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Abstract: The finite-difference method is widely used in seismic wave numerical simulation, imaging,
and waveform inversion. In the finite-difference method, the finite difference operator is used to
replace the differential operator approximately, which can be obtained by truncating the spatial
convolution series. The properties of the truncated window function, such as the main and side lobes
of the window function’s amplitude response, determine the accuracy of finite-difference, which
subsequently affects the seismic imaging and inversion results significantly. Although numerical
dispersion is inevitable in this process, it can be suppressed more effectively by using higher precision
finite-difference operators. In this paper, we use the krill herd algorithm, in contrast with the standard
PSO and CDPSO (a variant of PSO), to optimize the finite-difference operator. Numerical simulation
results verify that the krill herd algorithm has good performance in improving the precision of the
differential operator.

Keywords: seismic numerical modeling; finite-difference scheme; nature-inspired optimization
algorithms; particle swarm optimization; center-decenter particle swarm optimization; krill herd
algorithm

1. Introduction

Seismic wave numerical modeling is a widely used method to simulate the propagation
of seismic waves in a known geological landscape. So far, it has been used in seismic
exploration and seismology, e.g., earthquake disaster prediction [1], seismic performance
assessment of roads, buildings, bridges, and other materials [2,3], seismic oceanography [4],
ship detection, and identification [5].

The wave equation is of fundamental importance for describing the propagation
of seismic waves [6]. The methods of seismic wave numerical modeling based on the
wave equation include the finite-difference (FD) method [7], the finite element method [8,9],
and the pseudo spectrum method [10]. The FD method, first presented in 1968 [7], simulates
the propagation of seismic waves in various media of the earth and thus can help predicate
what happens during the propagation process [11]. Compared to other techniques, the FD
method is more efficient and easily implemented [6].

Generally, the wave equation of seismic wave propagation is a partial differential
equation. The FD method transforms the continuous problem into the discrete problem,
and one can obtain the approximate solution of the original wave equation by solving
the difference equation. As the pseudospectral method is considered as the highest order
finite-difference scheme [12], we shall calculate the finite-difference operator by truncating
the convolution series of the pseudospectral method with the window function. However,
the discretization of wave equation inevitably introduces numerical dispersion, which
deteriorates the accuracy of seismic wave simulation. The window function method and
optimization method are two essential ways to suppress numerical dispersion.
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The size of the window function grid plays an influential role in the modeling precision.
Although the refined difference grids offer better performance, sometimes, coarse difference
grids are preferably used to reduce the computational cost. For this reason, choosing a
suitable window function is demanding in practice. The traditional window functions
include Hanning [13], Gaussian [14], Kaiser [15], and so on. In the past decades, some
new window functions were also reported in the literature. Wang et al. [16] proposed
a Chebyshev auto-convolution combined window. Zheng et al. [17] developed a cosine
modulated Chebyshev window. Wang and Hong [18] constructed a new window function
by combining the cosine function with the original window function.

Optimizing the difference operator is another strategy. In this category, the Newton
method, the least squares method, and the swarm intelligence algorithm are frequently
used. For example, Zhang and Yao [19] applied the simulated annealing algorithm to
search for the operator that best satisfies the constraints. Z.Y. Wang et al. [20] used the
improved particle swarm optimization (PSO) algorithm to optimize the finite-difference
operator. Ren et al. [21] developed the least-squares method to optimize the staggered-grid
finite-difference operator.

Both the window function and optimization method aim to find the optimal win-
dow function coefficients. The difference is that window functions are directly designed
parameters, while optimization methods generate the optimal coefficients through the
iteration. In this paper, we use the nature-inspired optimization (NIO) algorithms to find
the fittest finite-difference coefficients. The NIO algorithms are widely used to solve the
optimal solution problem in continuous and discrete space. In this paper, we implement the
krill herd algorithm (KH), which is a recently proposed NIO algorithm, the PSO, and the
center–decenter PSO, which is a variant of PSO. We derive the finite-difference operator
through sinc function interpolation and Taylor series expansions. We define the objective
function as the error function of the first and second derivatives. Compared with Wang’s
Chebyshev auto-convolution combined window, all the NIO algorithms show outstanding
performances in seismic wave numerical simulation. Among them, KH exhibits greater
stability at most orders.

The rest of the paper is structured as follows. Section 2 introduces the finite-difference
method and deduces the objective function of the optimization method. The seismic
numerical modeling and the three NIO algorithms are also introduced in this section.
Section 3 presents the numerical simulations. Section 4 concludes the paper.

