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Abstract: With the increasing micro-scale manufacturing industry, the micro-scale spherical and
cylindrical surface modeling has become an important factor in the manufacturing process. Thus, the
micro-scale manufacturing processes require efficient micro-scale spherical and cylindrical models
to achieve accurate assembly. Therefore, it is necessary to implement models to represent micro-
scale spherical and cylindrical surfaces. This study addresses metaheuristic algorithms based on
micro laser line projection to perform micro-scale spherical and cylindrical surface modeling. In this
technique, the micro-scale surface is recovered by an optical microscope system, which computes the
surface coordinates via micro laser line projection. From the surface coordinates, a genetic algorithm
determines the parameters of the mathematical models to represent the spherical and cylindrical
surfaces. The genetic algorithm performs exploration and exploitation in the search space to optimize
the models’ mathematical parameters. The search space is constructed via surface data to provide the
optimal parameters, which determine the spherical and cylindrical surface models. The proposed
technique improves the fitting accuracy of the micro-scale spherical and cylindrical surface modeling
performed via optical microscope systems. This contribution is elucidated by a discussion about the
model fitting between the genetic algorithms based on micro laser line projection and the optical
microscope systems.

Keywords: micro-scale spherical and cylindrical surface modeling; genetic algorithms; micro laser
line projection; optical microscope vision system

1. Introduction

Nowadays, the micro-scale spherical and cylindrical surface modeling plays an im-
portant role in inspecting micro-scale sphericity and cylindricity [1,2]. In the micro-scale
manufacturing industry, object machining, surface roughness, drilling, and object mea-
surements are determined via spherical and cylindrical surface models and robotic vision
systems [3–5]. To achieve these manufacturing processes, mathematical models have been
implemented to represent micro-scale spherical and cylindrical surfaces. For instance, the
spherical surface modeling has been implemented in geomatics to determine rock surface
sphericity [6,7], in optics to estimate lens sphericity [8,9], in object machining to determine
surface sphericity [10,11], in pharmaceutics to determine proppants sphericity [12,13], in
object prototyping to determine assemble sphericity [14,15], and so on. Moreover, the cylin-
drical surface modeling has been implemented in surface machining to inspect cylindrical
surface [16,17], in surface milling to estimate milling cylindricity [18], and so on. Based on
these statements, surface models have been constructed via surface data and mathematical
equations for representing micro-scale spherical and cylindrical surfaces [19,20]. Currently,
micro-scale spherical and cylindrical surface models are carried out via surface informa-
tion, which is retrieved by means of optical microscope imaging systems [21,22]. These
microscope systems construct the surface models by employing surface data obtained via
gray-level image processing and the least squares method [23,24]. In addition, the least
squares optimization is employed by the vision systems’ models to determine surface
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data [25]. However, sometimes the least squared method does not provide the most accu-
rate model fitting [26]. Therefore, artificial intelligence algorithms have been implemented
to accurately construct surface models. For instance, an algorithm with an adaptive fuzzy
logic controller has been implemented to construct spherical surface models [27]. This algo-
rithm minimizes an error function by employing surface data to obtain the spherical surface
model parameters. Furthermore, a harmony search algorithm has been implemented to
construct cylindrical surface models [28]. This algorithm implements a music process
by employing surface data to optimize an error function to obtain the cylindrical surface
model parameters. Usually, the spherical and cylindrical surface modeling is carried out
by an optical microscope imaging system, which retrieves the surface shape via gray-level
image processing. For instance, an optical microscope system based on machine vision
determines micro-scale spherical surface via gray-level image processing [29]. In the same
way, an optical microscope imaging system computes the micro-scale cylindrical surface by
means of a frequency transform via a gray-level image [30]. The above-mentioned optical
microscope systems determine the micro-scale surface topography via a gray-level profile.
However, the gray-level profile does not depict accurately the surface profile. It is because
the gray-level depends on the light source, surface reflectance, and the viewing angle. This
means that the gray-level profile does not reproduce the surface topography. Therefore, the
spherical and cylindrical surface models do not fit to the surface with great accuracy. This
leads to a decrease in the micro-scale surface modeling accuracy. Based on these statements,
it is established that the micro-scale surface modeling performed by the optical microscope
imaging systems still represents a difficult task. To improve the micro-scale spherical and
cylindrical surface modeling accuracy, the surface models should be generated by means of
the surface topography.

The proposed micro-scale spherical and cylindrical surface modeling is carried out
by a metaheuristic genetic algorithm based on micro laser line projection, which depicts
accurately the surface topography. The metaheuristic algorithms include algorithms such
as genetic algorithms, particle swarm optimization, ant colony optimization, and simulated
annealing [31]. Metaheuristic algorithms such as particle swarm optimization, ant colony
optimization, and simulated annealing have been implemented to construct mathematical
models to represent the free-form surface [32,33]. For instance, the particle swarm makes
the optimization via the position and velocity of particles [34]. Where, the objective function
is provided by an inertia equation and the population is determined by a particle velocity
equation. The ant colony optimization chooses paths marked by a strong pheromone
concentration to determine the surface model parameters [35]. The simulated annealing
makes a random search, which decreases and increases the objective function to determine
the surface model [36], where the tentative solution is generated by a small perturbation.
Moreover, the metaheuristic algorithms construct models via multi-objective optimization
in domains such as online learning, scheduling, transportation, medicine, data classifica-
tion, and so on. For instance, the online learning optimizes many objective functions to
determine the mathematical models [37]. In addition, the multi-objective optimization
via evolutionary algorithms is implemented to determine the parameters of mathematical
models [38]. On the other hand, the scheduling domain employs structures of different
metaheuristic algorithms to determine the parameters of mathematical models [39]. Addi-
tionally, the transportation domain employs several metaheuristic algorithms to determine
routing of mathematical models [40]. Additionally, the evacuation domain employs several
metaheuristic algorithms to optimize the multi-objective functions to determine routing
of mathematical models [41]. Furthermore, the metaheuristic algorithms employ data
classification to determine diagnoses in medicine [42]. The above-mentioned algorithms
optimize parameters for mathematical models, which are not defined by a specific equa-
tion. For instance, the particle swarm, ant colony, and simulated annealing construct
free-form surface models, which are not defined by a specific equation. Furthermore, the
metaheuristic algorithms based on multi-objective optimization determine mathematical
models, which are not defined by a specific equation. This leads to implementing complex
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algorithms due to the missing of a reference equation to optimize the model parameters.
Moreover, these algorithms begin the optimization with a random solution, which leads
to computing a huge iterations number. Furthermore, the objective function is deduced
by an equation, which includes additional parameters to the surface model. Furthermore,
the spherical and cylindrical surfaces can be represented by having a specific equation.
In this way, a genetic algorithm provides a suitable structure to optimize the spherical
and cylindrical surface models. For instance, the genetic algorithm is allowed to define an
objective function by means of the equations that represent the spherical and cylindrical
surface. Therefore, additional parameters are not required. In addition, it is possible to
begin the optimization by employing the best candidates, which provides a solution near
the optimal solution. The best candidates are deduced from the search space via spherical
and cylindrical equations and known surface data. Moreover, exploration and exploitation
are carried out to find the optimal solution inside or outside of the best candidates. Thus,
all research space can be analyzed. Based on these statements, the metaheuristic genetic
algorithm is chosen to construct the spherical and cylindrical surface models. The genetic
algorithm viability to construct micro-scale spherical and cylindrical surface models is
elucidated via quality gap, solution quality, suitable structure, and experimental results.
Thus, the genetic algorithm determines the spherical and cylindrical modeling by employ-
ing surface coordinates, which are computed via micro laser line projection. To do so,
the metaheuristic algorithm determines the search space from the surface topography to
compute the surface model parameters. In this procedure, the genetic algorithm determines
the best candidates for the initial population via analytic equations and surface data. Then,
the algorithm performs an optimization via exploration and exploitation to find the optimal
surface model parameters. The genetic algorithm based on micro laser line projection
performs micro-scale spherical and cylindrical surface modeling for rectangular surfaces.
This micro-scale surface modeling is carried out by means of an optical microscope vision
system on which a CCD camera and a 42 µm laser line are attached. In this way, the
micro laser line is projected on the surface and the CCD camera captures the micro laser
line, whose reflection depicts the surface topography. The surface dimension is computed
via perspective model and the laser line coordinates. Thus, the micro-scale spherical and
cylindrical surface modeling is performed via surface topography, which is not employed
by the traditional optical microscope imaging systems. Therefore, the micro-scale surface
modeling via genetic algorithms based on micro laser line projection improves the fitting ac-
curacy of the micro-scale spherical and cylindrical surface modeling performed via optical
microscope systems. This statement is corroborated by a discussion based on model fitting
of the micro-scale spherical and cylindrical surface modeling. Thus, the contribution of the
proposed technique is elucidated via micro-scale surface modeling accuracy. The accuracy
is determined via the error between the surface model provided by the genetic algorithm
and the surface data. The paper is organized as follows: the algorithm to perform the
micro-scale spherical surface modeling is described in Section 2.1, the algorithm to perform
the micro-scale cylindrical surface modeling is described in Section 2.2, the micro-scale
surface recovering via microscope vision system based on micro laser line projection is
described in Section 2.3, the results of the micro-scale spherical and cylindrical surface
modeling are pointed out in Section 3, and a discussion about the model fitting is described
in Section 4.

