 ± 2.36
mQSO17 10.43 ± 1.21 13.95 ± 1.26 13.71 ± 2.06 18.39 ± 2.43
mQSO21 10.06 ± 1.28 13.54 ± 1.35 13.65 ± 2.00 18.33 ± 2.33
mQSO25 9.57 ± 1.17 13.19 ± 1.24 13.34 ± 1.63 18.08 ± 2.17
mQSO29 9.26 ± 1.13 12.89 ± 1.29 13.20 ± 1.45 18.41 ± 2.06
mQSO33 9.38 ± 1.02 13.14 ± 1.11 14.11 ± 1.55 19.11 ± 1.86
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Table 4. Comparison of mQSODE with current and personal best positions in mutation.

Algorithm
Setting 1 Setting 2

EBBC EO EBBC EO

mQSODE5,0.1,x 17.66 ± 3.05 21.34 ± 3.29 22.46 ± 2.02 27.97 ± 1.96
mQSODE9,0.1,x 12.47 ± 1.95 15.91 ± 2.14 17.90 ± 2.64 23.20 ± 2.72
mQSODE13,0.1,x 12.32 ± 2.01 15.74 ± 1.97 17.75 ± 1.86 22.92 ± 2.03
mQSODE17,0.1,x 12.43 ± 1.61 15.77 ± 1.81 18.05 ± 1.80 23.31 ± 1.93
mQSODE21,0.1,x 12.87 ± 1.62 16.41 ± 1.85 18.31 ± 1.93 23.57 ± 2.14
mQSODE25,0.1,x 13.00 ± 1.41 16.48 ± 1.64 18.35 ± 1.73 23.68 ± 2.01
mQSODE29,0.1,x 13.16 ± 1.45 16.72 ± 1.63 18.52 ± 1.76 23.86 ± 1.91
mQSODE33,0.1,x 13.31 ± 1.44 16.80 ± 1.68 19.09 ± 1.43 24.35 ± 1.52
mQSODE5,0.1,p 18.56 ± 3.49 22.48 ± 3.75 24.40 ± 4.04 30.58 ± 4.17
mQSODE9,0.1,p 10.72 ± 2.50 14.35 ± 2.68 14.49 ± 2.19 20.29 ± 2.17
mQSODE13,0.1,p 9.23 ± 1.77 12.91 ± 1.85 12.87 ± 2.05 18.56 ± 2.23
mQSODE17,0.1,p 8.61 ± 1.13 12.05 ± 1.19 12.58 ± 1.41 18.14 ± 1.65
mQSODE21,0.1,p 8.50 ± 1.26 12.18 ± 1.39 12.35 ± 1.21 18.05 ± 1.28
mQSODE25,0.1,p 8.52 ± 0.95 12.25 ± 1.03 12.85 ± 1.14 18.46 ± 1.35
mQSODE29,0.1,p 8.41 ± 0.90 12.19 ± 1.03 13.13 ± 0.97 18.80 ± 1.11
mQSODE33,0.1,p 8.84 ± 1.05 12.60 ± 1.13 13.19 ± 0.91 18.82 ± 1.14

