
Citation: Zou, Y.; Gao, C. Extreme

Learning Machine Enhanced

Gradient Boosting for Credit Scoring.

Algorithms 2022, 15, 149. https://

doi.org/10.3390/a15050149

Academic Editor: Panagiotis Pintelas

and Ioannis E. Livieris

Received: 24 February 2022

Accepted: 25 April 2022

Published: 27 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Extreme Learning Machine Enhanced Gradient Boosting for
Credit Scoring
Yao Zou * and Changchun Gao

Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China;
gcc369@dhu.edu.cn
* Correspondence: zouyaodhu@mail.dhu.edu.cn

Abstract: Credit scoring is an effective tool for banks and lending companies to manage the potential
credit risk of borrowers. Machine learning algorithms have made grand progress in automatic and
accurate discrimination of good and bad borrowers. Notably, ensemble approaches are a group
of powerful tools to enhance the performance of credit scoring. Random forest (RF) and Gradient
Boosting Decision Tree (GBDT) have become the mainstream ensemble methods for precise credit
scoring. RF is a Bagging-based ensemble that realizes accurate credit scoring enriches the diversity
base learners by modifying the training object. However, the optimization pattern that works on
invariant training targets may increase the statistical independence of base learners. GBDT is a
boosting-based ensemble approach that reduces the credit scoring error by iteratively changing
the training target while keeping the training features unchanged. This may harm the diversity
of base learners. In this study, we incorporate the advantages of the Bagging ensemble training
strategy and boosting ensemble optimization pattern to enhance the diversity of base learners.
An extreme learning machine-based supervised augmented GBDT is proposed to enhance the
discriminative ability for credit scoring. Experimental results on 4 public credit datasets show a
significant improvement in credit scoring and suggest that the proposed method is a good solution to
realize accurate credit scoring.

Keywords: credit scoring; bagging ensemble; GBDT; extreme learning machine

1. Introduction

Credit risk is the main financial risk concerned by banks. Credit scoring relates to
a group of methods that are adopted to support the decision-making process of decision-
makers, have been widely exploited by banks and financial institutions to prevent the loss
caused by non-performing loans [1,2]. Credit scoring is a process of identifying whether a
credit applicant is a legitimate or suspicious one. With the business expansion of banks and
lending institutions and the accumulation of financial data, the evaluation of customer credit
has gradually developed from manual audit mechanisms to automatic credit scoring using
computer technology and big data. For credit risk managers, it is very important to accurately
identify borrowers with high credit quality and potential loan defaulters. Consequently, more
researchers are followed by focusing on seeking an algorithm to improve the performance
of credit scoring. These studies include statistical-based methods such as linear discrimi-
nant analysis (LDA) [3,4], and logistic regression (LR) [5,6], artificial intelligence (AI)-based
approaches such as artificial neural network (ANN) [7,8], decision tree (DT) [9,10], support
vector machine (SVM), [11], k-nearest neighbors (KNN) [12,13], Naïve Bayesian [14,15].

Though AI-based theories [16,17] provide the probability to realize accurate credit
scoring, LR and LDA are still the most popular approaches as standard credit scoring
algorithms due to their simplicity and easy implementation. However, limited by the
complexity of LDA [18] and LR [19], these statistical-based credit scoring models are
criticized for their failure of providing correct discrimination of good and bad applicants.
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To overcome such issues, researchers have contributed their efforts to developing machine
learning algorithms to mine valuable information for accurate credit scoring [20,21]. Li [22]
improved the credit scoring performance by modeling the process of a reject inference
issue based on an SVM algorithm. Tsai and Wu [23] established a neural network for
bankruptcy prediction and credit scoring. In their work, the performance of individual NN
and the ensemble of NNs are investigated on three credit scoring and bankruptcy-related
datasets. Lee [24] combined classification and regression decision tree and multivariate
adaptive regression splines (MARS) to predict the credit of customers. Their results show
that CART regression DT and MARS outperform other traditional statistical-based credit
scoring algorithms such as LR and LDA. Based on the consideration that different credit
datasets are distinguished ranging from their unique scale to the number of predictive
variables, according to the “no free lunch” theory [25], an individual ML-based classifier is
not the optimal solution to deal with all the complex credit scoring problems. Therefore, it
has become increasingly important to integrate multiple ML-based credit scoring models
into a robust one to improve the performance of credit scoring.

Pławiak [26] cascaded multiple SVMs for Australian credit approval. In addition, a
genetic algorithm is combined to optimize the hyper-parameter of the ensemble framework.
Abellán and Castellano [27] studied the impact of difference base classifier selection on the
performance of ensemble algorithms. His study demonstrates that ensemble algorithms
can be good choices compared with individual ML-based classifiers for gaining better credit
scoring performance. Moreover, Credal DT is proved in their study as the optimal base
learner for the ensemble framework. Ala’raj and Abbod [28] considered the processing
of combining data filtering and features selection, integration of different classifiers, and
the combination strategy of integrating the output of multiple base learners of ensemble
approaches. Their results showed the hybrid ensemble credit scoring algorithm gets better
predictive performance on seven credit scoring datasets. Zhang [29] addressed the out-
lier issue in credit datasets by establishing a multi-staged ensemble model. Furthermore,
their study proposed a new feature reduction approach to enhance feature interpretability.
Feng [30] introduced a soft probability weighting mechanism for the dynamical ensemble
of the base learners, thus reducing the risk of misclassification on risky loans and non-risky
loans. To address the imbalance of credit scoring, Zhang [31] introduced an under-sampling
strategy and incorporated a voting-based outlier detection method to stack a hybrid ensem-
ble algorithm. To encourage the diversity of base learners of ensemble learning algorithms,
Xia [32] proposed a novel heterogeneous ensemble method, which considered SVM, RF,
XGBoost as base learners to reduce the credit scoring error. Nalić [33] introduced multiple
feature selection methods, and combined ensemble learning approaches to support the
decision-making process of issuing a loan. Moreover, a new voting mechanism named
if-any is proposed to combine the final results of base learners.

According to the ensemble strategy, ensemble algorithms can be divided into Bagging-
type ensemble models [34] and boosting-type ensemble approaches [35]. According to the
training strategy of Bagging and boosting, Bagging is an ensemble strategy that integrates
multiple base learners by diversifying the training subset (object) while boosting is an
optimization pattern that iteratively modifying the training target. RF and GDBT are
representative Bagging-type ensemble approach and boosting ensemble approach. RF [36],
in which each base learner is optimized based on the same training target while keeping
the input of DTs diversified from each other. However, such an optimization strategy that
each base learner gets the same training target may increase the statistical correlation of
the prediction results among base learners, which drives DTs in RF to make homogenized
prediction results. By contrast, GBDT reduces the credit scoring error iteratively changing
the optimization target while keeping the training features unchanged [37]. However, the
DTs [38,39] in the GBDT always work on the same training feature may harm the diversity
of base learners while diversity is an important character for ensemble strategy.