2. Materials and Methods
2.1. Micro-Scale Spherical Surface Modeling via Genetic Algorithm

The micro-scale spherical surface modeling is carried out by a genetic algorithm via
surface coordinates, which are retrieved via micro laser line projection from a rectangular
spherical surface. Typically, a metaheuristic algorithm provides an optimization in a
moderated time [43]. Additionally, the metaheuristic algorithm performs an exploration
and exploitation to find the optimal solution [44]. Based on these statements, the micro-scale
spherical surface modeling is performed by a genetic algorithm by means of the surface
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coordinates provided by a micro laser line image. To do so, a spherical surface model
is constructed by means of surface coordinates, which are retrieved from a rectangular
spherical surface. The surface coordinates are shown in Figure 1. These surface coordinates
are represented by (xi,j, yi,j, zi,j), where the sub-indices (i, j) are defined in the x-axis and
y-axis, respectively. Thus, the rectangular spherical surface provides the surface points (z0,0,
z1,0, . . . , zn,0, zn,1, . . . , zn,m) in the z-axis, where, the sub-indices (n, m) depict the number
of surface points in the x-axis and y-axis, respectively.
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The spherical origin coordinates are represented by (h, k, l) and the ratio is represented
by R. Furthermore, the spherical surface provides the ratio ri in the x-axis and the ratioRj
in the y-axis. The coordinates (k, l) and (h, l) represent the origin coordinates of the ratios ri
andRj, respectively. Based on these coordinates, the spherical surface model is defined via
ratio R by means of the next expression

(xi,j − h)2 + (yi,j − k)2 + (zi,j − l)2 = R2 (1)

Additionally, the circumference equation is defined via ratio ri andRj by the following
expressions

(yi,j − k)2 + (zi,j − l)2 = r2
i (2)

(xi,j − h)2 + (zi,j − l)2 = R2
j (3)

From these equations, the spherical surface model is deduced by computing the origin
coordinates (h, k, l) and the ratio R via genetic algorithm. To do so, a genetic algorithm
is implemented via Equations (1)–(3) and the surface data (xi,j, yi,j, zi,j). Thus, the genetic
algorithm determines the spherical parameters in five steps, which are described as follows.

The first step is to determine the initial population. Typically, the metaheuristic algo-
rithms determine the initial population in random form. In addition, the initial population
can be determined by means of the best candidates. This leads to a speed out of the conver-
gence [45]. The best candidates can be obtained via random methods or by sampling the
surface model. Therefore, the genetic algorithm determines the initial population by sam-
pling the surface model to obtain the best candidates. The sampling is carried out by solving
Equations (2) and (3) to obtain the best candidates. Based on these statements, Equations (2)
and (3) are solved by employing the surface coordinates (xi,j, yi,j, zi,j), (xi+δ,j, yi+δ,j, zi+δ,j),
(xi,j+∆, yi,j+∆, zi,j+∆), and (xi+δ,j+∆, yi+δ,j+∆, zi+δ,j+∆). In this case, the sub-index ∆ indicates
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an increment such as ∆ = m/2 and the sub-index δ indicates an increment such as δ = n/2.
Thus, the initial parameters (h, k, l) are determined by means of the next expressions

k =
Z1[Y4 +Z4]−Z3[Y2 +Z2]

2[Y3Z1 −Y1Z3]
(4)

l =
Y1[Y4 +Z4]−Y3[Y2 +Z2]

2[Z3Y1 −Z1Y3]
(5)

h =
Z5[X8 +Z8]−Z7[X6 +Z6]

2[X7Z5 −X5Z7]
(6)

where, Z1 = (zi,j+∆) − (zi,j), Z2 = (zi,j+∆)2 − (zi,j)2, Z3 = (zi+δ,j+∆) − (zi+δ,j),
Z4 = (zi+δ,j+∆)2 − (zi+δ,j)2, Z5 = (zi+δ,j)− (zi,j), Z6 = (zi+δ,j)2 − (zi,j)2, Z7 = (zi+δ ,j+∆)− (zi,j+∆),
Z8 = (zi+δ ,j+∆)2 − (zi,j+∆)2, Y1 = (yi,j+∆)− (yi,j), Y2 = (yi,j+∆)2 − (yi,j)2, Y3 = (yi+δ,j+∆) − (yi+δ,j),
Y4 = (yi+δ,j+∆)2 − (yi+δ,j)2,X 5 = (xi+δ,j)− (xi,j),X 6 = (xi+δ,j)2 − (xi,j)2,X 7 = (xi+δ,j+∆) − (xi,j+∆),
andX 8 = (xi+δ,j+∆)2 − (xi,j+∆)2. By computing Equations (4)–(6), four parents (P1,t, P2,t, P3,t, P4,t)
are determined for each parameter, where, the sub − index t indicates the generation
number. In this way, the parent P1,1 is determined by computing Equations (4)–(6) via
sub-indices (i = 0, j = 0, δ = n/2, ∆ = m/2). The parent P2,1 is determined by computing
Equations (4)–(6) via sub-indices (i = 0, j = m/2, δ = n/2, ∆ = m/2). The parent P3,1 is deter-
mined by computing Equations (4)–(6) via sub-indices (i = n/2, j = 0, δ = n/2, ∆ = m/2). The
parent P4,1 is determined by computing Equations (4)–(6) via sub-indices (i = n/2, j = m/2,
δ = n/2, ∆ = m/2). Thus, four coordinates (h, k, l) are obtained, and they are defined as the
initial population. Additionally, the ratio Ř is determined by the average distance between
the origin coordinates and the surface points. Then, the genetic algorithm determines the
search space based on the maximum and minimum value of each parameter. In this way,
the minimum and maximum of the parameter h are defined as x0,0 and xn,m, respectively.
The minimum and maximum of the parameter k are defined as y0,0 and yn,m, respectively.
The minimum and maximum of the parameter l are defined as (l + Ř/2) and (l − Ř/2),
respectively. Thus, the initial population is completed.

The second step is to perform the crossover to create the current children. This
procedure is carried out via exploration and exploitation [46]. In this procedure, two
children are created inside parents and two children are created outside parents. Thus, the
children (C1+4*q,t, C2+4*q,t, C3+4*q,t,C4+4*q,t) are created via parents (P1+2*q,t, P2+2*q,t) for q = 0
and q = 1. These children are computed by means of the next equations

C1+4∗q,t =

{
P1+2∗q,t − 0.5β

∣∣P1+2∗q,t −minimum
∣∣, if P1+2∗q,t < P2+2∗q,t

P2+2∗q,t − 0.5β
∣∣P2+2∗q,t −minimum

∣∣, if P2+2∗q,t < P1+2∗q,t
(7)

C2+4∗q,t = 0.5
[(

P1+2∗q,t + P2+2∗q,t
)
− β

∣∣P1+2∗q,t − P2+2∗q,t
∣∣] (8)

C3+4∗q,t = 0.5
[(

P1+2∗q,t + P2+2∗q,t
)
+ β

∣∣P1+2∗q,t − P2+2∗q,t
∣∣] (9)

C4+4∗q,t =

{
P2+2∗q,t + 0.5β

∣∣maximum− P2+2∗q,t
∣∣, if P1+2∗q,t < P2+2∗q,t

P1+2∗q,t + 0.5β
∣∣maximum− P1+2∗q,t

∣∣, if P2+2∗q,t < P1+2∗q,t
(10)