Algorithm
Setting 3 Setting 4

EBBC EO EBBC EO

mQSODE5,0.1,x 17.97 ± 2.45 21.41 ± 2.62 23.33 ± 4.21 27.77 ± 4.60
mQSODE9,0.1,x 13.48 ± 1.99 16.75 ± 2.11 18.73 ± 2.60 22.81 ± 2.68
mQSODE13,0.1,x 13.08 ± 1.57 16.17 ± 1.67 18.55 ± 2.61 22.74 ± 2.84
mQSODE17,0.1,x 13.58 ± 1.51 16.81 ± 1.58 19.00 ± 2.23 23.21 ± 2.65
mQSODE21,0.1,x 13.91 ± 1.83 17.16 ± 2.07 18.78 ± 2.14 22.94 ± 2.22
mQSODE25,0.1,x 13.94 ± 1.47 17.22 ± 1.56 19.33 ± 2.01 23.80 ± 2.55
mQSODE29,0.1,x 14.47 ± 1.52 17.82 ± 1.59 20.12 ± 2.14 24.84 ± 2.54
mQSODE33,0.1,x 14.30 ± 1.28 17.58 ± 1.41 20.60 ± 2.03 25.34 ± 2.30
mQSODE5,0.1,p 17.96 ± 2.16 21.54 ± 2.17 22.16 ± 4.74 26.66 ± 5.08
mQSODE9,0.1,p 11.24 ± 1.70 14.59 ± 1.71 15.39 ± 2.26 19.81 ± 2.48
mQSODE13,0.1,p 9.61 ± 1.32 12.97 ± 1.35 13.60 ± 2.41 17.68 ± 2.68
mQSODE17,0.1,p 9.50 ± 1.36 13.00 ± 1.46 13.19 ± 1.65 17.68 ± 1.88
mQSODE21,0.1,p 9.09 ± 1.06 12.48 ± 1.10 13.48 ± 1.39 17.75 ± 1.65
mQSODE25,0.1,p 9.65 ± 1.10 13.05 ± 1.18 14.19 ± 1.38 18.73 ± 1.94
mQSODE29,0.1,p 9.66 ± 0.88 13.06 ± 0.94 14.73 ± 1.76 19.73 ± 2.27
mQSODE33,0.1,p 10.05 ± 0.91 13.49 ± 0.99 15.39 ± 1.69 19.97 ± 2.11

As can be seen from Table 3, the GMPB test suite seems to favor larger population sizes,
i.e., the best results were achieved with more than 20 individuals in each of the swarms.
The reason for this could be that, unlike MPB, GMPB generates more complex terrains of
the goal function after every change, and larger populations with increased diversity are
able to locate better local optima. The best results were achieved by mQSO29.

In Table 4, the mQSODE algorithm is tested with PDE = 0.1 and two different types of
mutation: using current and personal best positions of each particle.

The obtained results shown in Table 4 demonstrate that using the personal best
positions of each particle instead of the current position allows for achieving significantly
better results across different population sizes. The reason for such behavior could be
that the current positions of particles are changing with every iteration, while personal
best positions are rather fixed and contain some important information about the problem
at hand, such as the location of local optima. Utilizing this information with differential
search operators promotes exploration and moving particles in more preferable directions.
The best results were achieved by mQSODE21,0.1,p.
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Table 5. Comparison of mQSODE, with PDE = 0.2 and PDE = 0.3.

Algorithm
Setting 1 Setting 2

EBBC EO EBBC EO

mQSODE5,0.2,p 18.16 ± 2.43 22.01 ± 2.61 23.83 ± 3.25 30.06 ± 3.42
mQSODE9,0.2,p 10.41 ± 1.81 14.15 ± 2.10 14.23 ± 1.71 20.02 ± 1.72
mQSODE13,0.2,p 8.75 ± 1.08 12.25 ± 1.21 13.06 ± 1.33 18.72 ± 1.43
mQSODE17,0.2,p 8.82 ± 1.79 12.41 ± 1.91 13.01 ± 1.43 18.57 ± 1.53
mQSODE21,0.2,p 9.13 ± 1.37 12.80 ± 1.52 13.23 ± 1.25 18.82 ± 1.53
mQSODE25,0.2,p 8.82 ± 0.82 12.35 ± 1.06 13.85 ± 1.35 19.35 ± 1.57
mQSODE29,0.2,p 9.36 ± 1.12 12.93 ± 1.29 14.09 ± 1.27 19.42 ± 1.45
mQSODE33,0.2,p 9.81 ± 1.36 13.49 ± 1.46 14.57 ± 0.97 19.99 ± 1.17
mQSODE5,0.3,p 19.80 ± 3.94 24.01 ± 4.40 25.93 ± 4.16 32.53 ± 4.37
mQSODE9,0.3,p 10.78 ± 1.73 14.68 ± 1.84 15.31 ± 2.51 21.45 ± 2.70
mQSODE13,0.3,p 9.51 ± 1.50 13.14 ± 1.70 13.62 ± 1.63 19.48 ± 1.74
mQSODE17,0.3,p 8.97 ± 1.17 12.56 ± 1.31 13.83 ± 1.26 19.57 ± 1.45
mQSODE21,0.3,p 9.25 ± 1.38 12.89 ± 1.54 14.05 ± 1.46 19.62 ± 1.72
mQSODE25,0.3,p 9.45 ± 0.97 13.13 ± 1.23 14.38 ± 1.03 19.91 ± 1.16
mQSODE29,0.3,p 9.66 ± 0.93 13.31 ± 1.09 14.95 ± 1.09 20.29 ± 1.19
mQSODE33,0.3,p 10.34 ± 1.17 13.93 ± 1.30 15.25 ± 1.44 20.88 ± 1.71