2. Methods
2.1. Finite-Difference Method

We start with a brief introduction of the FD method. Based on studies of Chu and
Stoffa [22] and Bai et al. [23], we describe the derivation process of FD operators as follows.
First, the FD operators can be derived by the sinc interpolator. According to Nyquist’s
theorem, a continuous signal f (x) with limited bandwidth can be reconstructed by in-
terpolating the normalized sinc function. Roughly speaking, the FD method represents
waveforms with discrete samples.

sinc(x) =

{
1, if x = 0
sin(πx)

πx , otherwise
f (x) =

+∞

∑
n=−∞

sinc
(

x− n∆x
∆x

)
f (n∆x), (1)

where ∆x is the sampling interval. Thus, 1/∆x is the sampling frequency, and f (n∆x) is
the infinite uniformly spaced discrete sequence of f (x).

The first and second derivatives of f are derived from Equation (1). The derivation
can be simplified by letting x = 0 (see Appendix A.1).

∂ f
∂x

∣∣∣∣
x=0

=
1

∆x

+∞

∑
n=−∞

(
− 1

n
cos(nπ)

)
f (n∆x), (2)
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∂2 f
∂x2

∣∣∣∣
x=0

=
1

∆x2

+∞

∑
n=−∞

(
− 2

n2 cos(nπ)

)
f (n∆x). (3)

We use a window function ω(n) with length N + 1 to truncate the derivative function
Equations (2) and (3). N is an even number, which is related to the accuracy. Windowing is
a weighting process that truncates the function of infinite length to [−N/2, N/2]. The FD
operators can be calculated as:

∂ f
∂x

∣∣∣∣
x=0
≈ 1

∆x

N/2

∑
n=−N/2

ω(n)
(
− 1

n
cos(nπ)

)
f (n∆x), (4)

∂2 f
∂x2

∣∣∣∣
x=0
≈ 1

∆x2

N/2

∑
n=−N/2

ω(n)
(
− 2

n2 cos(nπ)

)
f (n∆x). (5)

Chu and Stoffa [22] pointed out that w(n) in the conventional FD operator is a binomial
constant coefficient, and they referred to the conventional w(n) as a binomial window. One
method to obtain a better FD operator is to design a more suitable w(n) function, which
requires more control over the parameters. For the optimization algorithms, we need to
set an objective function. Consider the coefficients of the function Equations (4) and (5) as
a whole:

∂ f
∂x

∣∣∣∣
x=0
≈ 1

∆x

N/2

∑
n=−N/2

bn f (n∆x),
∂2 f
∂x2

∣∣∣∣
x=0
≈ 1

∆x2

N/2

∑
n=−N/2

cn f (n∆x), (6)

where

bn = − 1
n

cos(nπ)ω(n), cn = − 2
n2 cos(nπ)ω(n),

bn and cn are the finite-difference coefficients for the first and second derivative, respectively.
They are related by cn = 2bn/n.

The FD weights can also be obtained through the Taylor series expansions (Thongyoy
and Boonyasiriwat [24]). It reflects the relation between finite-difference operators and the
pseudospectral method. The finite-difference operator is formulated as (see Appendix A.2):

∂ f
∂x
≈ 1

∆x

N/2

∑
n=1

bn( fn − f−n), (7)

∂2 f
∂x2 ≈

1
∆x2

[
c0 f0 +

N/2

∑
n=1

cn( fn + f−n)

]
, (8)

where fn = f (x+ n∆x), bn and cn aredefinedsimilarlyasbefore. ∑N/2
n=−N/2 bn = ∑N/2

n=−N/2 cn = 0,
b−n = −bn, c−n = cn. Hence, for n = 0,

b0 = 0, c0 = −2
N/2

∑
n=1

cn. (9)

Performing the Fourier transform on Equations (7) and (8), the data can be transformed
from the conventional spatial and time domains to the frequency-wavenumber domain,
which is also known as the F-k domain (see Appendix A.3). We obtain the first derivative
in the F-k domain:

kx∆x ≈ 2
N/2

∑
n=1

bn sin(nkx∆x), (10)
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and the second derivative:

− (kx∆x)2 ≈ c0 + 2
N/2

∑
n=1

cn cos(nkx∆x), (11)

where kx is the wavenumber corresponding to the spatial derivative ∂/∂x and ∂2/∂x, which
is the variable in the F-k domain.

