
����������
�������

Citation: Truden, C.; Maier, K.;

Jellen, A.; Hungerländer, P.

Computational Approaches for

Grocery Home Delivery Services.

Algorithms 2022, 15, 125.

https://doi.org/10.3390/

a15040125

Academic Editors: Roberto Carballedo

Morillo and Eneko Osaba

Received: 8 March 2022

Accepted: 7 April 2022

Published: 9 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Computational Approaches for Grocery Home
Delivery Services
Christian Truden 1,2,* , Kerstin Maier 1,3 , Anna Jellen 3 and Philipp Hungerländer 1

1 Department of Mathematics, University of Klagenfurt, 9020 Klagenfurt, Austria;
kerstinma@edu.aau.at (K.M.); philipp.hungerlaender@aau.at (P.H.)

2 Department of Operations, Energy, and Environmental Management, University of Klagenfurt,
9020 Klagenfurt, Austria

3 MANSIO Karl Popper Kolleg, University of Klagenfurt, 9020 Klagenfurt, Austria; annaje@edu.aau.at
* Correspondence: christian.truden@aau.at

Abstract: The steadily growing popularity of grocery home-delivery services is most likely based
on the convenience experienced by its customers. However, the perishable nature of the products
imposes certain requirements during the delivery process. The customer must be present when
the delivery arrives so that the delivery process can be completed without interrupting the cold
chain. Therefore, the grocery retailer and the customer must mutually agree on a time window
during which the delivery can be guaranteed. This concept is referred to as the attended home
delivery (AHD) problem in the scientific literature. The phase during which customers place orders,
usually through a web service, constitutes the computationally most challenging part of the logistical
processes behind such services. The system must determine potential delivery time windows that
can be offered to incoming customers and incrementally build the delivery schedule as new orders
are placed. Typically, the underlying optimization problem is a vehicle routing problem with a
time windows. This work is concerned with a case given by an international grocery retailer’s
online shopping service. We present an analysis of several efficient solution methods that can be
employed to AHD services. A framework for the operational planning tools required to tackle the
order placement process is provided. However, the basic framework can easily be adapted to be used
for many similar vehicle routing applications. We provide a comprehensive computational study
comparing several algorithmic strategies, combining heuristics utilizing local search operations and
mixed-integer linear programs, tackling the booking process. Finally, we analyze the scalability and
suitability of the approaches.

Keywords: attended home delivery; grocery home delivery; vehicle routing problem with time windows

1. Introduction

E-commerce, i.e., the purchase of goods or services over the internet, is a continuously
growing business sector. In the 27 member states of the European Union (EU), the percent-
age of individuals that have ordered something over the internet in the past 12 months
has risen from 36% in 2010 to 49% in 2015 and even further to 60% in 2021 [1,2]. Among
the EU member states, with 92% of their citizens having purchased something online in
2021, Norway is leading this growth process. Denmark, the Netherlands, and Sweden are
following with 91%, 89%, and 87%, respectively. One of the main reasons for this develop-
ment is that e-commerce has brought many benefits to consumers over the past decade.
This includes a wide range of products at competitive prices and easy-to-use and secure
payment options. Due to these benefits, many people buy goods or services online on a
regular basis. In 2021, 38% of the individuals living in the EU purchased something online
one to five times within 3 months, while 9% of the individuals purchased something online
more than 10 times. Considering clothing, online sales have become a well-established
sales channel, as 39% of the individuals living in the EU ordered clothing online in 2021.

Algorithms 2022, 15, 125. https://doi.org/10.3390/a15040125 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15040125
https://doi.org/10.3390/a15040125
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9018-4269
https://orcid.org/0000-0002-6455-5297
https://orcid.org/0000-0002-9596-1298
https://doi.org/10.3390/a15040125
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15040125?type=check_update&version=2

Algorithms 2022, 15, 125 2 of 24

Deliveries from restaurants or fast-food chains purchased online have spiked in 2021 due
to the COVID-19 pandemic. While 17% of the individuals living in the EU ordered a meal
online in 2020, this number increased dramatically to 24% in 2021 [3]. The Dutch were the
most active in ordering meals online (53%). Internet sales of food and beverages (including
meal kits) account only for a comparably small portion of e-commerce sales. Only 18% of
the individuals of the EU member states ordered groceries online in 2021. This value varies
strongly among the EU member states: 28% in The Netherlands, 10% in Germany, and only
3% in Serbia [3]. As a survey conducted by Nielsen [4] in 2015 shows, a similar strong trend
towards the online sales of groceries can be observed worldwide. The global survey points
out that around a quarter of all respondents are already ordering grocery products online
for home delivery and that 55% are willing to do so in the future. Although only a small
portion of grocery sales are currently conducted online, there is increasing pressure for all
businesses, especially supermarket chains, to have an online presence. During the early
stages of the COVID-19 pandemic, the home delivery of groceries and essential supplies
became an effective measure to protect medically vulnerable persons [5].