Based on the above considerations and inspired by the research of Tonnor [40], in this
study, we propose a supervised efficient NN-based augmented GBDT, named AugBoost-
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ELM, for credit scoring. AugBoost-ELM inherits the boosting training pattern from the
GBDT framework, making it a robust ensemble method to achieve accurate credit scoring.
Moreover, the extreme learning machine (ELM) [41] is considered as an efficient supervised
feature augmentation skill to step-wise enhance the diversity of based learners in GBDT,
motivating AugBoost-ELM an efficient augmented GBDT compared with AugBoost-NN. In
addition, the training strategy based on ELM avoids the problem that the training strategy on
backpropagation NN-based is easy to fall into the local minimum, and it can generate robust
augmented features for the boosting framework while accelerating the augmentation process.

2. Methodology
2.1. Extreme Learning Machine

Extreme learning machine (ELM) is a new fast learning algorithm [42]. Given an
arbitrary credit dataset {(x1, y1), (x2, y2), · · · , (xN , yN)}, where xj = [xj1, xj2, · · · , xjm], m is
the number of features, yj = [yj1, yj2, · · · , yjC] ∈ RC is the label of i-th sample in a one-hot
form, and C is the number of classes. For a single-layer feed-forward neural network with
L hidden nodes, it can be expressed as:

L

∑
i=1

βig(Wixj + bi) = oj, j = 1, 2, · · · , N, (1)

where g(x) is the Gaussian radial basis activation function, Wi = [wi1, wi2, · · · , wim]
Tis the

weight vector of the i-th neuron in the input layer, β = [βi1, βi2, · · · , βiC]
T is the output

weight vector of the i-th neuron in the hidden layer, and βic represents the connection
weight between the i-th neuron in the hidden layer and the c-th neuron in the output layer.
bi is the bias of the i-th neuron in the hidden layer. Wixj calculates the inner product of the
input weight vector and input vector. The goal of ML-based credit scoring is to minimize
empirical risk. In the credit scoring based on a single hidden layer neural network, the goal
of the learning process is to minimize the output error, which can be expressed as:

N

∑
j=1
‖oj − yj‖ = 0, j = 1, 2, · · · , N. (2)

That is, there are Wi,xj, and bi, such that:

L

∑
i=1

βig(Wixj + bi) = yj, j = 1, 2, · · · , N. (3)

We matrix Equation (3) into:
Hβ = Y, (4)

where H represents the output matrix of the hidden layer and β is the connection weight
between the hidden layer and the output layer, Y denotes the expected output matrix.
Specifically, Equation (4) can be expressed as:

H(W1, W2, · · · , WL; b1, b2, · · · , bL; x1, x2, · · · , xN)

=

 g(W1x1 + b1) · · · WLx1 + bL
... · · ·

...
g(W1xN + b1) · · · g(WLxN + bL)


where β = [βT

1 , · · · , βT
L ]

T , Y = [yT
1 , · · · , yT

L ]
T . ELM-based credit scoring aims to minimize

the empirical risk, Therefore, we expect to find Ŵi,b̂i,β̂i, and make:

‖H(Ŵi; b̂i)β̂i − Y‖ = min
W,b,β
‖H(Wi; bi)βi − Y‖. (5)

This is equivalent to minimizing the loss function:
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E =
N

∑
j=1

(
L

∑
i=1

βig(Wixj + bi)− yj)
2. (6)

Different from the traditional neural network that minimizes loss function based on
gradient descent algorithm, ELM does not involve an error back-propagation process for
weight update. In the implementation of ELM, the input weight Wi and the bias of the
hidden layer are randomly initialized and do not update in the whole training process. The
output matrix H of the hidden layer of ELM is uniquely determined in the training process.
Therefore, the training single hidden layer neural network can be transformed into finding
a solution of linear equation Hβ = Y, so as to find the optimal β to minimize the training
error. Based on the above analysis, β can be calculated by:

β̂ = H+Y, (7)

where H+ is the generalized Moore Penrose inverse of the matrix H. Compared with the
BP optimization, the optimization pattern of ELM has the following characteristics: (1) the
connection weight between the input layer and the hidden layer as well as the bias of the
hidden layer is randomly initialized; the training of ELM does not involve the update of
these parameters. Compared with the operation of the BP-based neural network to update
the weight and bias of each layer through the chain rule, the complexity of weight update
in ELM is greatly reduced. (2) The connection weight matrix β is determined without
iteratively updating, which further reduces the training complexity of ELM. The above
characteristics of ELM make it have an efficient training pattern and avoid falling into a
optimal solution. In this paper, ELM is an efficient alternative to BP based neural network,
which is performed to step-wisely augment the credit features for the GBDT framework to
enhance the diversity of the ensemble approach.

2.2. Gradient Boosted Decision Tree

Given a training set {(x1, y1), (x2, y2), · · · , (xN , yN)}, where xi is the feature of i-th
sample and yi ∈ {0, 1} denotes the label of the i-th sample. ML algorithms realize credit
scoring by designing a function F(xi) to minimize the loss function L(yi, F(xi)):

F∗ = arg min
F

N

∑
i=1

L(yi, F(xi)). (8)

Gradient boosting algorithms realize Equation (8) in an additive integration way:

F(x) =
T

∑
t=1

ft(x), (9)

where T is the number of iterations. It can be seen from Equation (9) that F(xi) is incrementally
integrated in an additive manner. In the t-th iteration, ft realizes the further optimization of
the overall loss of the previously formed ensemble { f j}t−1

j=1. In the implementation of GBDT,
each function f is implemented by a DT that can be regarded as a base learner. Therefore, f
can be embodied as f (α; x), α is the structural parameters of each DT, which determines the
feature and splitting threshold at each internal splitting node in the decision tree.

Since the t-th iteration realizes the further optimization of the loss function, the loss
function can be expressed as L(yi, Ft−1(xi) + ft(xi)). According to Taylor expansion, the
loss function can be approximated as:

L(yi, Ft−1(xi) + ft(xi))

≈L(yi, Ft−1(xi)) + gi ft(xi) +
1
2

ft(xi)
2,

(10)

where gi is the first derivative of the loss function, which can be calculated as:
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gi =

[
∂L(yi, F(xi))

∂F(xi)

]
F(xi)=Ft−1(xi)

. (11)

Therefore, Equation (11) can be transformed into an optimization problem:

f ∗t = arg min
ft

N

∑
i=1

1
2
( ft(xi)− gi)

2. (12)

It can be seen from Equation (12) that the fitting target of ft is the negative gradient
of the loss function. Therefore, before training each tree in GBDT, we update the training

target of each tree as {yi}N
i=1 = −

[
∂L(yi ,F(xi))

∂F(xi)

]
F(xi)=Ft−1(xi)

.