For these equations, the probability distribution β is accomplished via spread factor α,
which is randomly generated in the interval between 0 and 1. Thus, the probability distribu-
tion is computed by the expression β = (2α)1/2 if α > 0.5, otherwise, β = [2(1 − α)]1/2. In this
way, Equations (8) and (9) compute the children inside parents, and Equations (7) and (10)
compute the children outside parents. By replacing the parents (P1,t, P2,t) and q = 0 in Equa-
tions (7)–(10), the children (C1,t, C2,t, C3,t, C4,t) are determined. In addition, by replacing the
parents (P3,t, P4,t) and q = 1 in Equations (7)–(10), the children
(C5,t, C6,t, C7,t, C8,t) are determined.
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The third step is to evaluate the fitness. To do so, an objective function is constructed
based on the surface coordinates (xi,j, yi,j, zi,j) and the current origin coordinates (h, k, l).
The objective function is defined by means of the next expression

FO = min

{
1

nxm

n

∑
i=0

m

∑
j=0

∣∣∣∣^R −√(xi,j − h)2 + (yi,j − k)2 + (zi,j − l)2
∣∣∣∣
}

(11)

^
R =

1
nxm

n

∑
i=0

m

∑
j=0

[√
(xi,j − h)2 + (yi,j − k)2 + (zi,j − l)2

]
The fourth step is the selection procedure, which determines the parents of the next

generation. To do so, the best current parents and children are selected via fitness. In this
way, the parents P1,t+1 and P3,t+1 are selected from the pairs (P1,t, P2,t) and (P3,t, P4,t), respec-
tively. Then, the parents P2,t+1 and P4,t+1 are selected from the children (C1,t, C2,t, C3,t, C4,t)
and (C5,t, C6,t, C7,t, C8,t), respectively.

The fifth step is to perform the mutation procedure to avoid trapping in a local
minimum. To do so, the worst parent is selected by computing the fitness via Equation (11).
Then, a new parent is randomly generated from the search space and the fitness is computed
via Equation (11). If the new parent improves the fitness, the worst parent is replaced by
the new parent. On the other hand, the worst parent is not mutated. Additionally, a parent
is randomly selected to mutate one parameter, which is selected in random form. To do so,
a new parameter is randomly generated from the search space. Then, the new parameter is
replaced in the selected parent and the fitness is computed via Equation (11). If the parent
fitness is improved, the new parameter is replaced, if not, the parameter is not mutated.
Thus, the current parents’ mutation is completed and the (t + 1) generation parents are
determined. Then, the crossover is performed to create the (t + 1) generation children via
Equations (7)–(10). In addition, the fitness of these children is computed via Equation (11).
Thus, the population of the (t + 1) generation is completed. The procedure to compute
the (t + 1) generation is repeated until the optimal parameters (h, k, l) that minimize the
objective function FO are obtained. In this way, the spherical surface modeling is completed.

To elucidate the surface modeling via genetic algorithm, a spherical surface model is
constructed from the spherical surface shown in Figure 2a. The flowchart of the genetic
algorithm to construct the spherical surface modeling is shown in Figure 2b. From this
structure, the genetic algorithm performs the first step to determine the initial population.
To do so, Equations (4)–(6) are computed by employing m = 10, n = 10, ∆ = 5, and δ = 5.
Thus, the parent P1,1 is obtained by computing Equations (4)–(6) via surface coordinates
whose sub-indexes are (i = 0, j = 0, δ = 5, ∆ = 5), the parent P2,1 is determined via sub-indexes
(i = 0, j = 5, δ = 5, ∆ = 5), the parent P3,1 is deduced via sub-indexes (i = 5, j = 0, δ = 5, ∆ = 5),
and the parent P4,1 is determined via sub-indexes (i = 5, j = 5, δ = 5, ∆ = 5). In this way,
four origin coordinates (h, k, l) are obtained, and they are defined as the initial population.
The initial population data are shown in Table 1, where the first column represents the
origin coordinates, the second column represents the generation number, and the parents
(P1,1, P2,1, P3,1 P4,1) are pointed out in the third to sixth column.

Then, the genetic algorithm performs the second step via crossover to compute the
current children. To do so, the children (C1,t, C2,t, C3,t,C4,t) are computed by substituting
the parents (P1+2*q,t, P 2+2*q,t) and q = 0 in Equations (7)–(10). Additionally, the children
(C5,t, C6,t, C7,t,C8,t) are computed by substituting the parents (P1+2*q,t, P2+2*q,t) and q = 1 in
Equations (7)–(10). The data of the children are pointed out in the seventh to fourteenth
column of Table 1.

Then, the algorithm performs the third step to evaluate the fitness of the current
generation. To do so, the coordinates (h, k, l) of each parent and son are replaced in
Equation (11) to compute the objective function. The current generation fitness is pointed
out in the fourth row of Table 1. Thus, the first generation is completed. In this case, the
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algorithm provides a low error from the initial population. Therefore, it is corroborated
that the initial population provides the best candidates to speed out the convergence.
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Then, the algorithm performs the fourth step to select the next generation parents.
To do so, the best current parents and children are selected via fitness. In this way, the
parents P1,t+1 and P3,t+1 are selected from the pairs (P1,t, P2,t) and (P3,t, P4,t), respectively.
In addition, the parents P2,t+1 and P4,t+1 are selected from the children (C1,t, C2,t, C3,t, C4,t),
(C5,t, C6,t, C7,t, C8,t), respectively. In this case, P1,2 = P2,1, P3,3 = P4,1, P2,2 = C2,1, and
P4,2 = C7,1.
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Then, the algorithm performs the fifth step to mutate the parent P2,2, which is deter-
mined as the worst parent via fitness. To perform the mutation, a new parent is randomly
generated from the search space and the fitness is computed via Equation (11). In this case,
the new parent does not improve the fitness and the parent is not mutated. Next, the parent
P2,3 is randomly selected to mutate the parameter h, which is selected in random form.
Thus, a new parameter h is randomly generated from the search space and the fitness of the
parent P2,3 is computed via Equation (11). In this case, the fitness is improved by the new
parameter. Therefore, the parameter h is mutated. Then, the algorithm performs the second
step to create the children of the (t + 1) generation via Equations (7)–(10). Additionally,
the fitness of these children is computed via Equation (11). Thus, the population of the
second generation is completed. The second-generation population is pointed out in the
fifth to eighth row of Table 1. In this way, the procedure to compute the (t + 1) generation is
repeated until obtaining the optimal parameters (h, k, l), which minimize the objective func-
tion Equation (11). The optimal origin coordinates are h = 30.1214, k = 40.0256, l = 29.9715,
and R = Ř = 20.2304. These coordinates are substituted in Equation (1) to obtain the spheri-
cal surface model zi,j = l + [R2 − (xi,j − h)2 − (yi,j − k)2]1/2, which produces the spherical
surface shown in Figure 2c. Thus, the spherical surface modeling is performed via the
metaheuristic algorithm. The cylindrical surface modeling is described in the next section.

Table 1. Spherical model parameters generated via genetic algorithm for first and second generation.

Parameter t P1 P2 P3 P4 C1 C2 C3 C4 C5 C6 C7 C8

h 1 33.5896 29.1142 31.1072 28.2664 24.8035 30.58 33.3301 35.1367 27.9462 28.6664 31.0478 32.0006
k 1 44.2103 40.3246 38.2204 39.1703 37.6548 42.0848 43.1417 47.8128 36.1213 38.5753 38.8636 44.1221
l 1 21.46 31.1081 35.0979 25.7211 20.0535 21.7505 30.3015 34.3909 23.018 30.1367 32.9515 37.372

fitness 1.9963 0.5305 1.4442 0.9236 1.9747 1.1481 1.9987 4.5804 1.774 0.9567 0.9154 2.9193

h 2 29.1142 30.58 28.2664 31.0478 24.1021 29.2203 30.1932 25.8899 24.7351 29.657 29.8396 28.2141
k 2 40.3246 42.0848 39.1703 38.8636 40.0788 41.0045 41.4932 41.898 35.5124 38.9784 39.0833 38.8631
l 2 31.1081 21.7505 25.7211 32.9515 20.5784 24.3133 27.9526 28.4532 21.9167 27.3088 32.5313 30.1781

fitness 0.5305 1.1481 0.9236 0.9154 1.872 0.8474 0.7176 1.7872 2.4692 0.6377 0.6918 0.9849