In general, a large variety of groceries are sold online. Accordingly, there are several
different delivery modes necessary due to the different transport requirements of the
various grocery categories [6]. Beverages and non-perishable foods can be shipped with
traditional parcel services. Some perishable products, such as meat, for which the correct
temperature has to be maintained during shipment, can be shipped in isolated packages
together with thermal packs or dry ice. This delivery approach is less practical for most
groceries that are bought on a daily basis, as frozen goods, vegetables, fruits, and milk-based
products are very sensitive to temperature changes and their quality quickly deteriorates
when not being stored at the correct temperatures. The shipment of larger grocery purchases
via postal services is also impractical due to size and weight.

Therefore, many supermarket chains currently offer home delivery services where the
goods are transported in temperature-controlled vehicles. Additionally, “click-and-collect”
services, where the customers can pick up their purchases at a physical location, are be-
coming more popular. When offering home delivery services, the grocery supply chain
does no longer end at the supermarket shelves, but is extended towards the customers’
doors. Supermarkets that offer such services are now facing a “last-mile” delivery problem
that must be dealt with efficiently. The company must ensure that the cold chain is not
interrupted, and therefore the ordered products cannot be dropped off at the customer’s
door unattended. Hence, the customer must be present when the delivery arrives. A com-
mon way to approach this last-mile delivery problem, from the supermarket or distribution
center to the customer, is that the grocery vendor and the customer mutually agree on a
delivery time slot during which the arrival of the delivery as well as the presence of the
customer can be assured.

In the scientific literature, this kind of delivery service is widely known as the at-
tended home delivery (AHD) problem [7]. AHD services offer several benefits for the
customer, such as the nonstop opening hours of the online store, the avoidance of traveling
to the brick-and-mortar stores, almost no interruptions of the cold chain when buying
groceries, and no carrying of heavy or bulky items. Despite the huge potential and benefits
for customers, online grocery shopping services pose several interrelated logistics and
optimization challenges to the grocer. Deliveries may be dispatched from brick-and-mortar
stores where the purchases are picked by store employees and then handed over to a
delivery driver [8]. At a certain scale, the utilization of dedicated distribution centers, as
commonly used by e-commerce giants, is a reasonable alternative [9]. So-called “dark
stores”, i.e., supermarkets that are not open to the public but are only used for picking
online grocery orders, are a common in-between solution.

This work focuses on the online shopping service of one of the world’s leading
grocery chains. However, the basic principle of AHD services applies to many other
applications besides groceries, such as maintenance and repair services [10], on-demand
mobility services [11], or patient home-health-care services [12]. In this work, we provide

Algorithms 2022, 15, 125 3 of 24

a general framework for the operational planning of the “last-mile” delivery of groceries
purchased online.

For a better understanding, we break down the planning and fulfillment process of
the e-grocer into four phases (see also reference [13]). The first phase is called the tactical
planning phase, which happens several months/weeks before delivery. During this period,
the fleet of delivery vehicles is defined and drivers are assigned to them. Several weeks
up to days/hours before delivery starts the ordering phase, in which the grocery chain
accepts orders and starts planning the deliveries. Once all orders are placed (usually
days/hours before delivery), the company prepares the accepted orders for delivery during
the preparation phase (see Vazquez-Noguerol et al. [9] for a model that describes the order
picking at a central warehouse). Finally, during the delivery phase, the delivery vehicles
execute the orders according to the delivery schedule.

During the ordering phase, customers place their grocery orders using the company’s
website or mobile app. This interaction with customers through the online store holds
several computational challenges. Clearly, the website should respond to the customer
requests with as little delay as possible to ensure a smooth booking process. The grocer
must therefore decide if new orders can be accepted as quickly as possible, which means
solving an online variant of a vehicle routing problem with time windows (VRPTW). From
a computational point of view, the run time requirements for the optimization problems
occurring in the ordering phase are much more challenging than in the other phases.