2.3. GBDT Enhanced by Supervised Extreme Learning Machine

GBDT realizes ensemble by iteratively modifying the training target while keeping the
training features unchanged. This optimization method differs greatly from the integration
strategy of random forest. Random forest integrates multiple DTs by keeping the training
target unchanged while the diversity of each DT in RF is enhanced by modifying the input
samples based on the Bagging algorithm. Tannor [39] proposed three methods to step-wise
augmented GBDT, which borrowed the advantage of RF-type ensemble strategy and the
training pattern of boosting-type ensemble approaches. In Tannor’s work, random projec-
tion (RP) [43], PCA is considered as two unsupervised augmented algorithms for enhancing
GBDT, and NN is regarded as the supervised augmented method to realize supervised
augmented GBDT. Tannor’s [40] study has shown promising evidence of supervised aug-
mented GBDT outperforms two unsupervised augmented GBDTs. Though NN-based
supervised feature augmentation for GBDT achieved better performance than RP-based
and PCA-based unsupervised feature augmentation for GBDT, NN is an algorithm that
is optimized based on error backpropagation, which is the related chain principle. Such
optimization pattern is inefficient and easily prone to over-fitting as well as easy falls into
local optima, leading to the feature augmentation process being a time-consuming process
and making the supervised augmented GBDT a complex model to realize fast credit scor-
ing [44]. Based on the above considerations, in this paper, we develop an efficient forward
NN algorithm, ELM, to step-wisely augment the GBDT framework, which is AugBoost-
ELM. In Tannor’s [40] work, three AugBoost models have been developed to enhance the
diversity of base learners of GBDT, of which supervised augmented GBDT, AugBoost-NN
has been proved to be a more precise classification approach. However, NN-based feature
augmentation is based on the training of a good NN framework, while the training process
of determining an optimal NN is complex. Besides, considering GBDT is a sequential
ensemble framework, the integration of NN for feature augmentation and boosting training
patter of GBDT makes AugBoost-NN a training-inefficient algorithm for credit scoring.
Therefore, a more efficient augmented GBDT is proposed in this study to enhance the
diversity of base learners in GBDT to improve the performance of credit scoring.

Figure 1 shows the training process of AugBoost-ELM. As shown in Figure 1, the same as
the training pattern of classical GBDT, original features are considered as the input of the base
regression DTs. In the training process of AugBoost-ELM, before training a new DT to the
further ensemble model, each original feature is augmented by a fast neural network-ELM,
and the augmented features and the original features are combined as the input of each base
learner. By doing this, different from the input of each DT in the original GBDT, the input of
each DT of AugBoost-ELM is diversified, thus leading to the base learners of AugBoost-ELM
being more diversified and driving the ensemble models to make diversified prediction
results. The training pseudo-code of AugBoost-ELM is shown in Algorithm 1.
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Figure 1. Training process of AugBoost-ELM.

Algorithm 1 Pseudo code of AugBoost-ELM

Input: A credit training set {(x1, y1), (x2, y2), · · · (xN , yN)}
Output: An augmented GDBT FT(x) which performs step-wise feature augmentation with ELMs

1: Initialize first regression DT F0(x) as:
arg min

ρ
∑N

i=1 L(yi, ρ), ρ is the optimization step of FT(x), and the training targets of {yi}N
i=1.

2: for t = 1, 2, · · · , T do
3: if (t− 1)%nA = 0 then
4: Randomly split original training feature set into K random feature subsets.
5: for k = 1, 2, · · · , K do
6: Randomly select a feature subset with selection operation St,k
7: Training an ELM as an augmentation function ft,k to perform feature augmenta-

tion for GBDT.
8: end for
9: else

10: for k = 1, 2, · · · , K do
11: ft,k = ft−1,k, St,k = St−1,k
12: end for
13: end if
14: Update the training targets with the negative gradient of loss function

{yi}N
i=1 = −

[
∂L(yi ,F(xi))

∂F(xi)

]
F(xi)=Ft−1(xi)

.

15: Fitting a DT ft with augmented feature set and updated labels
{∪K

k=1( ft,k(St,k(xi))), yi}N
i=1

16: Perform linear search to determine the optimal ρt by
arg min

ρt
∑N

i=1 L(yiFt−1(xi) + ρt ft(∪K
k=1( ft,k(St,k(xi)))))

17: Update Ft(xi) = Ft−1(xi) + ρt ft(xi)
18: Return FT(xi).
19: end for
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3. Experimental Settings
3.1. Credit Datasets

Australian credit approval dataset is a collection that classifies potential borrowers
who may get qualified in getting loans or not by analyzing multiple descriptive attributes
range from loan characters, the information of borrowers.

German credit dataset records 1000 credit information from a German bank, each of
which contains 20 features. These features include account balance information, duration
of credit in a month to repayment history, etc.

Japanese credit dataset contains samples of credit individuals that provide positive or
negative credit for banks and lending companies to determine whether granting a loan or
not by introducing the knowledge of experts from a Japanese lending institution.

Taiwan dataset is designed to evaluate the predictive performance of the probability
of default (PD). This dataset records the credit repayment status of credit card customers
in Taiwan since 2005. Through the analysis of this data set, the analysis of credit card
customers’ default in mainland China can be used for reference.

All the above dataset can be collected from UCI repository [45]. The detail information
of the above credit datasets is shown in Table 1.

Table 1. Information of credit datasets.

Dataset Samples Variables Good/Bad

Australian 690 14 307/383
German 1000 24 700/300
Japanese 690 15 296/357
Taiwan 6000 23 3000/3000

3.2. Credit Scoring Benchmark Models

In this study, various credit scoring models are selected as baselines to evaluate the
effectiveness of AugBoost-ELM, which includes standard statistical credit scoring methods,
ML-based individual classifiers, ensemble approaches. LR and LDA are two representative
statistical-based credit scoring models, which have been popularized by researchers, banks,
and lending companies due to their simplicity and low implementation advantages.