2.2. Micro-Scale Cylindrical Surface Modeling via Genetic Algorithm

The micro-scale cylindrical surface modeling is performed by a genetic algorithm
via surface coordinates, which are retrieved via micro laser line projection. To carry it
out, a cylindrical surface model is constructed by means of surface coordinates, which
are retrieved from a rectangular cylindrical surface. The surface coordinates are shown
in Figure 3, where, the surface coordinates are represented by (xi,j, yi,j, zi,j), and the sub-
indices (I, j) are defined in the x-axis and y-axis, respectively. Thus, the rectangular surface
provides the surface points (z0,0, z1,0, . . . , zn,0, zn,1, . . . , zn,m) in the z-axis, where, the
sub-indices (n, m) depict the number of surface points in the x-axis and y-axis, respectively.
The origin coordinates are represented by (x0,j, k0, l0), the direction coordinates are depicted
by (xn,j, kn, ln), and the ratio is defined by r. In this way, the cylindrical surface model is
defined based on the circumference equation via ratio r by means of the next expression

(yi,j − ki)
2 + (zi,j − li)

2 = r2 (12)

For this equation, the coordinates (ki, li) are determined based on the surface geometry
shown in Figure 3 by means of the next expressions

ki =
(kn − k0,)

(xn,j − x0,j)
(xi,j − x0,j) + k0 (13)

li =
(ln − l0)(ki − k0)

(kn − k0)
+ l0 (14)
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These equations are computed via origin and direction coordinates. In this way, the
cylindrical surface model is performed by determining the coordinates (k0, l0), (kn, ln) and
the ratio r via genetic algorithm.
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To do so, the genetic algorithm determines the origin and direction coordinates via
Equation (12), and surface coordinates (xi,j, yi,j, zi,j). This procedure is carried out in five
steps, which are described as follows:

The first step is to determine the initial population via surface data. To do so, the
genetic algorithm computes the initial population of the parameters (k0, l0, kn, ln) by means
of the next expressions

k0 =
ki+δ(xn,j − x0,j)(xi,j − x0,j)− ki(xn,j − x0,j)(xi+δ,j − x0,j)

[(xi,j − xn,j)(xi+δ,j − x0,j)− (xi+δ,j − xn,j)(xi,j − x0,j)]
(15)

l0 =
(kn − k0)[li+δ(ki − k0)− li(ki+δ − k0)]

(ki − kn)(ki+δ − k0)− (ki+δ − kn)(ki − k0)
(16)

kn =
ki(xn,j − x0,j)(xi+δ,j − xn,j)− ki+δ(xn,j − x0,j)(xi,j − xn,j)

(xi,j − x0,j)(xi+δ,j − xn,j)− (xi+δ,j − x0,j)(xi,j − xn,j)
(17)

ln =
li+δ(kn − k0)(kn − ki)− li(kn − k0)(kn − ki+δ)

(ki+δ − k0)(kn − ki)− (ki − k0)(kn − ki+δ)
(18)

For these equations, the sub-index δ represents an increment in the x-axis, and the
parameters (ki, li) are determined via surface data by means of the next expressions

ki =
Z1[Y4 +Z4]−Z3[Y2 +Z2]

2[Y3Z1 −Y1Z3]
(19)

li =
Y1[Y4 +Z4]−Y3[Y2 +Z2]

2[Z3Y1 −Z1Y3]
(20)

where, Z1 = (zi,j+∆) − (zi,j), Z2 = (zi,j+∆)2 − (zi,j)2, Z3 = (zi,j+κ) − (zi,j), Z4 = (zi,j+κ)2 − (zi,j)2,
Y1 = (yi,j+∆) − (yi,j), Y2 = (yi,j+∆)2 − (yi,j)2, Y3 = (yi,j+κ) − (yi,j), and Y4 = (yi,j+κ)2 − (yi,j)2.
In this case, the sub-indices ∆ and κ represent an increment in the y-axis. By computing
Equations (15)–(18), four parents (P1,t, P2,t, P3,t, P4,t) are determined for each parameter.
The sub-index t indicates the generation number. Thus, the parent P1,1 is determined by
computing Equations (15)–(18) via sub-indices (i = 1, j = 1, δ = n/4, ∆ = m/2, κ= 2∆), the
parent P2,1 is determined via sub-indices (i = n/4, j = 0, δ = n/4, ∆ = m/2, κ= 2∆), the parent
P3,1 is determined via sub-indices (i = n/2, j = 0, δ = n/4, ∆ = m/2, κ= 2∆), and the parent
P4,1 is determined via sub-indices (i = 3n/4, j = 0, δ = n/4, ∆ = m/2, κ= 2∆). In this way,
four coordinates (k0, l0, kn, ln) are obtained and they are defined as the initial population.
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Additionally, the ratio ř is defined as the average distance between the coordinates (ki, li)
and the surface coordinates (xi,j, yi,j, zi,j). Then, the genetic algorithm determines the search
space based on the maximum and minimum of each parameter. For the parameter k0, the
minimum and maximum are defined as y0,0 and y0,m, respectively. For kn, the minimum and
maximum are defined as yn,0 and y0,m, respectively. For l0, the minimum and maximum are
defined as (l0 + ř/2) and (l0 − ř), respectively, where, l0 is computed via Equation (16). For
ln, the minimum and maximum are defined as (ln + ř/2) and (ln − ř), respectively, where, ln
is computed via Equation (18). Thus, the initial population is completed.

The second step is to create the current children via crossover. To do so, two children
are created inside parents and two children are created outside parents. Thus, the children
(C1+4*q,t, C2+4*q,t, C3+4*q,t,C4+4*q,t) are created via parents (P1+2*q,t, P2+2*q,t) for q = 0 and q = 1.
By replacing the parents (P1,t, P2,t) and q = 0 in Equations (7)–(10), the children (C1,t, C2,t,
C3,t, C4,t) are determined. In addition, the parents (P3,t, P4,t) and q = 1 are replaced in
Equations (7)–(10) to compute the children (C5,t, C6,t, C7,t, C8,t).

The third step is to evaluate the fitness. To do so, an objective function is constructed
via the surface data. The objective function is defined by means of the next expression

FO = min

{
1

nxm

n

∑
i=0

m

∑
j=0

[
^
r −

√
(yi,j − ki)

2 + (zi,j − li)
2
]2
}

(21)

^
r =

1
nxm

n

∑
i=0

m

∑
j=0

[√
(yi,j − ki)

2 + (zi,j − li)
2
]

For these equations, ki and li are computed via Equations (13) and (14), respectively.
Thus, the fitness of parents and children is computed.

The fourth step is to select the parents of the next generation. To do so, the best
current parents and children are selected via fitness. Thus, the parents P1,t+1 and P3,t+1 are
selected from the pairs (P1,t, P2,t) and (P3,t, P4,t), respectively. The parents P2,t+1 and P4,t+1
are selected from the children (C1,t, C2,t, C3,t, C4,t) and (C5,t, C6,t, C7,t, C8,t), respectively.

The fifth step is to perform the mutation to avoid trapping in a local minimum. To
do so, the worst parent is selected by computing the fitness via Equation (21). Then, a
new parent is randomly generated from the search space and the fitness is computed via
Equation (19). If the new parent improves the fitness, the worst parent is replaced by the
new parent, if not, the worst parent is not mutated.

Additionally, a parent is randomly selected to mutate one parameter, which is selected
in random form. To carry it out, a new parameter is randomly generated from the search
space. Then, the new parameter is replaced in the selected parent and the fitness is
computed via Equation (21). If the parent fitness is improved, the parameter is replaced
by the new coordinate, if not, the parameter is not mutated. Thus, the mutation of the
current parents is completed and the parents of the (t + 1) generation are determined.
Then, the crossover is carried out to create the children of the (t + 1) generation via
Equations (7)–(10). Additionally, the fitness of these children is computed via Equation (19).
Thus, the population of the (t + 1) generation is completed. The procedure to compute the
(t + 1) generation is repeated until the parameters (k0, l0, kn, ln) that minimize the objective
function in Equation (21) are obtained. From these parameters, the cylindrical surface
model is defined by the expression zi,j = li + [ř2 − (yi,j − ki)2]1/2. Thus, the cylindrical
surface model is determined by the metaheuristic algorithm.