The truncation error of the first derivative and second derivative can be expressed as:

E1 = 2
N/2

∑
n=1

bn sin(nkx∆x)− kx∆x, (12)

E2 = −
[

c0 + 2
N/2

∑
n=1

cn cos(nkx∆x)

]
− (kx∆x)2. (13)

The FD method replaces the differential in the wave equation with difference, namely,
the difference form of the derivative obtained above. To minimize the numerical dispersion
introduced by the replacement, we shall find the optimal coefficients bn and cn that mini-
mize the truncation errors E1 and E2. The optimization problem of seismic wave simulation
has been transformed into a coefficient optimization problem. Since bn or cn can be derived
from each other, we attempt to obtain the optimal bn using the NIO algorithms. Zhang and
Yao [19] expressed the objective function of the optimization method as follows:

max
0≤kx≤kmax

x
|E1| ≤ ε, (14)

where kmax
x is the max wavenumber the FD can reach, and ε is the error limitation. We list

the frequently used symbols as in Table 1.

Table 1. List of symbols.

Symbol Meaning

∆x sampling interval
n∆x sampling point

N order
f (x) signal

f (n∆x) sample of f (x)
fn f (x + n∆x)

w(n) window function
E1, E2 truncation errors of the first and second derivative
bn, cn FD coefficients of the first and second derivative

ε error limitation
kx wavenumber

kmax
x max wavenumber

kcuto f f cutoff wavenumber

2.2. Modeling

We use the elastic wave equation to simulate the seismic wave propagation. The
earthquake hypocenter function is given as follows:

f (i) =

(
1− 2(π fpeak(i−

1
fpeak

))2

)
e
−(π fpeak(i− 1

fpeak
))2

, (15)

where fpeak is the dominant frequency, and i ∈ {0, 1, . . . , n} is the propagation cycle. We set
fpeak = 50 Hz.



Algorithms 2022, 15, 132 5 of 15

The max iteration n is calculated by:

n = round(
ts

∆t
), (16)

where ts is the simulation duration and ∆t is the discrete time interval. Let ts = 0.3 s and
∆t be 0.75 ms; then, n = 400.

We use the homogeneous medium model and the more complex Marmousi velocity
model [25] as the basic model of propagation geology. The Marmousi velocity model is
an anisotropic media with very large velocity variations in the horizontal and vertical
directions. The grid size of the homogeneous medium model is 200× 200, and that of
Marmousi is 767× 751, as shown in Figure 1. Different media are distinguished by different
colors. The position of the earthquake hypocenter is at the center and that of the receiver is
at 50 grids right to the center. The grid spacing is set to 10 m.

0 100 200 300 400 500 600 700

0

100

200

300

400

500

600

700

Figure 1. The landscape of the seismic wave propagation. Different colors in the model represent
different media which impact the speed of wave propagation.

2.3. Three Optimization Algorithms

We optimize the finite-difference operator by minimizing the difference between the
optimizing difference operator and the differential operator. A smaller truncation error
means lower numerical dispersion. Next, we briefly introduce the three NIO algorithms:
PSO, CDPSO, and KH.

2.3.1. Particle Swarm Optimization

PSO is a well-reputed nature-inspired algorithm proposed by Kennedy and Eber-
hart [26], which mimics bird flocking or fish schooling. In the PSO algorithm, each agent
has two attributes: the position and the velocity. The new position of the agent is updated
by the velocity. Each agent has a current fittest position pbest. gbest represents the global
fittest position of all agents. The maximum velocity method is used as the update rule [27].
Specifically, the position is updated as follows:

positioni+1 = positioni + vi, (17)

where positioni is the current position of the agents at the ith iteration, and vi is the velocity
at the ith iteration that is given as:

vi+1 = wvi + c1r1(pbesti − positioni) + c2r2(gbesti − positioni), (18)

where w is the inertia weight coefficient; c1 and c2 are the acceleration constants of individ-
ual and society; r1 and r2 are random numbers between 0 and 1.
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2.3.2. Center–Decenter PSO

CDPSO, proposed by Wang [23], is a variant of PSO that has the advantage of avoiding
premature convergence and local trap in PSO. It combines two learning strategies: cen-
tralized learning and decentralized learning. The agent switches its strategy to update
the velocity.

In the centralized learning strategy, the velocity of the ith iteration is updated as
follows, and the meaning of the same coefficients is the same as that of PSO.

vi+1 = wvi + c1r1(Ei − positioni), r1 ∈ [0, 1],

Ei =
1
L

L

∑
l=1

pbesti
l ,

(19)

where L is a random number, which represents the number of partial optimal solutions.
The velocity in decentralized learning is updated as follows:

vi+1 = wvi + c2r2(pbesti
γi − positioni), r2 ∈ [0, 1],

γi = rand()%P, γi ∈ [1, P],
(20)

where γ is the serial number of the particle, and P is the number of agents in the range of
all possible solutions.