DT is a tree-structure learning algorithm that realizes credit scoring based on node
splitting and tree growth, which have been widely used due to its good training efficiency
and interpretability. SVM is a nonlinear learning method that maps a lower-dimensional
feature space into a higher-dimensional feature space. KNN implement PD modeling
by searching k nearest neighbors as prediction results. NN is a popular approach that
is stacked by multiple neural layers to realized hierarchical end-to-end credit scoring.
Random forest is an ensemble method that is ensemble by multiple DTs and implements
parallel training to enhance the training efficiency of the ensemble framework. GBDT is
a boosting-type ensemble solution that improves the predictive performance by iterative
optimize the credit scoring error with multiple addictive regression DTs. XGBoost is a
more efficient GBDT that grows each DT in a level-wise way. Based on the advantage of
gradient descent, LightGBM further improves the training efficiency by leaf-wise growing
DTs and introducing exclusive feature bunding (EFB) strategy and gradient-based one-side
sampling (GOSS) skill.

3.3. Implementation Details of AugBoost-ELM

The parameters used in AugBoost-ELM can be seen in Table 2. In the implementation
of AugBoost-ELM, we use grid search optimization to fine-tune the hyper-parameters in
AugBoost-ELM. Since AugBoost-ELM is a variant of GBDT, instead of jointly optimize the
number of DTs in AugBoost-ELM and the learning rate, we fix the number of iterations
and focus on fine-tuning an appropriate learning rate by a bisection method, the optimal
learning rate is further determined by a grid search. Next, we focus on the optimization
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of hyper-parameters in each DT of AugBoost-ELM. Maximum depth is a parameter that
controls the complexity of each DT in AugBoost-ELM, well control of the maximum depth
of each DT can avoid the overfitting of AugBoost-ELM. Therefore, we grid search the
maximum depth of DTs in AugBoost-ELM from the initialized searching space [3, 11].
Further, we jointly optimize the parameter of minimal samples to split at each splitting
node and the parameter of minimal samples at each leaf node from the searching space
[20, 100]. The subsample is a hyper-parameter that performs an under-sample operation on
the original training set, we search this parameter from the initialized space [0.6, 1] with
fine-tuning stride 0.05. In AugBoost-ELM, ELM is performed as a feature augmentation
function for GBDT framework, therefore, we further fine-tune the hyper-parameters in
ELM to generate robust augmented features. In ELM, the most important parameter that
needs to be fine-tuned is the number of hidden nodes L, we search the optimal L from the
value set {64, 128, 256}. Since each ELM completes the feature augmentation process in an
NN-based framework, a standard feature normalization is first performed on credit data to
accelerate the training of the ELM.

Table 2. Parameters setting of AugBoost-ELM.

Hyperparameters Description Searching Space Stride

n_estimators The number of DTs 100 /

learning_rate Learning rate that control
the optimization step 0.001, 0.2 biSection

max_depth Maximum depth of
DT in each 3, 11 1

min_sample_split Minimal samples to split
at each splitting node 20, 100 5

min_samples_leaf Minimal samples at
each leaf node 20, 100 5

subsample Undersampling ratio on
the training set 0.6, 1 0.05

max_features Maximum candidate features
for node splitting

√
m biSection

L Number of hidden nodes of
ELM 64, 128, 256 /

nA
Period of performing feature
augmentation for boosting 5, 10 /

3.4. Finetuning Process of Credit Scoring Benchmarks

LR is a simple and linear algorithm that has been widely pursued in practical credit
scoring for banks and lending institutions. To get a good predictive performance of LR, we
adopt Newton’s method to iteratively minimize the empirical credit scoring error, L1 and
L2 penalty is further introduced to alleviate the overfitting problem, which is optimized
from the value set of {0.01, 0.1, 1, 10, 100}.

KNN is a classical machine learning method that achieves credit scoring by finding
the K nearest samples. Its final predictions are averaged from the states of the searched
k nearest samples. Therefore, we focus on finetuning this parameter from the interval
of [5, 20] with a search stride of 1.

To accelerate the finetuning process of SVM, in this study, radial basis function (RBF)
kernel-based SVM is employed in this work for credit scoring. The major hyper-parameters
that need to be finetuned in a RBF kernel-based SVM are γ and C, where γ regulates the
form of mapping space and C represents penalty coefficient, which quantifies the penalty
degree of misclassified samples.

We pre-fix the entire structure with two hidden layers to implement NN. We begin by
constructing a stable NN structure from the architectural set with 64, 128, and 256 hidden
nodes for hidden layers. Following that, we optimize the learning rate based on an
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initialized searching space of [0.0001, 0.5]. To finetune the learning rate, we first select an
acceptable learning rate interval using dichotomy and then identify the ideal learning rate
using grid search with 5-fold cross-validation from the preset learning rate interval. Each
hidden layer is activated by a ReLU function, and a sigmoid activation function is followed
to get the probabilistic predictions. Because the credit scoring process is modeled as a
binary classification process, the weight parameters of the NN are optimized using a binary
cross-entropy loss function. Additionally, dropout is employed to minimize overfitting,
and the optimal dropout rate is searched from the range of [0.1, 0.5] with an optimization
step of 0.1.

RF is an efficient approach that realizes credit scoring in a Bagging-ensemble way. In
the finetuning of a RF, we first searched the parameter that denotes the number of DTs to
ensemble a RF from the interval of [100, 500] with a search step 100. After determining
the overall ensemble framework of RF, we further finetune the parameters in each DT. To
encourage the diversity of the ensemble, RF allows each tree within it to grow a deep struc-
ture to accommodate high bias low variance predictions. we first finetune the maximum
depth of each DT in RF from the interval of {10, 15, ∗∗} with a finetune step of 1, where ∗∗
denotes a DT can grow its structure with an arbitrary depth. Next, the parameters of the
minimum samples to split at each splitting node and minimum samples at each leaf node
are determined by searching from the initial interval [50, 150] with an optimization step
of 10.

Different from RF, GBDT ensemble DTs in a boosting ensemble style. Therefore, we
first jointly optimize the number of DTs in a GBDT from the initial interval [50, 150] and
the learning rate optimized from the initial set {0.001, 0.01, 0.1, 0.5}. Next, we determine
the maximum depth of each DT by searching from the interval of [4, 10] with a search
step of 1. Further, the parameters of minimum samples to split at each splitting node and
the minimum samples at each leaf node are both determined from [50, 150] with a search
step of 10. To further enhance the predictive performance of credit scoring, subsample
skill is further incorporated, which is optimized from the set [0.65, 1] with an optimization
step 0.05.

Based on finetuning pattern of GBDT, in the implementation of GBDT, we introduce
L1 and L2 regularization into XGBoost framework to alleviate the overfitting issue, both of
which are optimized from the initial set {10−4, 10−3, 10−2, 10−1}. Moreover, to further get a
better credit scoring result, data-level subsample and feature-level subsample operations
are further introduced, which are finetuned from [0.65, 1].