Algorithm
Setting 3 Setting 4

EBBC EO EBBC EO

mQSODE5,0.2,p 18.76 ± 2.64 22.54 ± 2.74 21.69 ± 3.12 26.17 ± 3.25
mQSODE9,0.2,p 10.95 ± 1.40 14.44 ± 1.42 14.40 ± 1.72 18.90 ± 2.16
mQSODE13,0.2,p 9.76 ± 1.48 13.16 ± 1.54 14.10 ± 2.31 18.53 ± 2.57
mQSODE17,0.2,p 9.97 ± 1.11 13.32 ± 1.09 14.76 ± 1.41 18.97 ± 1.49
mQSODE21,0.2,p 9.91 ± 0.97 13.22 ± 1.05 14.67 ± 2.07 18.98 ± 2.25
mQSODE25,0.2,p 9.97 ± 0.89 13.25 ± 1.01 15.17 ± 1.63 19.44 ± 2.00
mQSODE29,0.2,p 10.61 ± 0.92 13.89 ± 1.03 15.85 ± 1.71 20.18 ± 2.02
mQSODE33,0.2,p 11.06 ± 0.98 14.36 ± 1.08 17.16 ± 1.96 21.90 ± 2.36
mQSODE5,0.3,p 19.00 ± 2.95 22.79 ± 3.23 23.22 ± 2.82 27.98 ± 3.14
mQSODE9,0.3,p 11.92 ± 1.82 15.47 ± 1.88 16.19 ± 2.54 20.56 ± 2.61
mQSODE13,0.3,p 10.29 ± 1.35 13.69 ± 1.38 14.91 ± 2.04 18.98 ± 2.34
mQSODE17,0.3,p 10.33 ± 1.17 13.75 ± 1.28 14.67 ± 1.37 19.01 ± 1.53
mQSODE21,0.3,p 10.16 ± 1.16 13.50 ± 1.29 15.09 ± 1.56 19.44 ± 1.96
mQSODE25,0.3,p 10.87 ± 0.88 14.21 ± 1.01 15.96 ± 1.37 20.33 ± 1.52
mQSODE29,0.3,p 11.02 ± 0.73 14.35 ± 0.90 16.95 ± 1.70 21.15 ± 1.99
mQSODE33,0.3,p 11.53 ± 0.92 14.84 ± 1.06 17.45 ± 1.67 21.81 ± 2.02

Table 5 contains the comparison of mQSODE with increased PDE probabilities, the
personal best positions are used in mutation.

The results in Table 5 show that increasing the probability of using the DE search
operator decreases the performance of mQSODE, and PDE = 0.3 is worse than PDE = 0.2
and, compared to Table 4, PDE = 0.2 is worse than PDE = 0.1. This means that switching
the main search mechanism to DE is not desirable for dynamic environments, and the
application of DE should be assisting PSO, but not replacing it. It is also important to
mention that the best results for the case of PDE = 0.2 were achieved with a smaller number
of particles than with PDE = 0.1, which means that more often applications of DE increase
the diversity of individual swarms so that smaller swarm sizes are sufficient.

The sensitivity of mQSODE to crossover rates and scaling factor values were tested
and obtained results are demonstrated in Tables 6 and 7.

The comparison of performance metric values in Tables 6 and 7 shows that DE search
parameters do not have a significant influence on the final performance, however, the
influence of scaling factor sampling parameter mF is larger than the influence of crossover
rate Cr. The best performing configuration here is mQSODE0.3,1.0

21,0.1,p.
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Table 6. Comparison of mQSODE with different crossover rates.