2.3.3. Krill Herd Algorithm

The Krill herd (KH) algorithm was proposed in 2012 by Gandomi and Alavi [28]. KH
is inspired by the herding behavior of the krills. The position of the ith krill individuals Xi
is influenced by three main factors: movement induced by the presence of other individuals
Ni, foraging activity Fi, and random diffusion Di, respectively:

dXi
dt

= Ni + Fi + Di. (21)

The individual motion is induced by the neighbors within a certain range and the
position of the elite individual. The formula for induced speed N is given as follows:

Nnew
i = Nmax ∗ αi + wn ∗ Nold

i , wn ∈ [0, 1],

αi = αlocal
i + α

target
i ,

(22)

where wn is the inertia weight, αi is the direction of the induced, αlocal
i is the influence of

neighbors, and α
target
i is the influence of individuals with optimal fitness values.

The foraging motion is relevant to the location of food and previous experience. The
foraging speed F is formulated as follows:

Fnew
i = Vf ∗ βi + w f ∗ Fold

i , w f ∈ [0, 1],

βi = β
f ood
i + βbest

i ,
(23)

where w is the inertia weight; βi is the direction of the forage.
The physical diffusion is the random movement behavior of krill populations. The

diffusion speed D is as follows:

Di = Dmax
(

1− iter
itermax

)
δ, δ ∈ [−1, 1], (24)

where δ is a random value.



Algorithms 2022, 15, 132 7 of 15

We give the flow charts of the above-mentioned algorithms in Figure 2. PSO and
CDPSO have similar processes. The difference between them is that CDPSO alters the
updating strategy of the velocity.

Figure 2. The flow charts of PSO, CDPSO, and KH.

3. Numerical Simulation
3.1. Simulation Setup

The parameters regarding the seismic wave landscape have been given previously. We
let population = 30, iteration = 500 for PSO and KH, population = 100, and iteration = 1500
for CDPSO. The coefficients of PSO and CDPSO are assigned as: w = 0.8, c1 = c2 = 1.5,
and the velocity is between −0.001 and 0.001.

We use the first-order derivative truncation error E1 in Equation (12) as the objective.
The value of E is corresponding to the value of kx. We denote this one–one relation as E(kx).
To make the image of coefficient convergence more demonstrative, the above error value
E(kx) is used to calculate the number of agents that meet the requirement of the accuracy.
Given the accuracy ε = 5e−3, the cost function value (CFV) is determined as follows:

C(kx) =

{
1 |E(kx)| ≥ ε,
0 else;

(25)

CFV =

kcuto f f

∑
kx=0

C(kx). (26)

where kcuto f f is the cutoff wavenumber, corresponding to the upper limit of kx. As
kx ∈ [0, π/∆x] and the sampling interval ∆x is set to π, kx ∈ [0, 1]. kcuto f f ∈ [0, 1000],
then the kx is an increasing sequence 0, 0.001, · · · , kcuto f f /1000.

We choose the order N as [8, 12, 16, 20, 24]with kcuto f f = [0.54, 0.65, 0.74, 0.8, 0.85]× 1000
for the following tests of the three algorithms.

3.2. Coefficients Convergence

To test the performance of the algorithms, we use CFV in Equation (26) to evaluate
the fitness of the solution. The fitness convergence curves of the three NIO algorithms
are illustrated in Figure 3. The closer CFV value is to 0, the better the precision of the
algorithm is.
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Figure 3. The convergence curves of PSO (a), CDPSO (b), and KH (c).

As illustrated in Figure 3, the KH algorithm with 500 generations shows better accuracy
than the CDPSO algorithm with 1500 generations. When the order N = 8, the KH algorithm
is slightly better than the PSO algorithm. However, when N = 16, the KH algorithm
converges to a good optimum, while PSO and CDPSO do not converge.

We give the first finite-difference coefficients bn optimized by the three algorithms
in Tables 2–4.

Table 2. The finite-difference coefficients for the first derivative optimized by PSO.