Since AugBoost-ELM is an efficient supervised AugBoost variant, the optimiza-
tion process of AugBoost-based models can be referred to the implementation details
of AugBoost-ELM.

4. Experimental Results

To test the effectiveness of AugBoost-ELM, we first visualize the ROC curves of
credit scoring models for comparison. ROC curve, also known as receiver operating
characteristic curve, is a graphical measurement that reflects the sensitivity and specificity
of credit scoring models under the different thresholds of predictive probability. The x-axis
represents the value of false positive rate (FPR) and the y-axis is the value of true positive
rate (TPR), where TPR can be calculated as:

TPR =
TP

TP + FN
. (13)

FPR is defined as:
FPR =

FP
FP + TN

. (14)

In Equations (13) and (14), the prediction results can be classified into four groups: TP,
FP, TN, FN, which can be viewed from Table 3.
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Table 3. Confusion matrix of prediction results.

Label

Bad Good

Prediction
Bad TP FP

Good FN TN

Where TP is the number of accurate classified samples whose label is “bad”; FP counts
the number of samples that are labeled as “good” while the prediction results are “bad”;
FN calculates the number of samples whose label is “bad” and predicted as “good”; TN
represents the number of “good” applicants that are correctly classified. The larger the area
under the ROC curve implies the better performance a credit scoring algorithm is.

To testify the effectiveness of the feature enhancement mechanism for boosting frame-
work, some baseline models are first selected for preliminary study. These models include
statistical-based algorithms such as LR and LDA, ML-based individual classifiers such as
DT, KNN, SVM, and NN, bagging-type ensemble method RF and boosting-class ensemble
approach GBDT.

Figure 2 shows the ROC curves of various credit scoring models on the credit datasets.
Figure 2a represents the ROC curves of credit scoring models for the Australian dataset;
Figure 2b is the ROC curves of credit scoring models for the German dataset; Figure 2c
denotes the ROC curves of credit scoring models for the Japanese dataset; Figure 2d
illustrates the ROC curves of credit scoring models for the Taiwan dataset. All the ROC
curves are an average based on 50 times repeated 10-fold cross-validation.
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Figure 2. ROCs comparison of benchmark credit scoring models for credit datasets: RG represents
the curve of random guess. (a) Australian, (b) German, (c) Japanese, (d) Taiwan.

As is shown in Figure 2a, on the Australian dataset, LR and LDA, KNN gets the
smallest area under the ROC curve while AugBoost-ELM gets the largest area under the
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ROC curve, which demonstrates that AugBoost-ELM is the best algorithm to predict the
PD for Australian compared with other baseline models. Compared with KNN, though
DT improves the predictive performance, its ROC curve is worse than those of other credit
scoring models, indicating that the single DT is not a good solution for accurate credit
scoring. Compared with ML-based credit scoring models, statistical-based algorithms LR
and LDA get the larger areas under ROC curves, providing evidence that why LR and LDA
are popularized by industrial application. Compared with ML-based individual classifiers,
the areas under ROC curves of RF and GBDT are significantly larger, which suggests that
ensemble multiple weak learners into a stronger one is a good strategy to improve the
performance of credit scoring.

As can be viewed from Figure 2c, on the Japanese dataset, the largest area under the
ROC curve of AugBoost-ELM implies AugBoost-ELM is the best algorithm for the credit
scoring of the Japanese dataset. In addition, SVM gets the smallest area under the ROC
curve. Though the ROC curves of other ML-based credit scoring algorithms such as DT,
KNN, NN show better predictive ability than SVM, their performance on predicting the
PD is worse than that of ensemble learning approaches.

The same as the results on the previous credit datasets, ensemble credit scoring
algorithms get a larger ROC curve area compared with other credit scoring models further
proves ensemble learning approaches are the good choice to improve the performance of
credit scoring. On the Taiwan dataset, as can be observed from Figure 2d, the ROC curve of
AugBoost-ELM is close to that of GBDT. To reveal the concrete performance of credit scoring
models, we further investigate the quantitative evaluation results of various credit scoring
models on the credit datasets. In this study, we selected six metrics to comprehensively
compare the performance of the credit scoring model, which include accuracy score, AUC
score, precision score, recall score, F1 score, Brier loss.

Accuracy score computes the ratio of samples that are correctly classified, which is
defined as:

ACC =
TP + TN

TP + TN + FP + FN
. (15)

AUC score calculates the area under the ROC curve and measures the overall predic-
tive performance of credit scoring models.

The precision score represents the ratio of samples whose predicted result is “bad”
while its label is “bad”, which can be calculated as:

prec =
TP

TP + FP
. (16)

Recall score measures how many “bad” applicants are correctly predicted, which can
be defined as:

recall =
TP

TP + FN
. (17)

F1 is a comprehensive metric of precision score and recall score, which can be calcu-
lated as:

F1 =
2× precision× recall

precision + recall
. (18)

Brier loss score describes the average error between the predicted result and the label,
which can be calculated as:

BS =
1
N

N

∑
i=1

(pi − yi)
2, (19)

where pi represents the predicted probability of the i-th sample, yi is the label of the i-th
sample, and N is the number of samples.

Table 4 presents the performance comparison of credit scoring models for the Aus-
tralian dataset. As can be seen from Table 4, AugBoost-ELM gets the best AUC, which
is consistent with the ROC curves in Figure 2a, demonstrating AugBoost-ELM is a good
choice to recognize good and bad applicants. On the Australian dataset, LR performs well,
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it achieves the best accuracy score. Therefore, if we are aiming at finding an efficient and
effective credit scoring model for the Australian dataset, LR is the best choice. KNN gets
the best precision score and worst recall score, leading to the comprehensive performance
on the AUC score, F1 score, and BS poor. Moreover, compared with ML-based individual
classifiers, RF and GBDT get better AUC score, F1 score, and BS, indicating the effectiveness
of ensemble strategy. Compared with GBDT, though AugBoost-ELM gets better AUC score
and precision score, its poor recall score results in a small F1 and large BS. In other words,
if we focus on the discrimination of good/bad applicants, LR is the best choice; if we are
concerned more about the prediction of the PD, AugBoost-ELM is a better choice.

Table 4. Performance comparison of credit scoring models for the Australian dataset.