2.3. Micro-Scale Surface Contouring via Micro-Laser Line Projection

The micro-scale surface is retrieved by the microscope vision system shown in Figure 4a.
This setup consists of an optical microscope, a laser diode, a CCD camera, a slider device,
and a computer. The surface plane is located on the x-axis and y-axis, and the surface
topography is parallel to the z-axis. The lateral configuration of the microscope vision
system in the x-axis is depicted by the geometry shown in Figure 4b, where a 42 µm laser
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line is projected perpendicularly on the target surface and the optical microscope is aligned
at an angle. The symbol θ indicates the angle between the laser line and the optical axis.
The distance between the objective lens and the surface is represented by d. The objective
focal length is depicted by f 1 and the objective focus is represented by F1. The distance
between the intermediate image plane and the ocular lens is depicted by L. The ocular focal
length is indicated by f 2 and the ocular focus is represented by F2. The lateral configuration
of the microscope vision system in the y-axis is described by means of the geometry shown
in Figure 4c. The laser line coordinates in the CCD array are denoted by (xi,j, yi,j) in the
x-axis and y-axis, respectively.
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Figure 4. (a) Optical microscope vision system to perform micro-scale spherical and cylindrical
surface modeling. (b) Lateral configuration of the microscope vision system in x-axis. (c) Lateral
configuration of the microscope vision system in y-axis.

The surface coordinates yi,j and zi,j are defined via geometry shown in Figure 4b,c by
means of the expressions

zi,j =
η(xc − xi,j)F1F2

( f1 − F1)( f2 − F2)sinθ
+ O (22)

yi,j = ηyc −
η(yc − yi,j)F1F2

( f1 − F1)( f2 − F2)
(23)

The surface coordinate xi,j is defined by the position where the laser line is projected
in the x-axis. This coordinate is provided by the slider device. In this way, the surface
topography is computed based on the vision parameters (xc, yc, η, θ, f 1, F1, f 2, F2). These
parameters are determined via genetic algorithm by means of Equations (22) and (23), and
surface data. The genetic algorithm determines the vision parameters in five steps, which
are described as follows.

The first step is to determine the initial population. To do so, the search space is
deduced via the maximum and minimum of each parameter. The maximum and minimum
of the parameters (xc, yc, η) are deduced via image size. The maximum and minimum
of the parameters (θ, f 1, F1, f 2, F2) are defined via microscope geometry. The minimum
F2 is defined by a distance more than half of the ocular lens diameter, and the maximum
F2 is two times the minimum F2. The minimum f 2 is defined as the minimum F2 and the
maximum f 2 is four times the minimum F2. In the same way, the minimum F1 is defined by
a distance more than half of the objective lens diameter, and the maximum F1 is two times
the minimum F2. The minimum f 1 is determined as the minimum F1 and the maximum f 1
is four times the minimum F1. The minimum θ is defined as an angle more than 10◦ and



Algorithms 2022, 15, 145 12 of 24

the maximum θ is defined as an angle less than 45◦. Thus, the search space is determined.
Then, four parents (P1,t, P2,t, P3,t, P4,t) are created in random form from the search space. In
this way, four values of the vision parameters (xc, yc, η, θ, f 1, F1, f 2, F2) are obtained and
they are defined as the initial population.

The second step is to create the current children via crossover. To do so, the children
(C1+4*q,t, C2+4*q,t, C3+4*q,t,C4+4*q,t) are created via parents (P1+2*q,t, P 2+2*q,t) for q = 0 and q = 1.
By replacing the parents (P1,t, P2,t) and q = 0 in Equations (7)–(10), the children (C1,t, C2,t,
C3,t, C4,t) are determined. In addition, the parents (P3,t, P4,t) and q = 1 are replaced in
Equations (7)–(10) to compute the children (C5,t, C6,t, C7,t, C8,t).

The third step is to evaluate the fitness. To do so, an objective function is constructed
based on the known surface data and the vision parameters. The objective function is
defined by means of the next expressions

FO1 = min

 1
mxn

n

∑
i=0

m

∑
j=0

[
(zi,j − zi,m)−

η(xc − xi,j)F1F2

( f1 − F1)( f2 − F2)sinθ
+

η(xc − xi,m)F1F2

( f1 − F1)( f2 − F2)sinθ

]2
 (24)

FO2 = min

{
1

mxn

n

∑
i=0

m

∑
j=0

[
(yi,j − yi,m) +

η(yc − yi,j)F1F2

( f1 − F1)( f2 − F2)
− η(yc − yi,m)F1F2

( f1 − F1)( f2 − F2)

]2}
(25)

From these equations, the fitness is computed by the expression FO = (FO1 + FO2)/2.
In this case, the surface topography (zi,j – zi,m) and the surface width (yi,j − yi,1) are known.

The fourth step is to select the parents of the next generation. To do so, the best current
parents and children are selected via fitness. Thus, the parents P1,t+1 and P3,t+1 are selected
from the pairs (P1,t, P2,t) and (P3,t, P4,t), respectively. Then, the parents P2,t+1 and P4,t+1 are
selected from the children (C1,t, C2,t, C3,t, C4,t) and (C5,t, C6,t, C7,t, C8,t), respectively.

The fifth step is to perform the mutation to avoid trapping in a local minimum. To do
so, the worst parent is selected by computing the fitness via Equations (24) and (25). Then,
a new parent is randomly generated from the search space and the fitness is computed.
If the new parent improves the fitness, the worst parent is replaced by the new parent, if
not, the worst parent is not mutated. Additionally, a parent is randomly selected to mutate
one vision parameter, which is selected in random form. To carry it out, a new vision
parameter is randomly generated from the search space. Then, the new vision parameter
is replaced in the selected parent and the fitness is computed via Equations (24) and (25).
If the parent fitness is improved, the vision parameter is replaced by the new parameter,
if not, the vision parameter is not mutated. Thus, the mutation of the current parents is
completed and the parents of the (t + 1) generation are determined. Then, the crossover is
carried out to create the children of the (t + 1) generation via Equations (7)–(10). In addition,
the fitness of these children is computed via Equations (24) and (25). Thus, the population
of the (t + 1) generation is completed. The procedure to compute the (t + 1) generation is
repeated until the vision parameters (xc, yc, η, θ, f 1, F1, f 2, F2) that minimize the objective
function Equations (24) and (25) are obtained. Additionally, the distance from zero to the
point O is determined by the expression z0,j = η(x0,j − xc) F1 F2/(f 1 − F1)(f 2 − F2)sinθ.

The micro laser line coordinates (xi,j, yi,j) are determined via pixel position and inten-
sity. The coordinate xi,j is computed through the maximum intensity in each row of the
image [47]. To do so, the pixel position and intensity are fitted to a Bezier curve by means
of the expressions

x(u) =
N

∑
i=0
Ci(1− u)N−iuixi,j, Ci = Ci−1(N + 1− i)/i, C0 = 1, 0 ≤ u ≤ 1 (26)

I(u) =
N

∑
i=0
Ci(1− u)N−iui Ii,j, Ci = Ci−1(N + 1− i)/i, C0 = 1, 0 ≤ u ≤ 1 (27)
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For Equation (26), xi,j is the pixel coordinate of the micro laser line in the x-axis and
N is the pixels number of the micro laser line. For Equation (27), Ii,j is the pixel intensity.
In this case, the sub-indices (i, j) indicate the pixel number of the micro laser line in the
x-axis and y-axis, respectively. Thus, the pixel position xi,j is replaced in Equation (26) and
the intensity Ii,j is substituted in Equation (27) to obtain a curve {x(u), I(u)}. In this case, a
concave curve is obtained in the interval 0 ≤ u ≤ 1. Therefore, the second derivative I”(u) is
positive, and the maximum intensity is determined by means of the derivative I′(u) = 0. In
this way, the Bisection method is employed to calculate the value u, where I′(u) = 0. Then,
the value u is substituted in Equation (26) to compute x(u), which is defined as the micro
laser line position xi,j = x(u) in the x-axis. The micro laser line position yi,j is determined via
image row number. The micro laser line edges yi,0 and yi,m are calculated by means of the
first derivative in the y-axis. Thus, the micro laser line coordinates (xi,j, yi,j) are obtained
to compute the micro-scale surface topography. To do so, the microscope vision system
scans the surface to perform the micro-scale surface modeling. During the scanning, the
CCD camera captures the micro laser line to compute the line coordinates (xi,j, yi,j) via
Equations (26) and (27). Then, the coordinates (xi,j, yi,j) are substituted in Equations (22)
and (23) to compute the surface coordinates (zi,j, yi,j). The surface coordinate in the x-axis
corresponds to the position where the micro laser line is projected. This coordinate is
provided by the slider device. Thus, the micro-scale topography is retrieved.