N = 8 N = 12 N = 16 N = 20 N = 24

b1 0.849367818 0.920977162 0.877587089 0.965287713 0.973893871
b2 −0.25408939 −0.3577484 −0.288519626 −0.433682998 −0.449521466
b3 0.065186786 0.153433266 0.079759689 0.24111591 0.261752507
b4 −0.009222605 −0.058927291 0 −0.139204287 −0.161705926
b5 0.017640291 0 0.078452231 0.1
b6 −0.003169356 −0.006035286 −0.041571492 −0.06002697
b7 0.013566605 0.020009949 0.034157136
b8 −0.013048505 −0.008365952 −0.017995371
b9 0.002801649 0.008513142

b10 −0.00060467 −0.003450766
b11 0.001103313
b12 −0.000224999

Table 3. The finite-difference coefficients for the first derivative optimized by CDPSO.

N = 8 N = 12 N = 16 N = 20 N = 24

b1 0.860321205 0.86109756 0.897879165 0.945915193 0.973635331
b2 −0.26835603 −0.266916073 −0.319377704 −0.399220361 −0.449084566
b3 0.074799005 0.070567648 0.112048086 0.198575497 0.261348878
b4 −0.012312666 −0.008783105 −0.026268214 −0.096211902 −0.161442267
b5 7.08 × 10−7 0.000414949 0.041381255 0.099999422
b6 −0.000970876 −0.1.99 × 10−7 −0.014264206 −0.06040469
b7 0.002950187 0.003122273 0.034861698
b8 −0.002579216 −0.000113252 −0.018844889
b9 0.5.24 × 10−6 0.009398521

b10 −0.000148269 −0.004199285
b11 0.001607051
b12 −0.000460175
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Table 4. The finite-difference coefficients for the first derivative optimized by KH.

N = 8 N = 12 N = 16 N = 20 N = 24

b1 0.85637065 0.91565981 0.953061594 0.956976127 0.973409618
b2 −0.263266133 −0.349228563 −0.411757109 −0.418632603 −0.448750956
b3 0.071389175 0.144791061 0.213788114 0.222144041 0.260615495
b4 −0.011184471 −0.052565668 −0.111261167 −0.119424376 −0.160355857
b5 0.014337537 0.053990931 0.060681453 0.098818855
b6 −0.002178404 −0.023007227 −0.027737712 −0.059118172
b7 0.007967749 0.010823998 0.033637319
b8 −0.00182424 −0.003382806 −0.01775192
b9 0.000823068 0.008525232

b10 −0.000185621 −0.003794
b11 0.00150656
b12 −0.000518958

3.3. Stability

We calculate second coefficients cn by using the formula mentioned in Section 2.1:
cn = 2bn/n (n = 1, 2, . . . , N/2), c0 = −2 ∑N/2

n=1 cn. Then, we use the absolute error E1
(Equation (12)) and E2 (Equation (13)) to evaluate the stability of the optimized difference
operators. The absolute error is illustrated in Figure 4.

1st Derivative 1st Derivative× 1000 2nd Derivative 2nd Derivative×1000

PS
O

0 20 40 60 80 100

Percentage of Nyquist wavenumbe 

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Ab
so

lu
te

 e
  o

 

Fi st de ivative conventional g id

PSO N=8
PSO N=12
PSO N=16
PSO N=20
PSO N=24
Refe ence Line

0 20 40 60 80 100

Percentage of Nyquist wavenumbe 
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Ab
so

lu
te

 e
  o

 

Fi st de ivative conventional g id

PSO N=8
PSO N=12
PSO N=16
PSO N=20
PSO N=24
Refe ence Line

0 20 40 60 80 100

Percentage of Nyqui t wavenumber
−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Ab
 o

lu
te
 e
rro

r

Second derivative conventional grid

PSO N=8
PSO N=12
PSO N=16
PSO N=20
PSO N=24
Reference Line

0 20 40 60 80 100

Percentage of Nyqui t wavenumber
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Ab
 o

lu
te
 e
rro

r

Second derivative conventional grid

PSO N=8
PSO N=12
PSO N=16
PSO N=20
PSO N=24
Reference Line

C
D

PS
O

0 20 40 60 80 100

Percentage  f Nyquist wavenumber
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Ab
s 
lu
te
 e
rr 

r

First derivative c nventi nal grid

CDPSO N=8
CDPSO N=12
CDPSO N=16
CDPSO N=20
CDPSO N=24
Reference Line

0 20 40 60 80 100

Percentage  f Nyquist wavenumber
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Ab
s 
lu
te
 e
rr 