Algorithm Accuracy AUC Precision Recall F1 BS

LR 0.8649 0.9298 0.8309 0.8741 0.852 0.0992
LDA 0.8594 0.9269 0.7961 0.9196 0.8534 0.1089
DT 0.8437 0.914 0.827 0.8202 0.8236 0.1113

KNN 0.8494 0.9134 0.864 0.7851 0.8227 0.1112
SVM 0.8626 0.9262 0.8497 0.8395 0.8446 0.1008
NN 0.8502 0.9148 0.8328 0.8298 0.8313 0.1186
RF 0.8645 0.9338 0.8575 0.8341 0.8457 0.1032

GBDT 0.8637 0.9392 0.8426 0.853 0.8478 0.0956
AugBoost-ELM 0.8635 0.9422 0.8485 0.8439 0.8462 0.0993

Table 5 shows the performance comparison of credit scoring models for the German
dataset. As can be seen from Table 5, AugBoost-ELM gets the optimal AUC score, F1
score, and BS score, revealing that ELM-based supervised feature augmentation is able to
enhance the discrimination ability of good/bad applicants. Furthermore, Table 5 further
demonstrates statistical-based credit scoring models are the alternative solution to achieve
accurate credit scoring compared with ML-based individual classifiers. Furthermore,
as is shown in Table 5, in the comparison among ML-based individual classifiers, NN
outperforms other ML-based credit scoring algorithms such as DT, KNN, and SVM. This is
because NN is a robust algorithm that can learn nonlinear relationships from complex credit
datasets. Compared with the bagging-based ensemble method RF, the superior performance
of GBDT shows that boosting ensemble strategy is more suitable for the modeling of PD.
Based on the good advantage of boosting framework, AugBoost-ELM, which is stage-wisely
enhanced by the ELM-based supervised feature augmentation mechanism for the boosting
framework, gets better predictive performance.

Table 5. Performance comparison of credit scoring models for the German dataset.

Algorithm Accuracy AUC Precision Recall F1 BS

LR 0.7601 0.7808 0.7942 0.8872 0.8381 0.1646
LDA 0.7585 0.7795 0.7926 0.8871 0.8372 0.1653
DT 0.7232 0.7096 0.7791 0.8439 0.8102 0.1928

KNN 0.728 0.7384 0.7341 0.9586 0.8315 0.1803
SVM 0.7065 0.7112 0.7966 0.7798 0.7881 0.1859
NN 0.7659 0.7799 0.8067 0.8753 0.8396 0.165
RF 0.747 0.7733 0.7571 0.9407 0.839 0.17

GBDT 0.7586 0.7786 0.788 0.8962 0.8386 0.1655
AugBoost-ELM 0.7617 0.7861 0.7775 0.9245 0.8446 0.1637

Table 6 is the performance comparison of credit scoring models for the Japanese dataset.
As is shown in Table 6, AugBoost-ELM achieves optimal accuracy score, AUC score, F1
score, and BS while LDA gets the best precision score and GBDT gets the optimal recall
score. LDA gets a high precision score and low recall score, suggesting that LDA is a good
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method to discriminate the good applicant despite the ability to predict the bad applicants
is poor. Moreover, compared with statistical-based algorithms and ML-based individual
classifiers, the leading performance of RF, GBDT, and AugBoost-ELM further shows that
ensemble strategy is practicable for the performance improvement for credit scoring.

Table 6. Performance comparison of credit scoring models for the Japanese dataset.

Algorithm Accuracy AUC Precision Recall F1 BS

LR 0.8549 0.9156 0.9175 0.8116 0.8613 0.103
LDA 0.8606 0.9127 0.9402 0.7997 0.8643 0.1136
DT 0.849 0.9134 0.8698 0.8561 0.8629 0.1123

KNN 0.8487 0.9111 0.8862 0.8345 0.8596 0.1107
SVM 0.8566 0.8682 0.9312 0.8008 0.8611 0.1175
NN 0.8487 0.9177 0.8895 0.831 0.8593 0.1048
RF 0.8548 0.9211 0.9293 0.7993 0.8594 0.1509

GBDT 0.8642 0.9362 0.8898 0.8625 0.8759 0.096
AugBoost-ELM 0.8687 0.9399 0.901 0.8582 0.8791 0.0942

Table 7 provides the performance comparison of credit scoring models for the Taiwan
dataset. As can be seen from Table 7, AugBoost-ELM realizes optimal scores on the metrics
of accuracy, AUC, recall, F1, and BS, the effectiveness of AugBoost-ELM is fully illustrated.
The improvement of recall score of AugBoost-ELM specifies the results that AugBoost-
ELM improves the performance of credit scoring by reducing the misclassification of
“bad” applicants. Moreover, as can be seen from Table 7, ML-based individual classifiers
outperform statistical-based algorithms on the Taiwan dataset. Though RF gets a high
precision score, its recall score poor ability on discriminating “bad” applicants results in the
poor performance of credit scoring for the Taiwan dataset. Besides, the leading performance
of AugBoost-ELM compared with GBDT further demonstrates ELM-based supervised
features augmentation can be a candidate for the improvement of boosting framework.

Table 7. Performance comparison of credit scoring models for the Taiwan dataset.

Algorithm Accuracy AUC Precision Recall F1 BS

LR 0.6486 0.6999 0.6612 0.6099 0.6345 0.2179
LDA 0.6512 0.6985 0.6676 0.6023 0.6333 0.2183
KNN 0.6676 0.7169 0.7164 0.555 0.6254 0.2135
SVM 0.6731 0.7058 0.7561 0.5114 0.6101 0.214
NN 0.6806 0.7377 0.7131 0.6044 0.6543 0.2061
DT 0.6666 0.7199 0.6851 0.6167 0.6491 0.2152
RF 0.6949 0.7502 0.7298 0.6192 0.67 0.2011

GBDT 0.6948 0.7496 0.7297 0.6189 0.6698 0.2009
AugBoost-ELM 0.6963 0.7516 0.7322 0.6194 0.6711 0.2005

To further verify the effectiveness of AugBoost-ELM, we further select five advanced
ensemble credit scoring models for comparison, which includes XGBoost, LightGBM,
AugBoost-RP, AugBoost-PCA, AugBoost-NN while AugBoost-RP is step-wisely augmented
by random projection method, AugBoost-PCA is step-wisely enhanced by principal com-
ponent analysis (PCA), and AugBoost-NN is enhanced by NN algorithm. Figure 3 shows
the testing AUC curves of advanced ensemble credit scoring algorithms. Figure 3a is
the testing curves of advanced ensemble methods for the Australian dataset; Figure 3b
represents the testing curves of advanced ensemble algorithms for the German dataset;
Figure 3c illustrates the testing curves of advanced ensemble approaches for the Japanese
dataset; Figure 3d provides the testing curves of advanced ensemble methods for the
Taiwan dataset.
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Figure 3. Comparison of testing AUC for the credit datasets. (a) Australian, (b) German, (c) Japanese,
(d) Taiwan.