The radial distortion is determined via the micro laser line position. The micro
laser line position (xi,j, yi,j,) is computed via Equations (26) and (27). Thus, the radial
distortion is deduced by means of the line position xi,j = xi,j + δxi and yi,j = yi,j + δyj,
where (xi,j, yi,j) are the distorted coordinates and (δxi, δyj) are the distortion. In addi-
tion, a distorted line shifting is determined by the expression Si,j = x1,j − xi,j, and the
undistorted line shifting is defined by the expression si,j = (x1,j + δx1) – (xi,j + δxi). From
these expressions, the distortion in the x-axis is determined by means of the expression
δxi= (x1,j − xi,j) − si,j + δx1 = Si,j – si,j + δx1. By placing the laser line near to the im-
age center, the first line shifting is obtained without distortion, where, δx1 = 0, and
s1,j = S1,j. Thus, the undistorted shifting si,j is computed through the first shifting S1,j
by means of the expression si,j = i × S1,j. Therefore, the distortion in the x-axis is cal-
culated by the expression δxi= (x1,j – xi,j) – i × S1,j. The same procedure is performed to
determine the distortion in the y-axis via expressions (yi,1 − yi,j) = (yi,1 + δy1)–(yi,j + δyj)
and Ti,j = (yi,1 − yi,j). From this relationship, the distortion in the y-axis is calculated by the
expression δyj = (yi,1 – yi,j) − j*Ti,1.

3. Results of Micro-Scale Spherical and Cylindrical Surface Modeling

The micro-scale spherical and cylindrical surface modeling is carried out by the
microscope vision system shown in Figure 4a. In this way, the micro-scale spherical surface
modeling is performed for the plastic surface shown in Figure 5a. The scale of this figure
is represented in millimeters in the x-axis. The micro laser line projected on the plastic
surface is shown in Figure 5b. Thus, the plastic surface is scanned in the x-axis via the
micro laser line to compute the coordinates (xi,j, yi,j) by means of Equations (26) and (27).
Then, the coordinates (xi,j, yi,j) are substituted in Equations (23) and (23) to compute the
micro-scale surface coordinates (zi,j, yi,j). The surface coordinate xi,j is provided by the
slider device. Thus, one hundred and ninety four images are processed to retrieve the
micro-scale spherical surface shown in Figure 6a. In this figure, the x-axis, y-axis, and z-axis
are indicated in microns. The accuracy of the surface shown in Figure 6a is determined via
relative error [48], which is computed by employing a reference contact method. Thus, the
relative error is computed by the next expression

Error% =
100
n·m

n

∑
i=0

m

∑
j=0

∣∣zi,j − Hi,j
∣∣

Hi,j
(28)
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For this equation, zi,j is the micro-scale surface computed via Equation (22), Hi,j is the
surface reference, and n·m is the data number. By computing Equation (28), the relative
error for the plastic surface shown in Figure 6a is 0.8216%. From the surface shown in
Figure 6a, a spherical surface model is constructed via genetic algorithm, which determines
the origin coordinates (h, k, l) as described in Section 2.1.
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Figure 5. (a) Rectangular spherical surface to perform spherical surface modeling. (b) Micro laser 
line projected on the spherical surface to retrieve the surface topography. 
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Figure 6. (a) Spherical surface retrieved via micro laser line scanning. (b) Spherical surface gener-
ated via spherical surface model Equation (1). (c) Surface generated via spherical surface model
Equation (1) and the surface data over the surface model. (d) Surface generated via spherical surface
model Equation (1) and surface data under the model.
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In this way, the genetic algorithm performs the first step to determine the initial popu-
lation. To carry it out, the search space is defined based on the maximum and minimum
of each parameter. For the spherical surface model, the minimum and maximum of the
parameter h are defined as x0,0 and xn,m, respectively. The minimum and maximum of the
parameter k are defined as y0,0 and yn,m, respectively. The minimum and maximum of the
parameter l are defined as (l + Ř/2) and (l − Ř), respectively. Then, the initial population
is determined. Typically, the metaheuristic algorithms determine the initial population
from the search space in random form. However, a huge iterations number is employed to
achieve the convergence. Therefore, the algorithms employ the best candidates to improve
the solution quality and to speed out the convergence. The initial population plays a signif-
icant role in the genetic algorithm to provide higher qualities and better convergence [49].
Generally, the genetic algorithms generate the initial population employing the best candi-
dates. These candidates can be obtained via random methods and by sampling the model
equations [50,51]. Based on these statements, the proposed genetic algorithm performs a
sampling of the model to obtain the best candidates. The sampling is carried out by solving
Equations (2) and (3) to obtain the best candidates to perform the optimization. To do so,
the spherical surface model is sampled at the surface coordinates (xi,j, yi,j, zi,j), (xi+δ,j, yi+δ,j,
zi+δ,j), (xi,j+∆, yi,j+∆, zi,j+∆), and (xi+δ,j+∆, yi+δ,j+∆, zi+δ,j+∆) to obtain a good initial population
(h, k, l). In this way, Equations (4)–(6) are computed by employing m = 180, n = 194, ∆ = 90,
and δ = 97. Thus, the parent P1,1 is determined via surface data whose sub-indices are (i = 0,
j = 0, δ = 97, ∆ = 90), the parent P2,1 is determined via (i = 0, j = 90, δ = 97, ∆ = 90), the parent
P3,1 is determined via sub-indices (i = 97, j = 0, δ = 97, sub-indices ∆ = 90), and the parent
P4,1 is determined via sub-indices (i = 97, j = 90, δ = 97, ∆ = 90).

By employing these surface data, four origin coordinates (h, k, l) are computed via
Equations (4)–(6). From this procedure, the parent P1,1 is represented by (h = 1218.8 µm,
k = 1173.2 µm, l =−3135.7 µm), the parent P2,1 is represented by (h = 1672.1 µm, k = 1389.1 µm,
l =−3813.6 µm), the parent P3,1 is represented by (h = 1302.1µm, k = 1276.6µm, l = −3941.3 µm),
and the parent P4,1 is determined by (h = 1762.91 µm, k = 1516.8 µm, l =−3584.3 µm). These
parameters represent the initial population, which provides good fitness to speed out the
convergence. In addition, the ratio Ř is computed via Equation (11) by employing the
origin coordinates (h, k, l) and the surface points (xi, j, yi, j, zi,j).

Then, the genetic algorithm performs the second step via crossover to compute the
children by substituting q = 0 and q = 1 in Equations (7)–(10). The probability of crossover
is determined via fitness [52]. When the average fitness of the parents is improved, the
crossover is carried out. This procedure leads to preventing the loss of candidates to achieve
the convergence. Thus, the probability of crossover is in the interval from 0.0 to 0.5. This
result is obtained by computing the same experiment several times. Then, the algorithm
performs the third step to evaluate the fitness by substituting the coordinates (h, k, l) of
parents and children in Equation (11). Then, the algorithm performs the fourth step to
select the parents of the next generation via fitness. In this way, the parents P1,t+1 and P3,t+1
are selected from the pairs (P1,t, P2,t) and (P3,t, P4,t), respectively. Furthermore, the parents
P2,t+1 and P4,t+1 are selected from the children(C1,t, C2,t, C3,t, C4,t) and (C5,t, C6,t, C7,t, C8,t),
respectively.

Then, the algorithm performs the fifth step to mutate the worst parent, which is de-
termined via fitness. In addition, a parent is randomly selected to mutate one coordinate,
which is selected in random form. The mutation probability is determined via fitness.
For the mutation of the parent, if the new parent improves the fitness, the worst parent
is mutated, if not, the worst parent is not mutated. For the parameter mutation, if the
new parameter improves the parent fitness, the parameter is mutated. Thus, the mutation
probability crossover is in the interval from 0.0 to 0.62. This result is obtained by computing
the same experiment several times. Then, the algorithm performs the second step to create
the children of the (t + 1) generation via Equations (7)–(10). Additionally, the fitness of
these children is computed via Equation (11). Thus, the population of the (t + 1) generation
is completed. Then, the procedure to compute the (t + 1) generation is repeated until the op-
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timal parameters (h, k, l), which minimize the objective function Equation (11) are obtained.
The number of generations is deduced from the iterations number to obtain the optimized
parameters (h, k, l). Thus, the number of generations that obtain the surface model is 136.
The optimized origin coordinates are h = 1688.3 µm, k = 1409.4 µm, l = −3685.6 µm, and
R = 4390.9 µm. These coordinates are substituted in Equation (1) to obtain the spherical sur-
face model zi,j = −3685.6 + [4390.92 − (xi,j−1688.3)2 − (yi,j − 1409.4)2]1/2, which produces
the spherical surface shown in Figure 6b. The relative error produced by the spherical
model is determined by the next expression

error% =
100
n·m

n

∑
i=0

m

∑
j=0

∣∣Mi,j–zi,j
∣∣

zi,j
(29)

For this equation, Mi,j is the micro-scale surface computed via Equation (1), zi,j is
the surface retrieved via micro laser line projection, and n·m is the data number. Thus,
Equation (29) determines the optimality gap of the genetic algorithm [53]. By computing
Equation (29), the relative error between the spherical surface model and the plastic surface
shown in Figure 6b is 2.8631%. Additionally, Figure 6c shows the surface generated via
the spherical surface model and the surface data over the surface model. Figure 6d shows
the surface generated via the spherical surface model and the surface data under the
surface model. The fitness variation with respect to the generation number is depicted
by the graphic shown in Figure 7, where, the variation decreases when the generation
number increases.