r

First derivative c nventi nal grid

CDPSO N=8
CDPSO N=12
CDPSO N=16
CDPSO N=20
CDPSO N=24
Reference Line

0 20 40 60 80 100

Percentage of Ny uist wavenumber
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Ab
so
lu
te
 e
rro

r

Second derivative conventional grid

CDPSO N=8
CDPSO N=12
CDPSO N=16
CDPSO N=20
CDPSO N=24
Reference Line

0 20 40 60 80 100

Percentage of Ny uist wavenumber
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Ab
so
lu
te
 e
rro

r

Second derivative conventional grid

CDPSO N=8
CDPSO N=12
CDPSO N=16
CDPSO N=20
CDPSO N=24
Reference Line

K
H

0 20 40 60 80 100

Percentage of Nyquist wavenumbe 

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Ab
so

lu
te

 e
  o

 

Fi st de ivative conventional g id

KH N=8
KH N=12
KH N=16
KH N=20
KH N=24
Refe ence Line

0 20 40 60 80 100

Percentage of Nyquist wavenumbe 
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Ab
so

lu
te

 e
  o

 

Fi st de ivative conventional g id

KH N=8
KH N=12
KH N=16
KH N=20
KH N=24
Refe ence Line

0 20 40 60 80 100

Percentage of Nyqui t wavenumber

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Ab
 o

lu
te
 e
rro

r

Second derivative conventional grid

KH N=8
KH N=12
KH N=16
KH N=20
KH N=24
Reference Line

0 20 40 60 80 100

Percentage of Nyquist wavenumbe 
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Ab
so

lu
te

 e
  o

 

Second de ivative conventional g id

KH N=8
KH N=12
KH N=16
KH N=20
KH N=24
Refe ence Line

Figure 4. The first and second derivative accuracy of PSO, CDPSO, and KH. The horizontal and
vertical coordinates are the percentage of Nyquist wavenumber kx and absolute error E1, respectively.

The curve is flat from the beginning. It decreases after the wavenumber reaches about
60. To make it easier to observe, the figure is magnified a thousand times (columns 2 and 4).
The closer the curve is to 0, the higher the error stability is. It is observed that the curve
fluctuates up and down at 0 and extends abruptly to negative infinity at a certain point.
PSO performs well at N = 12 and 24 but not very well at N = 8 and 16. CDPSO is good at
N = 8, but the overall fluctuation is large. The second derivative error of KH is between
plus and minus 0.00075. The KH algorithm shows better stability than PSO and CDPSO.
When the percentage of Nyquist wavenumber is less than 40 in the first derivative and less
than 50 in the second derivative, the KH algorithm shows excellent stability.
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3.4. Model Test

We choose the N = 12 finite-difference coefficients of the second derivative cn for wave
field simulation. Take Wang’s [16] data as a baseline, which are denoted as ‘source’. They
proposed a Chebyshev auto-convolution combined window. The four finite-difference
coefficients of the second derivative are illustrated in the Table 5.

Table 5. Finite-difference coefficients of the second derivative optimized by PSO, CDPSO, and KH
(N = 12).

c0 c1 c2 c3 c4 c5 c6

Source −3.138521049 1.854196962 −0.368305121 0.110295386 −0.034584857 0.009637126 −0.001978972
PSO −3.126061573 1.841954323 −0.3577484 0.102288844 −0.029463646 0.007056116 −0.001056452

CDPSO −2.995218501 1.722195119 −0.266916073 0.047045099 −0.004391552 2.83 × 10−7 −0.000323625
KH −3.114688956 1.831319621 −0.349228563 0.096527374 −0.026282834 0.005735015 −0.000726135

Take the wave field simulation of the homogeneous medium first. With the earthquake
hypocenter obtained from Equation (15), we choose the snapshot at 150 ms, as shown in
Figure 5. Since the homogeneous medium is isotropic, the entire wave field can be known
by looking at the graph in only one direction. Therefore, we stitched the four figures
together to facilitate the comparison. The operator with less waviness suppressed the
numerical dispersion better, and the parameters calculated are better, too. It is observed
that PSO is quite similar to the source, while KH is the best to have less wave. KH has
significantly suppressed numerical dispersion.

Figure 5. Impulse response of CDPSO, KH, PSO, and source in homogeneous medium at 150 ms.

We take the simulation on the Marmousi model shown in Figure 1. Figure 6 gives four
wave field snapshots taken at 75 ms intervals.