As can be seen from Figure 3a, the converged testing AUC curve of AugBoost-ELM
is close to that of AugBoost-NN, both of which are higher than the converged testing
AUC of unsupervised AugBoost-based models such as AugBoost-RP and AugBoost-PCA.
Moreover, as can be seen from Figure 3a, AugBoost-based models are superior to advanced
ensemble approaches such as XGBoost and LightGBM. As can be observed from Figure 3b,
AugBoost-ELM gets the highest converged testing AUC than other advanced ensemble
approaches. Compared with unsupervised AugBoost-based models, XGBoost and Light-
GBM achieve better testing AUC while their converged testing AUC is worse than that of
supervised AugBoost-based models; Compared with AugBoost-NN, AugBoost-ELM gets a
slightly higher testing AUC than AugBoost-NN, demonstrating that AugBoost-ELM can
be a good alternative to AugBoost-NN. As can be viewed from Figure 3c, similar to the
results in Figure 3b, the testing AUC curve of AugBoost-ELM is slightly higher than that of
another supervised enhanced GBDT model AugBoost-NN; AugBoost-based models get
higher converged testing curves of advanced ensemble approaches. The same conclusion
can be drawn from Figure 3d for the Taiwan dataset.

Table 8 shows the performance comparison of advanced ensemble models for credit
datasets. As can be seen from Table 8, on the Australian dataset, AugBoost-NN gets the
best values of the metrics of AUC, recall, and F1 while AugBoost-PCA gets the optimal
accuracy score and precision score. Compared with advanced ensemble approaches such
as XGBoost, LightGBM, AugBoost-RP, and AugBoost-PCA, AugBoost-ELM achieves com-
parable performance on the AUC score, F1 score, demonstrating that AugBoost-ELM can
be an alternative supervised AugBoost model to AugBoost-NN. On the German dataset,
Japanese dataset, and Taiwan dataset, AugBoost-ELM get the best values of accuracy score,
AUC score, recall score, F1 score, and BS, demonstrating that AugBoost-ELM is a com-
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parable approach to other advanced ensemble approaches such as XGBoost, LightGBM,
AugBoost-RP, AugBoost-PCA, and AugBoost-NN.

Table 8. Performance comparison of advanced ensemble models for credit datasets.

Dataset Algorithm Accuracy AUC Precision Recall F1 BS

Australian

XGBoost 0.8633 0.9394 0.8449 0.8487 0.8468 0.0992
LightGBM 0.8624 0.9371 0.8476 0.8422 0.8449 0.0942

AugBoost-RP 0.8633 0.9416 0.8449 0.8487 0.8468 0.0991
AugBoost-PCA 0.8681 0.9415 0.8533 0.8497 0.8515 0.0951
AugBoost-NN 0.8645 0.9424 0.8435 0.8539 0.8487 0.0984

AugBoost-ELM 0.8635 0.9422 0.8485 0.8439 0.8462 0.0993

German

XGBoost 0.7582 0.7811 0.7757 0.9208 0.842 0.1652
LightGBM 0.7615 0.7776 0.7887 0.9007 0.841 0.1657

AugBoost-RP 0.7519 0.7707 0.7862 0.8867 0.8335 0.1694
AugBoost-PCA 0.7605 0.7735 0.7956 0.8852 0.838 0.1702
AugBoost-NN 0.7604 0.7843 0.7766 0.9237 0.8438 0.1644

AugBoost-ELM 0.7617 0.7861 0.7775 0.9245 0.8446 0.1637

Japanese

XGBoost 0.8678 0.9362 0.8959 0.8625 0.8789 0.095
LightGBM 0.8634 0.9349 0.8829 0.8696 0.8762 0.0957

AugBoost-RP 0.8669 0.9398 0.8964 0.8599 0.8778 0.095
AugBoost-PCA 0.8676 0.9388 0.8957 0.8622 0.8786 0.0949
AugBoost-NN 0.8676 0.9395 0.9004 0.8567 0.878 0.0944

AugBoost-ELM 0.8687 0.9399 0.901 0.8582 0.8791 0.0942

Taiwan

XGBoost 0.6945 0.7504 0.7301 0.6175 0.6691 0.2006
LightGBM 0.6954 0.7494 0.7292 0.6218 0.6712 0.201

AugBoost-RP 0.6941 0.7508 0.7295 0.617 0.6686 0.2007
AugBoost-PCA 0.6943 0.7508 0.7297 0.6174 0.6689 0.2006
AugBoost-NN 0.6933 0.7514 0.7285 0.616 0.6677 0.2005

AugBoost-ELM 0.6963 0.7516 0.7322 0.6194 0.6711 0.2005

To analyze the overall performance of credit scoring, we select four comprehensive
evaluation metrics, which include accuracy score, AUC score, F1 score, and BS for the
further comparison. Figure 4 shows the radar maps of advanced ensemble models for
the credit datasets. Figure 4a is the comparison result of ensemble approaches for the
Australian dataset; Figure 4b represents the performance radar map of advanced ensemble
approaches for the German dataset; Figure 4c illustrates the performance radar map of
advanced ensemble methods for the Japanese dataset; Figure 4a provides the performance
radar map of advanced ensemble algorithms for the Taiwan dataset. The larger area that
one radar map covers, the better overall performance a credit scoring model implies.

As can be seen from Figure 4a, on the Australian dataset, AugBoost-ELM outperforms
XGBoost and LightGBM while its radar map area is smaller than that of the other three
AugBoost-based models including AugBoost-RP, AugBoost-PCA, and AugBoost-NN. As
is shown in Figure 4b–d, on the German dataset, Japanese dataset, and Taiwan dataset,
AugBoost-ELM gets the largest radar maps area than other advanced boosting-based
ensemble algorithms, not only providing the evidence that the supervised ELM-based
feature augmentation can be an alternative to NN-based feature augmentation for boosting
framework but also giving the illustration that supervised feature augmentation skill is
superior to unsupervised feature augmentation for GBDT.
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Figure 4. Comparison of testing AUC for the credit datasets. (a) Australian, (b) German, (c) Japanese,
(d) Taiwan.