Thus, the optimality gap of the algorithm for the spherical surface model is 2.8631%.
The solution quality is deduced based on the running time to obtain the optimal solu-
tion [54]. The running time is defined by the generation number and the computer speed.
Thus, the 136 generations are computed in 22.87 s by employing a PC to 1.8 GHz. The
fitness variation in each generation is shown in Figure 7. In this case, the variation decreases
when the generation number increases. Thus, the spherical surface modeling is performed
by the metaheuristic algorithm.
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The micro-scale cylindrical surface modeling is performed for the metallic surface
shown in Figure 8a. The scale of this figure is represented in millimeters in the x-axis. The
micro laser line projected on the metallic surface is shown in Figure 8b. Thus, the metallic
surface is scanned in the x-axis via the micro laser line to compute the coordinates (xi,j, yi,j)
by means of Equations (26) and (27). Then, the coordinates (xi,j, yi,j) are substituted in
Equations (22) and (23) to compute the micro-scale surface (zi,j, yi,j). The surface coordinate
xi,j is provided by the slider device. In this way, one hundred and eighty images are
processed to retrieve the micro-scale cylindrical surface shown in Figure 9a. In this figure,
the x-axis, y-axis, and z-axis are indicated in microns. The accuracy of this surface is deter-
mined via relative error in Equation (28). Where zi,j is the micro-scale surface computed
via Equation (22), Hi,j is the surface reference, and n·m is the data number. By computing
Equation (28), the relative error for the metallic surface shown in Figure 9a is 0.8783%.
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cylindrical surface model and the surface data over the surface model. (d) Surface generated via
cylindrical surface model and the surface data under the surface model.
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From the surface shown in Figure 9a, a cylindrical surface model is performed by
the genetic algorithm via surface coordinates (xi,j, yi,j, zi,j). To carry it out, the genetic
algorithm determines the origin and direction coordinates (k0, l0, kn, ln) as described in
Section 2.2. In this way, the genetic algorithm performs the first step to determine the
initial population by employing the surface coordinates (xi,j, yi,j, zi,j). Thus, a sampling of
the model is carried out to obtain the best candidates. To do so, Equations (15)–(20) are
computed by employing m = 160 and n = 180. Thus, the parent P1,1 is computed via surface
whose sub-indices are (i = 0, j = 0, δ = 45, ∆ = 80, κ = 160), the parent P2,1 is determined via
sub-indices (i = 45, j = 0, δ = 45, ∆ = 80, κ = 160), the parent P3,1 is computed via sub-indices
(i = 90, j = 0, δ = 45, ∆ = 80, κ = 160), and P4,1 is determined via sub-indices (i = 135, j = 0,
δ = 45, ∆ = 80, κ = 160). In this way, four coordinates (k0, l0, kn, ln) are obtained and they
are defined as the first parents (P1,t, P2,t, P3,t, P4,t). Additionally, the ratio ř is defined as
the average distance between the coordinates (ki, li) and the surface coordinates (xi,j, yi,j,
zi,j). From this procedure, the parent P1,1 is represented by the parameters (k0 = 1188.2 µm,
l0 = −4496.4 µm, kn = 1236.5 µm, ln = −4328.2 µm), the parent P2,1 is defined by the pa-
rameters (k0 = 1291.5 µm, l0 = −4122.6 µm, kn = 1315.4 µm ln = −4110.5 µm), the parent
P3,1 is represented by the parameters (k0 = 1346.2 µm, l0 = −4259.3 µm, kn = 1352.4 µm,
ln = −4235.1 µm), and the parent P4,1 is determined by the parameters (k0 = 1401.2 µm,
l0 = −4432.8 µm, kn = 1408.3 µm, ln =−4425.7 µm). Furthermore, the ratio ř is computed via
Equation (19) by employing the coordinates (ki, li) and the surface coordinates (xi,j, yi,j, zi,j).
Additionally, the minimum and maximum of the coordinate k0 are defined as y0,0 and y0,m,
respectively. The minimum and maximum of the coordinate kn, are defined as yn,0 and y0,m,
respectively. The minimum and maximum of the coordinate l0 are defined as (l0 + ř/2) and
(l0 − ř), respectively, where, l0 is computed via Equation (16). The minimum and maximum
of the coordinate ln are defined as (ln + ř/2) and (ln − ř), respectively, where, ln is computed
via Equation (18). Then, the genetic algorithm performs the second step to compute the
children by substituting q = 0 and q = 1 in Equations (7)–(10). The probability of crossover is
determined via fitness. When the average fitness of the parents is improved, the crossover
is carried out. Thus, the probability of crossover is in the interval from 0.0 to 0.48. This
result is obtained by computing the same experiment several times. Then, the algorithm
performs the third step to evaluate the fitness. In this procedure, Equation (21) is computed
by means of the coordinates (k0, l0, kn, ln) and the coordinates (ki, li), which are determined
via Equation (13) and Equation (14). Then, the algorithm performs the fourth step to select
the parents of the next generation. In this way, the parents P1,t+1 and P3,t+1 are selected from
the pairs (P1,t, P2,t) and (P3,t, P4,t), respectively. Additionally, the parents P2,t+1 and P4,t+1 are
selected from the children (C1,t, C2,t, C3,t, C4,t) and (C5,t, C6,t, C7,t, C8,t), respectively. Then,
the algorithm performs the fifth step to mutate the worst parent, which is determined via
fitness Equation (21). In addition, a parent is randomly selected to mutate one coordinate,
which is selected in random form. The mutation probability is determined via fitness. If the
parent mutation improves the fitness, the mutation is carried out. If not, the worst parent is
not mutated. For the parameter mutation, if the new parameter improves the parent fitness,
the parameter is mutated. Thus, the mutation probability crossover is in the interval from
0.0 to 0.65. This result is obtained by computing the same experiment several times. Then,
the algorithm performs the second step to create the children of the (t + 1) generation via
Equations (7)–(10). Furthermore, the fitness of these children is computed via Equation (21).
Thus, the population of the (t + 1) generation is completed. The number of generations is
deduced from the number of iterations to obtain the optimized parameters (h, k, l). Thus, the
number of generations to obtain the surface model is 112. Then, the procedure to compute
the (t + 1) generation is repeated until the optimal parameters (k0, l0, kn, ln), which minimize
the objective function Equation (19), are obtained. The optimized origin and direction
coordinates are k0 = 1527.45 µm, l0 = −4633.36 µm, kn = 1528.51 µm, ln = −4622.34 µm, and
r= ř = 4914.02 µm. These coordinates are substituted in Equation (12) to obtain the cylin-
drical surface model zi,j = li + [(4914.02)2 − (yi,j − ki)2]1/2, which produces the spherical
surface shown in Figure 9b.
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The error between the cylindrical surface model and the surface data shown in
Figure 9a is computed via Equation (29), where, Mi,j is the micro-scale surface computed
via the cylindrical surface model in Equation (12), zi,j is the surface computed via micro
laser line projection, and n·m is the data number. Thus, Equation (29) determines the
optimality gap of the genetic algorithm. By computing Equation (29), the relative error
between the cylindrical surface model and the surface data shown in Figure 9a is 3.765%.

Thus, the optimality gap of the algorithm for the cylindrical surface model is 3.765%.
The solution quality is deduced based on the running time to obtain the optimal solution.
The running time is defined by the generation number and the computer speed. Thus,
the 112 generations are computed in 22.18 s by employing a PC to 1.8 GHz. Additionally,
Figure 9c shows the surface generated via cylindrical surface model and the surface data
over the surface model. Figure 9d shows the surface generated via cylindrical surface model
and the surface data under the surface model. Thus, the cylindrical surface modeling has
been performed by the metaheuristic algorithm.