Due to the complexity of the model and the small difference between the optimized
parameters, the obtained wave field information is mixed and difficult to distinguish. It
is not obvious which one is better. Therefore, we make the single traces figure from the
receiver to show the differences. A portion of the trace after the arrival of the main waver
is captured and shown in Figure 7. To see the differences more clearly, we zoomed in on
the waveform after the arrival of the main frequency. CDPSO has a better suppression of
numerical dispersion in the later stages, although the suppression is not as good as the
source data in the early stage. The overall trend of PSO is the same as source data, while
KH is slightly different from the source in the late stage. It is observed from the wave of
about 625 that both KH and PSO have a better suppression effect than the source. KH is
much better than CDPSO and slightly better than PSO. The differences caused by parameter
optimization become less noticeable as the complexity of the model increases.
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Figure 6. The Chebyshev auto-convolution windows of CDPSO, KH, and PSO.

(a) PSO (b) CDPSO (c) KH (d) Source

Figure 7. The trace of PSO, CDPSO, KH, and source within 300 ms.

In a nutshell, the KH shows the best performance among the three algorithms.
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4. Conclusions

The finite-difference method uses the difference formulas to replace the derivatives
approximately. We introduced the process of obtaining the FD operator and set the error as
the optimization objective. We used the NIO algorithms to optimize the first and second
derivative coefficients. We compared the performance of the three optimization algorithms
(PSO, CDPSO, and KH) in terms of convergence and stability, and we compared them
with Chebyshev auto-convolution combined window in a model test. Compared with the
Chebyshev window, KH and PSO have better performance. Despite the fact that we did
not perform further tuning operation, the NIO algorithms still have a good performance in
spectral suppression. KH is the most stable algorithm among the three, which performs
well at all N orders. It shows promising prospect in optimizing a finite-difference operator
in seismic wave numerical modeling.
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Appendix A. FD Operator

Appendix A.1. The First and Second Derivatives of f

The first and second derivatives of f can be derived from Equation (1).

∂ f
∂x

=
+∞

∑
n=−∞

{ π
∆x cos[ π

∆x (x− n∆x)]× π
∆x (x− n∆x)− sin[ π

∆x (x− n∆x)] π
∆x

[ π
∆x (x− n∆x)]2

}
f (n∆x),

=
+∞

∑
n=−∞

{
cos[ π

∆x (x− n∆x)]
x− n∆x

−
sin[ π

∆x (x− n∆x)]
π

∆x (x− n∆x)2

}
f (n∆x),

(A1)

∂2 f
∂x2 =

+∞

∑
n=−∞

{− π
∆x sin[ π

∆x (x− n∆x)]× (x− n∆x)− cos[ π
∆x (x− n∆x)]

(x− n∆x)2

−
π

∆x cos[ π
∆x (x− n∆x)]× π

∆x (x− n∆x)2 − 2 π
∆x (x− n∆x)sin[ π

∆x (x− n∆x)]
( π

∆x )
2(x− n∆x)4

}
f (n∆x),

=
+∞

∑
n=−∞

{
sin[

π

∆x
(x− n∆x)]

( − π
∆x

x− n∆x
+

2
π

∆x (x− n∆x)3

)
−cos[

π

∆x
(x− n∆x)]

2
(x− n∆x)2

}
f (n∆x).

(A2)

While x = 0, sin[ π
∆x (x− n∆x)] = sin(−nπ) = 0. The derivatives can be simplified as:

∂ f
∂x

∣∣∣∣
x=0

=
1

∆x

+∞

∑
n=−∞

(
− 1

n
cos(nπ)

)
f (n∆x), (A3)

∂2 f
∂x2

∣∣∣∣
x=0

=
1

∆x2

+∞

∑
n=−∞

(
− 2

n2 cos(nπ)

)
f (n∆x). (A4)
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Appendix A.2. The FD Operator through Taylor’s Expansion

According to Wisart and Chaiwoot [24], the finite-difference formulas for the deriva-
tives can be obtained from Taylor’s expansion.

f (x) = f (x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)

2 + O((x− x0)
3),

f (x0 + n∆x) = f (x0) + f ′(x0)n∆x +
f ′′(x0)

2
(n∆x)2 + O((n∆x)3),

(A5)

x0 is a differentiable point on f . ∆x is the sampling interval, O((n∆x)n) is the approximate
error. Next, we calculate the normal derivative formula.