Algorithm
Setting 1 Setting 2

EBBC EO EBBC EO

mQSODE0.3,0.1
21,0.1,p 8.70 ± 1.70 12.38 ± 1.79 12.39 ± 1.52 17.95 ± 1.66

mQSODE0.3,0.2
21,0.1,p 8.35 ± 1.26 12.00 ± 1.36 12.41 ± 1.38 18.05 ± 1.69

mQSODE0.3,0.3
21,0.1,p 8.29 ± 1.40 11.94 ± 1.44 12.38 ± 1.24 18.06 ± 1.47

mQSODE0.3,0.4
21,0.1,p 8.63 ± 1.77 12.26 ± 1.89 12.37 ± 1.42 18.02 ± 1.48

mQSODE0.3,0.5
21,0.1,p 8.49 ± 1.21 12.14 ± 1.25 12.17 ± 1.69 17.71 ± 1.76

mQSODE0.3,0.6
21,0.1,p 8.25 ± 1.10 11.85 ± 1.11 12.06 ± 1.18 17.69 ± 1.35

mQSODE0.3,0.7
21,0.1,p 8.56 ± 1.34 12.24 ± 1.37 12.01 ± 1.24 17.52 ± 1.31

mQSODE0.3,0.8
21,0.1,p 8.46 ± 1.51 12.19 ± 1.56 12.59 ± 1.84 18.25 ± 2.01

mQSODE0.3,0.9
21,0.1,p 8.50 ± 1.11 12.08 ± 1.31 12.59 ± 1.74 18.31 ± 1.87

mQSODE0.3,1.0
21,0.1,p 8.10 ± 0.96 11.80 ± 1.02 12.19 ± 1.24 17.87 ± 1.25

Algorithm
Setting 3 Setting 4

EBBC EO EBBC EO

mQSODE0.3,0.1
21,0.1,p 9.11 ± 0.85 12.46 ± 0.83 13.16 ± 1.33 17.66 ± 2.01

mQSODE0.3,0.2
21,0.1,p 9.30 ± 1.08 12.64 ± 1.11 13.17 ± 1.75 17.25 ± 1.98

mQSODE0.3,0.3
21,0.1,p 9.18 ± 0.87 12.51 ± 0.89 13.84 ± 1.53 18.32 ± 2.03

mQSODE0.3,0.4
21,0.1,p 9.28 ± 1.40 12.62 ± 1.49 13.24 ± 1.56 17.67 ± 1.86

mQSODE0.3,0.5
21,0.1,p 8.85 ± 1.14 12.13 ± 1.18 13.55 ± 1.81 17.82 ± 1.87

mQSODE0.3,0.6
21,0.1,p 9.00 ± 1.08 12.43 ± 1.22 13.53 ± 1.36 17.95 ± 1.48

mQSODE0.3,0.7
21,0.1,p 9.50 ± 1.42 12.93 ± 1.54 13.51 ± 1.51 17.69 ± 1.85

mQSODE0.3,0.8
21,0.1,p 9.21 ± 0.95 12.59 ± 1.04 13.57 ± 1.58 18.32 ± 2.14

mQSODE0.3,0.9
21,0.1,p 9.30 ± 1.11 12.65 ± 1.18 13.83 ± 1.31 18.15 ± 1.81

mQSODE0.3,1.0
21,0.1,p 9.12 ± 1.04 12.54 ± 1.12 13.70 ± 1.61 18.21 ± 1.79

Table 8 contains the comparison of two tested algorithms in this study, mQSO29 and
mQSODE21,0.1,p with alternative approaches on the same benchmark.

Table 8 shows that although the mQSODE21,0.1,p is not capable of outperforming some
of the alternative methods, it is still highly efficient compared to PSO-based algorithms,
such as FTmPSO and mPSO. In particular, it achieves better results in terms of offline error
EO especially for more challenging settings 3 and 4. It should be noted that unlike the
algorithms from [10], in this study the shift severity learning was not performed, and the
shift severity value was set to 2, which is used by quantum particles.