Since each credit scoring metric has its advantages and limitations, to give a view of the
statistical ranks for credit scoring models, we perform a significance test procedure. Because
parametric significance test method computers statistic value based on the assumption
that credit scoring datasets follow a normal distribution, we adopt a simple and powerful
non-parametric way for significance test. In this study, Friedman test, a rank-based non-
parametric significance test, is introduced to investigate the statistical performance of credit
scoring algorithms. The Friedman statistic value is calculated as:

χ2 =
12D

K(K + 1)

[
K

∑
k=1

AvR2
k −

K(K + 1)2

4

]
, (20)

where K denotes the number of classifiers, D represents the number of datasets. AvRk =
1
D ∑D

d=1 rk,d is the average rank of k-th classifier, and rk,d = 1
4 (rk,d,ACC + rk,d,AUC + rk,d,F1 +

rk,d,BS), rk,d,ACC, rk,d,AUC, rk,d,F1, rk,d,BS are the ranks of k-th classifier on d-th dataset that
are computed based on accuracy score, AUC, F1, and BS, respectively. By calculating
the Friedman statistic value, the issue of whether there is a significant difference among
credit scoring models is detected. Specifically, when χ is larger than a critical value at a
significance level, the null hypothesis (there is no significant difference between credit
scoring models) is rejected, and a post hoc test, Nemenyi test, is further performed for
pair-wise comparison. The critical difference (CD) can be defined as:

CDα = qα

√
K(K + 1)

12D
, (21)

where CDα is the critical difference at significance level α, qα is the critical value at signifi-
cance level α, which is computed from a studentized range.
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To investigate the statistical difference among credit scoring models, we first compute
χF = 6.81 according to Equation (20), rejecting the null hypothesis at significance level
0.01. Next, we perform Nemenyi test for pair-wise comparison. q0.01 = 3.82, q0.05 = 3.35,
q0.1 = 3.12 are first calculated to further computed CDs for different significance levels.
According to Equation (21), we can get CD0.01 = 7.99, CD0.05 = 7.01, CD0.1 = 6.52.

Figure 5 shows the average ranks of credit scoring models for the Nemenyi test. As
can be seen from Figure 5, if we consider AugBoost-ELM as the comparison baseline, SVM,
AdaBoost, DT, and KNN are statistically inferior to AugBoost at significance level 0.01;
moreover, AugBoost-ELM outperforms LDA at the significance level 0.05 as well as it is
superior to NN at the significance level 0.1. Besides, as illustrated in Figure 5, AugBoost-
ELM, AugBoost-NN, and AugBoost-PCA rank in top 3, demonstrating the effectiveness
of the augmentation mechanism for GBDT framework. The lower ranks of AugBoost-
ELM and AugBoost-NN compared with AugBoost-PCA and AugBoost-RP further verify
supervised augmentation is a better augmentation compared with unsupervised feature
augmentation for GBDT.

Figure 5. Average ranks of credit scoring models for the Nemenyi test: the black solid line is
CD0.01 + lowest rank, the dotted line denotes the CD0.05 + lowest rank, and the point line represents
CD0.1 + lowest rank.

In this study, ELM accomplishes the supervised step-wise feature augmentation pro-
cess for GBDT, which avoids the iterative error back-propagation process of NN. Compared
with NN-based feature augmentation for GBDT, ELM-based supervised feature augmenta-
tion accelerates the training process of the GBDT-based framework and avoids falling into
local minima, leading to the robust generation of augmented features. Based on the above
analysis, we further investigate the training efficiency by comparing the training cost of
AugBoost-based models on the four credit datasets. Table 9 shows the training cost com-
parison of AugBoost-based models on the four credit datasets. As can be seen from Table 9,
unsupervised AugBoost-based models such as AugBoost-RP and AugBoost-PCA get faster
training speed. However, combined with the performance comparison analyzed above,
supervised AugBoost models are the better solution for accurate credit scoring. Besides,
as can be seen from the efficiency comparison among AugBoost-NN and AugBoost-ELM,
the training efficiency of AugBoost-ELM has been greatly improved. Compared with
AugBoost-NN, AugBoost-ELM reduces the training time by 86.90%, 85.24%, 88.14%, and
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98.58% for the Australian dataset, German dataset, Japan dataset, and Taiwan dataset, re-
spectively. Even in the incorporation with 1080Ti GPU, compared with AugBoost-NN, the
efficiency improvement of AugBoost-ELM on large-scale datasets such as Taiwan is more
significant than that on the small-scale datasets such as Australian, German, and Japan.

Table 9. Training cost of various AugBoost-based models on the four credit datasets: all the training
costs are averaged over 50 times 10-fold cross-validation, the unit of training cost is second, all the
results are run on the experimental environment of CPU Intel 9700K with RAM 32 GB and GPU
1080Ti; our implementation is based on python 3.5, gradient boosting framework are realized based
on Scikit-learn 0.19.1, AugBoost-NN (GPU) is accelerated by a 1080Ti GPU, which is implemented
and tested in Keras with Tensorflow backend.

Algorithm Australian German Japanese Taiwan

AugBoost-RP 0.32 1.11 0.45 3.61
AugBoost-PCA 1.05 1.33 0.52 3.86
AugBoost-NN 245.21 280.78 300.89 3673.68

AugBoost-NN (GPU) 270.34 260.12 254.33 388.49
AugBoost-ELM 32.12 41.45 35.66 51.94

5. Conclusions

In this study, a supervised NN-based augmented GBDT-AugBoost-ELM is proposed
to improve the performance of credit scoring. AugBoost-ELM is a variant of GBDT, which
is step-wisely enhanced by the extreme learning machine to enhance the diversity of DTs
in GBDT. ELM-based feature augmentation process not only provides robust augmented
feature generation but also improves the efficiency of the feature augmentation process
for GBDT compared with NN-based feature augmentation. The experimental results
on four credit datasets show that AugBoost-ELM is an effective GBDT to improve the
performance of credit scoring. Compared with NN-based feature supervised feature
augmentation, ELM-based feature augmentation is not only beneficial to the performance
of the boosting framework but also provides a way to accelerate the training process of
supervised augmented GBDT.

Though AugBoost-ELM improves the performance of credit scoring and provides an
efficient way to augment features for the GBDT framework, there are some issues that
need to be further tackled: (1) in this study, the NN architecture and ELM framework are
optimized via grid search method, future work will focus on introducing some advanced
hyper-parameters optimization algorithms such as Bayesian optimization method [46,47],
and evolutionary optimization strategies [48]. (2) The research of ML-based credit scoring
is gradually marching towards the direction of large-scale credit scoring, in future work,
some larger-scale datasets will be collected to further testify the effectiveness of AugBoost-
ELM. (3) Classical GBDT is an inefficient training framework compared with XGBoost and
LightGBM. Consequently, some efficient supervised and unsupervised feature augmenta-
tion methods are considered into the XGBoost and LightGBM [49] to further enhance the
performance and improve the efficiency of credit scoring.
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