N/2

∑
n=−N/2

an f (x + n∆x) ≈ f (x)
N/2

∑
n=−N/2

an + ∆x f ′(x)
N/2

∑
n=−N/2

nan +
f ′′(x)

2
(∆x)2

N/2

∑
n=−N/2

n2an

≈ A f (x) + B∆x f ′(x) + C(∆x)2 f ′′(x)

A =
N/2

∑
n=−N/2

an, B =
N/2

∑
n=−N/2

nan, C =
1
2

N/2

∑
n=−N/2

n2an,

(A6)

where an are constant coefficients. For the calculation derivative, the constant A should be
0. For first derivative:

∂ f
∂x
≈ 1

∆x

N/2

∑
n=−N/2

an

B
f (x + n∆x) ≈ 1

∆x

N/2

∑
n=−N/2

bn f (x + n∆x),

N/2

∑
n=−N/2

bn = 0,
N/2

∑
n=−N/2

n2bn =
N/2

∑
n=1

n2(bn + b−n) = 0,

(A7)

where bn are the finite-difference coefficients for the first derivative. Let b−n = −bn; then,
we can get b0 = 0.

For the second derivative

∂2 f
∂x2 ≈

1
(∆x)2

N/2

∑
n=−N/2

an

C
f (x + n∆x) ≈ 1

(∆x)2

N/2

∑
n=−N/2

cn f (x + n∆x),

N/2

∑
n=−N/2

cn = 0,
N/2

∑
n=−N/2

ncn =
N/2

∑
n=1

n(cn − c−n) = 0,

(A8)

where cn are the finite-difference coefficients for the second derivative. Let c−n = cn; then,
we can get c0 = −2 ∑N/2

n=1 cn.
Then, the normal derivative formula is summarized as

∂ f
∂x
≈ 1

∆x

N/2

∑
n=1

bn( fn − f−n), (A9)

∂2 f
∂x2 ≈

1
(∆x)2

[
c0 f0 +

N/2

∑
n=1

cn( fn + f−n)

]
, (A10)

where fn = f (x + n∆x), N is the order, cn and bn are the FD coefficients. The higher the N,
the more approximate the result.
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Appendix A.3. Fourier Transform

The Fourier transform in the wavenumber domain is

F(kx) =
∫ +∞

−∞
f (x)e−ikx xdx, (A11)

f (x) =
1

2π

∫ +∞

−∞
F(kx)eikx xdkx, (A12)

where kx is the wavenumber, and i is the imaginary number.
Substitute Equation (A12) into Equations (7) and (8) as follows. The first derivative is

∂ f
∂x
≈ 1

∆x

N/2

∑
n=1

bn( fn − f−n),

1
2π

∫ +∞

−∞
ikxF(kx)eikx xdkx ≈

1
∆x

1
2π

N/2

∑
n=1

bn

∫ +∞

−∞
F(kx)(eikx(x+n∆x) − eikx(x−n∆x))dkx,

∆x
∫ +∞

−∞
ikxF(kx)eikx xdkx ≈

N/2

∑
n=1

bn

∫ +∞

−∞
F(kx)eikx x × 2isin(kxn∆x)dkx,

∫ +∞

−∞
eikx xF(kx)

[
ikx∆x− 2i

N/2

∑
n=1

bnisin(kxn∆x)

]
dkx ≈ 0.

(A13)

Hence,

kx∆x ≈ 2
N/2

∑
n=1

bnisin(kxn∆x). (A14)

The second derivative is

∂2 f
∂x2 ≈

1
∆x2

[
c0 f0 +

N/2

∑
n=1

cn( fn + f−n)

]
,

− 1
2π

∫ +∞

−∞
k2

xF(kx)eikx xdkx

≈ 1
∆x2

{
c0

2π

∫ +∞

−∞
F(kx)eikx xdkx +

1
2π

N/2

∑
n=1

cn

∫ +∞

−∞
F(kx)(eikx(x+n∆x) + eikx(x−n∆x))dkx

}
,

≈ 1
∆x2

1
2π

{
c0

∫ +∞

−∞
F(kx)eikx xdkx +

N/2

∑
n=1

cn

∫ +∞

−∞
F(kx)eikx x × 2cos(kxn∆x)dkx

}
,

≈ 1
∆x2

1
2π

∫ +∞

−∞
F(kx)eikx x(c0 + 2

N/2

∑
n=1

cncos(kxn∆x))dkx,

∫ +∞

−∞
F(kx)eikx x

[
(kx∆x)2 + (c0 + 2

N/2

∑
n=1

cncos(kxn∆x))

]
dkx ≈ 0.

(A15)

Hence,

− (kx∆x)2 ≈ c0 + 2
N/2

∑
n=1

cncos(kxn∆x). (A16)
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