Table 9 contains the results of pairwise Mann-Whitney statistical tests applied to
mQSO with two population sizes and mQSODE. The statistical tests were performed with
a significance level p = 0.01, with normal approximation and tie-breaking. The values in
Table 3 are the test result (Z-score), where the test result is either -1 (worse), 0 (equal), or 1
(better). For example, if the absolute value of Z was smaller than 2.58, the test result was 0.

With the same population size, the mQSODE algorithms were able to significantly
outperform the mQSO in the third setting, i.e., when the number of components is increased
to 25. Comparing with mQSO29, the mQSODE21,0.1,p always performs better, except for the
fourth setting, although these improvements are not significant according to the Mann-
Whitney test.

Figure 2 shows the current error graphs of mQSO29 and mQSODE21,0.1,p algorithms
for four considered settings, and Figure 3 shows the offline error graphs.
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Table 7. Comparison of mQSODE, with different scaling factor sampling parameters.

Algorithm
Setting 1 Setting 2

EBBC EO EBBC EO

mQSODE0.1,1.0
21,0.1,p 8.09 ± 1.29 11.72 ± 1.38 12.73 ± 1.87 18.43 ± 1.81

mQSODE0.2,1.0
21,0.1,p 8.64 ± 1.45 12.38 ± 1.60 12.28 ± 1.65 17.93 ± 1.80

mQSODE0.3,1.0
21,0.1,p 8.10 ± 0.96 11.80 ± 1.02 12.19 ± 1.24 17.87 ± 1.25

mQSODE0.4,1.0
21,0.1,p 8.23 ± 1.08 11.88 ± 1.16 12.17 ± 1.39 17.70 ± 1.50

mQSODE0.5,1.0
21,0.1,p 8.42 ± 1.24 12.12 ± 1.40 12.63 ± 1.52 18.20 ± 1.77

mQSODE0.6,1.0
21,0.1,p 8.42 ± 1.42 11.87 ± 1.44 12.90 ± 1.30 18.36 ± 1.48

mQSODE0.7,1.0
21,0.1,p 9.00 ± 1.45 12.48 ± 1.50 13.44 ± 1.49 19.04 ± 1.75

mQSODE0.8,1.0
21,0.1,p 9.21 ± 1.33 12.67 ± 1.36 13.34 ± 1.63 18.65 ± 1.71

mQSODE0.9,1.0
21,0.1,p 9.50 ± 1.78 13.23 ± 2.01 13.78 ± 2.02 19.30 ± 2.12

mQSODE1.0,1.0
21,0.1,p 9.02 ± 1.31 12.58 ± 1.35 13.65 ± 1.70 19.13 ± 1.78

Algorithm
Setting 3 Setting 4

EBBC EO EBBC EO

mQSODE0.1,1.0
21,0.1,p 9.37 ± 1.30 12.72 ± 1.34 13.29 ± 1.28 17.88 ± 1.74

mQSODE0.2,1.0
21,0.1,p 8.92 ± 0.95 12.30 ± 1.02 13.41 ± 1.74 17.87 ± 2.07

mQSODE0.3,1.0
21,0.1,p 9.12 ± 1.04 12.54 ± 1.12 13.70 ± 1.61 18.21 ± 1.79

mQSODE0.4,1.0
21,0.1,p 9.19 ± 1.01 12.61 ± 1.06 13.65 ± 1.39 18.09 ± 1.60

mQSODE0.5,1.0
21,0.1,p 9.45 ± 1.02 12.82 ± 1.08 14.18 ± 1.68 18.92 ± 2.05

mQSODE0.6,1.0
21,0.1,p 9.65 ± 1.40 12.88 ± 1.36 14.56 ± 1.88 19.03 ± 2.16

mQSODE0.7,1.0
21,0.1,p 9.81 ± 1.37 13.16 ± 1.45 14.79 ± 1.63 19.04 ± 2.04

mQSODE0.8,1.0
21,0.1,p 9.63 ± 1.20 12.87 ± .29 14.92 ± 2.08 19.08 ± 2.34

mQSODE0.9,1.0
21,0.1,p 9.80 ± 1.00 12.98 ± 1.03 14.95 ± 1.69 19.26 ± 1.79

mQSODE1.0,1.0
21,0.1,p 10.34 ± .28 13.62 ± 1.23 14.87 ± 1.53 19.03 ± 1.92
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Table 8. Comparison of mQSO and mQSODE with alternative approaches from [10].