4. Discussion

The capability of the micro-scale spherical and cylindrical surface modeling is es-
tablished based on the model fitting accuracy [55,56]. Therefore, the contribution of the
proposed technique is determined based on the model fitting to the surface. This statement
includes the model fitting to the surface, and the algorithm efficiency. The model fitting to
the surface and the algorithm efficiency are achieved in a good manner. The model fitting
is determined via quality gap, which is computed via Equation (29). Thus, the proposed
technique fits the spherical and cylindrical surface model to the surface data with a relative
error smaller than 3.8%. The algorithm efficiency is determined via algorithm structure
and solution quality, which is determined via running time. The algorithm structure pro-
vides an efficient procedure to optimize the surface model parameters. It is because the
metaheuristic algorithm determines the initial population by the best candidates, which are
sampled by solving the spherical and cylindrical surface models. This procedure leads to
providing the initial population near the optimal parameters. Thus, the algorithm provides
a low error since the first generation. This leads to reduced iterations to obtain the optimal
parameters. Therefore, the running time is achieved in less than 140 iterations. Thus, the
proposed micro-scale surface modeling improves the model fitting of the traditional optical
microscope imaging systems. It is because the traditional optical microscope imaging
systems perform micro-scale spherical and cylindrical surface modeling with a relative
error over 5.0% [57,58], where, the spherical and cylindrical surface modeling is performed
via polynomial regression by means of the least squared method [59,60]. In this way, a
spherical model via least squared is generated for the plastic surface shown in Figure 6a and
for the metallic shown in Figure 9a. However, the fitting accuracy is a relative error over
8%. This means that surface modeling via the metaheuristic algorithm improves the model
fitting of the optical microscope imaging systems. Additionally, the surface data accuracy
has an influence on the surface model fitting. In this matter, the optical microscope imaging
systems perform the spherical and cylindrical surface modeling by means of surface, which
is determined via gray-level [61,62]. However, the gray-level profile does not reproduce the
surface profile under the test. Therefore, the gray-level does not help to improve the model
fitting. Instead, the micro-scale contouring via micro laser line reproduces the surface
profile with high accuracy. It is because the micro laser line reflection depicts the object
surface profile. Additionally, the artificial intelligence algorithms have been employed
by the contact methods to perform the spherical and cylindrical surface modeling [63,64].
These algorithms optimize the mathematical parameters of the spherical and cylindrical
models by employing the traditional search structure [65,66]. In this matter, the proposed
metaheuristic algorithm performs an analytic process to determine the search space, which
provides initial values near to the optimal model parameters. This procedure is carried
out via Equations (3)–(5) for the spherical surface modeling and Equations (15)–(18) for
the cylindrical surface modeling. Thus, the metaheuristic algorithm determines the initial
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parameters by solving the surface model via surface geometry data. These initial param-
eters are the best candidates for the first solution of the surface model parameters. In
this way, the search procedure begins on a path, which provides the optimal parameters.
It is because the search procedure begins near to the optimal parameters. This leads to
improving the metaheuristic algorithm efficiency by reducing iterations to find the best
model parameters. It is elucidated by the low error in the first generation. Thus, the
metaheuristic algorithm determines the optimal parameters from the surface data. The
traditional algorithms do not provide the initial parameters near to the optimal parameters.
It is because the traditional algorithms do not determine the initial values by solving the
model via surface data. Furthermore, the proposed metaheuristic algorithm performs ex-
ploration and exploitation, which perform a search procedure inside and outside of parents.
Thus, all search space can be analyzed. This procedure leads to finding the best solution for
the model parameters in an efficient form. The capability of the proposed metaheuristic
genetic algorithm is elucidated by comparison with respect to the metaheuristic algorithms.
To elucidate this, the quality gap, running time, and suitable structure of the metaheuristic
algorithms are mentioned as follows. The particle swarm optimization provides a quality
gap of 4.44% and a running time of 253 generations for spherical and cylindrical surface
modeling. The ant colony optimization provides a quality gap of 4.74% and a running time
of 286 generations. The simulated annealing optimization provides a quality gap of 4.91%
and a running time of 292 generations. The suitable structure is compared with the particle
swarm optimization that provides better results. To do so, the population evolution of the
particle swarm is described as follows. The population evolution of the particle swarm
is described by the expressions Vi(t+1) = wVi(t) + αR1[Pb

g(t) − Pi(t)] + βR2[Pb
i(t) − Pi(t)],

where Pi(t+1) = Pi(t) + Vi(t), where t is the number of iterations, and α and β represent the
learning factors. The parameters R1 and R2 are random numbers ranging from 0 to 1, and
w is the inertia weight. Based on these statements, the population of each generation is
generated by a function that depends on five variables, which should be determined. The
genetic algorithm determines the population of each generation by a function that depends
on the variable β, which is computed via the spread factor between 0 and 1. Therefore,
the genetic algorithm performs a structure that is more simple than the particle swarm
optimization. In addition, ant colony optimization and simulated annealing optimization
employ more variables than the genetic algorithm to construct surface models. From the
results, the genetic algorithm elucidates a suitable structure to construct surface models.
This statement is corroborated by the surface model constructed via genetic algorithm
and by particle swarm optimization [67]. Based on these statements, the capability of the
micro-scale spherical and cylindrical surface modeling via the metaheuristic algorithm
based on the micro laser line projection is elucidated. Moreover, the low cost of the simple
setup increases the viability of the proposed micro-scale spherical and cylindrical surface
modeling. In this way, the micro-scale surface modeling via the genetic algorithm and
micro laser line projection provides a contribution for the optical microscope imaging
systems, which perform micro-scale surface modeling.

The computer employed to perform the micro-scale spherical and cylindrical surface
modeling is a PC to 1.8 GHz of velocity. The frame rate of the camera is 58 fps. The slider
device moves the microscope vision system via control software. Each micro laser line
image is processed in 0.0074 s to determine the micro-scale surface contour. The spherical
surface model for the plastic surface is determined in 26.21 s. The time of this procedure
includes the surface scanning and the surface modeling. The cylindrical surface model for
the metallic surface is determined in 25.48 s.

5. Conclusions

A powerful technique to perform micro-scale spherical and cylindrical surface model-
ing by means of a metaheuristic algorithm based on micro laser line projection with microns
resolution has been presented. This spherical and cylindrical surface modeling via genetic
algorithm improves the model fitting accuracy of the traditional optical microscope imaging
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system, which performs surface modeling. This contribution is achieved via model fitting
accuracy and genetic algorithm efficiency. The model fitting improvement is obtained by
the genetic algorithm, which fits the spherical and cylindrical surface model near the surface
topography. In addition, the micro-scale surface contouring via micro laser line contributes
to the model fitting accuracy. It is because the micro laser line reflection reproduces the
surface topography with great accuracy. Thus, the micro-scale surface model is generated
from the real surface topography. The genetic algorithm efficiency is achieved by mean
of the solution space, which provides analytic equations that generate initial parameters
near to optimal model parameters. This leads to reducing the iterations number to find
the model with the best fitting. Thus, the proposed micro-scale spherical and cylindrical
surface modeling provides a valuable tool to represent spherical and cylindrical surfaces in
micro-scale metrology. Additionally, the proposed technique is implemented with a simple
optical hardware, which includes an optical microscope, a diode laser, and a CCD camera.
Therefore, the low cost of the setup corroborates the viability of the proposed technique to
perform micro-scale spherical and cylindrical surface modeling in the interval of microns.
Thus, the micro-scale spherical and cylindrical surface modeling based on micro laser line
projection has been performed with good results in the micro-scale interval.

This research is still working to provide some missing tools. For instance, the method
just constructs spherical and cylindrical surface models. However, free-form surface models
are required. In addition, the method should determine surface deformation via surface
modeling. Therefore, future work is recommended as follows. Future work includes micro-
scale spherical and cylindrical surface deformation modeling via metaheuristic algorithms
and micro laser line scanning, micro-scale free-form surface modeling via metaheuristic
algorithms and micro laser line scanning, micro-scale surface pattern characterization and
recognition via algorithms of artificial intelligence and micro laser line scanning, and a
micro-scale surface porosity inspection via micro laser line scanning and metaheuristic
algorithms.
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