Algorithm
Setting 1 Setting 2

EBBC EO EBBC EO

mQSO29 9.00 ± 1.64 12.99 ± 1.76 12.66 ± 1.90 18.85 ± 2.19
mQSODE21,0.1,p 8.50 ± 1.26 12.18 ± 1.39 12.35 ± 1.21 18.05 ± 1.28

FTmPSO 7.11 ± 0.26 12.70 ± 0.34 8.70 ± 0.26 16.06 ± 0.35
mCMA-ES 5.11 ± 0.22 7.59 ± 0.24 7.39 ± 0.26 11.65 ± 0.28

mPSO 8.51 ± 0.22 12.88 ± 0.27 11.63 ± 0.19 18.52 ± 0.26

Algorithm
Setting 3 Setting 4

EBBC EO EBBC EO

mQSO29 9.26 ± 1.13 12.89 ± 1.29 13.20 ± 1.45 18.41 ± 2.06
mQSODE21,0.1,p 9.09 ± 1.06 12.48 ± 1.10 13.48 ± 1.39 17.75 ± 1.65

FTmPSO 7.99 ± 0.16 13.48 ± 0.21 11.57 ± 0.32 18.04 ± 0.39
mCMA-ES 6.14 ± 0.15 8.49 ± 0.16 8.56 ± 0.31 11.06 ± 0.33

mPSO 9.58 ± 0.17 13.86 ± 0.21 12.68 ± 0.27 17.67 ± 0.34

Table 9. Pairwise Mann-Whitney tests of mQSO and mQSODE, all settings, test results, and stan-
dard scores.

Measure Setting 1 Setting 2 Setting 3 Setting 4

mQSO21 vs. mQSODE21,0.1,p

EO 0 (1.485) 0 (0.993) 1 (3.062) 0 (−0.021)
EBBC 0 (1.696) 0 (1.528) 1 (3.118) 0 (1.035)

mQSO29 vs. mQSODE21,0.1,p

EO 0 (1.077) 0 (0.598) 0 (0.683) 0 (−0.978)
EBBC 0 (1.936) 0 (1.668) 0 (1.457) 0 (1.316)
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Analyzing Figures 2 and 3 it can be noted that mQSODE21,0.1,p is more conservative at
the beginning, i.e., during the first several environmental changes, while mQSO29 achieves
better values. However, at the final environmental changes both current and offline errors of
the modified algorithm are better, which indicates that it makes a better job tracking the local
optima. To analyze the reasons for increased performance in the long term, the diversity
measure was used for three algorithms, namely mQSO21, mQSO29, and mQSODE21,0.1,p.
The diversity was measured at every iteration as follows:

DM =
1

Ns

Np

∑
i=1

Np

∑
j=i

D

∑
k=1

(
xnik − xnjk

)2

In other words, the DM was calculated as the sum of pairwise distances between all
particles in each swarm and averaged over the number of swarms. Figure 4 shows the
diversity measures for one of the runs with setting 1 of the three mentioned algorithms.

Algorithms 2022, 15, x FOR PEER REVIEW 17 of 21 
 

 

 

Figure 4. Diversity measures of mQSO21, mQSO29 and mQSODE21,0.1,p, setting 1. 

The graphs in Figure 4 show that given the same population size, the algorithm 

without a DE search operator has significantly smaller diversity, up to several times 

smaller. When comparing mQSODE21,0.1,p with mQSO29, which has a larger population, 

the diversity of the mQSO after an environmental change is usually larger, however, 

before the change when the swarms are converged, the diversity measures of these algo-

rithms are comparable, which explains their similar performance. 

To compare the efficiency of all the tested modifications, the ranking procedure 

from the Friedman statistical test was applied, which will further be referred to as the 

Friedman ranking. To perform such a comparison, all algorithms’ results over 31 inde-

pendent runs were ranked for every benchmark setting and every performance measure. 

After this, the ranks assigned to each algorithm participating in the comparison were 

summed together to form a single rank, which is depicted as a bar in a bar plot in Figure 

5. Such a procedure allows for aggregating different performance measures and test 

scenarios in a single measure, highlighting the best approaches. 

Figure 4. Diversity measures of mQSO21, mQSO29 and mQSODE21,0.1,p, setting 1.

The graphs in Figure 4 show that given the same population size, the algorithm without
a DE search operator has significantly smaller diversity, up to several times smaller. When
comparing mQSODE21,0.1,p with mQSO29, which has a larger population, the diversity of
the mQSO after an environmental change is usually larger, however, before the change
when the swarms are converged, the diversity measures of these algorithms are comparable,
which explains their similar performance.

To compare the efficiency of all the tested modifications, the ranking procedure from
the Friedman statistical test was applied, which will further be referred to as the Friedman
ranking. To perform such a comparison, all algorithms’ results over 31 independent
runs were ranked for every benchmark setting and every performance measure. After
this, the ranks assigned to each algorithm participating in the comparison were summed
together to form a single rank, which is depicted as a bar in a bar plot in Figure 5. Such a
procedure allows for aggregating different performance measures and test scenarios in a
single measure, highlighting the best approaches.

The presented Friedman ranking in Figure 5 shows that the mQSODE21,0.1,p is the best
algorithm among the tested configurations. It also shows that applying larger PDE values
are inefficient, as well as using current particles’ positions for differential mutation.
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4. Discussion

The performed computational experiments and sensitivity analysis have shown that
it is possible to develop an efficient hybrid approach, combining PSO and DE. The key to
efficient performance here seems to be in the usage of personal best positions of particles
instead of current positions because personal best points contain important information for
the search process.

Although within this study only one baseline algorithm was considered, namely
mQSO, it is possible to interpolate the proposed algorithmic scheme for any other PSO-
based algorithm, and most of the used approaches for dynamic optimization are based on a
type of swarm intelligence algorithm derived from particle swarm optimization. Thus, the
findings of this study could be considered rather general; however, additional experiments
in other scenarios are required to prove the concept.

It is rather obvious that setting the probability of applying DE to a fixed value dur-
ing the whole algorithm run is not the best possible option, and a specific adaptation
mechanism for PDE should be developed. In our preliminary experiments with several
adaptation schemes, we were not able to come up with an efficient method that would
significantly improve the performance of the GMPB test suite. The reason for that was that
DE mutation generates successful solutions more often so allowing the PDE to be adapted
simply increases this probability to the upper threshold. This, in turn, results in too high
PDE values, which decrease the search efficiency, as was shown in the experiments in this
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study. In other words, the adaptation scheme should consider this fact and be less greedy
for improvements.

In addition to PDE adaptation, application of DE operators burdens researchers with
additional parameters to be tuned, namely the scaling factor F and crossover rate Cr. In
this study, it was shown that the sensitivity to these values is not very large, probably
thanks to the rotation-invariant nature of PSO and applied sampling of F values from
the Cauchy distribution. Nevertheless, incorporating known adaptation schemes, such
as success-history adaptation, or developing new specific methods is another direction of
further studies.

Finally, it should be mentioned that in this study only one differential mutation
strategy was tested, i.e., the classical rand/1, although other schemes are known to be
superior in certain cases. If some of them would be shown to perform better than rand/1 for
dynamic environments, this will allow making another step in the direction toward efficient
DOPs solvers.

5. Conclusions

In this study, the modification of the Quantum Multi-Swarm Optimization algorithm
was proposed. The algorithm incorporating the additional search operator from Differential
Evolution, mQSODE, has shown to perform better in different challenging settings of the
generalized moving peaks benchmark. Thus, in this study, it was shown that although
the DE algorithms usually show worse results in dynamically changing environments,
the exploration capabilities of their mutation operator can be efficiently used to modify
the existing algorithms if they are applied to personal best positions of the points in PSO.
Further research directions may include applying other differential search operators to
mQSO, developing adaptation schemes, or modifying other algorithms in a similar manner.
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