This work is therefore dedicated to providing a framework for tackling the iterative
planning process during the ordering phase. The rest of this paper is organized as follows:
In Section 2, we review the relevant literature. A summary of the planning steps that must
be handled during the ordering phase is given in Section 3. Furthermore, formal models
of the underlying mathematical problems are provided in this section. We propose our
approaches based on local search operations and mixed-integer linear programming (MILP)
formulations in Section 4 and, furthermore, we give suggestions on how to combine them
to (i) decide acceptance of new orders, and to (ii) iteratively build the delivery schedule as
new orders are being accepted. In Section 5, we present the set-up of our computational
experiments and discuss their results. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we briefly review relevant literature concerning attended home delivery
(AHD) systems as well as solution methods for the underlying mathematical problems.

2.1. Attended Home Delivery

Campbell and Savelsbergh [7] describe an AHD system that decides if a new customer
order is accepted. Furthermore, the system assigns accepted orders to a time window under
consideration of the opportunity costs of the orders. In contrast to that, in our set-up, the
customer makes the decision regarding which delivery time window her or his order is
assigned to, which requires a different set-up and imposes different challenges. Campbell
and Savelsbergh describe the fulfillment process by the following three phases: (i) order
capture and promise, (ii) order sourcing and assembly, and (iii) order delivery. From an
algorithmic point of view, the authors propose a two-step insertion heuristic to tackle the
order capture and promise phase: in the first step, they employ a construction heuristic,
where, starting from an empty schedule, all already accepted requests are inserted into the
schedule, beginning with the “heaviest” requests. The second step evaluates if the new
request can be inserted into the constructed schedule in one of its acceptable time windows.
Furthermore, the authors approximate the expected profit of accepting an incoming request.
In their experimental evaluation, the heuristic provides good results, however, only on
instances with up to 100 customers, which is much smaller than the instances we consider
in our application (500 to 2000 customers).

Agatz et al. [14] present issues and solution approaches for the AHD problem, where
customers select the time window during which delivery shall take place, in a very similar

Algorithms 2022, 15, 125 4 of 24

set-up to our problem. Their particular focus is on supermarkets that sell groceries online.
They discuss the tactical planning issues related to the design of a time slot schedule,
i.e., which time slots to offer to customers. Furthermore, the paper covers dynamic time
slotting (see Section 2.3 for more details) as well as using penalties and incentives to
smoothen customer demands. Although this work is related to our application, however, it
covers tactical considerations rather than operational challenges.

Han et al. [15] discuss an AHD problem that emerges as an operational problem at the
depots of express courier companies. The problem combines a single-depot VRPTW and an
appointment scheduling problem. In this setting, the couriers must arrange an appointment
(via phone) to handover the delivery to the customer. Hence, uncertain customer behavior
in responding to the arranged appointment, e.g., no-show, or random response times, are
considered. Three main questions are addressed by the authors: (i) the allocation of the
customers to the limited number of couriers, (ii) the sequences in which the couriers visit
the customers, and (iii) the time to meet the next customer and the maximal time to wait
for the customer to show. Consequently, the authors propose an integrated approach that
tries to balance the customers’ inconvenience and the depot’s operational cost. However,
although directly related to our problem, many assumptions of this work do not carry over
to our problem setting. In general, the preparation of grocery deliveries requires longer
lead times. Hence, the arrangement of delivery time windows takes place much earlier.
Moreover, random customer behavior is neglect-able in our application.

Pan et al. [16] describe a data-driven two-stage approach that focuses on predicting
the absence probability of customers for a grocery home delivery service. Moreover, the
authors provide an excellent literature review of the online grocery shopping process and
the corresponding logistical operations. Ehmke [17] gives an overview of the logistical
challenges of AHD systems. As a result of a cooperation with a supermarket chain, Vazquez-
Noguerol et al. [8], present a MILP model for store-based e-fulfillment strategies with
multiple picking locations. The case where the orders are picked at a central warehouse is
also elaborated by Vazquez-Noguerol et al. [9]. Gayialis et al. [18] present a framework for
city logistics where the delivery and picking up of goods is considered. The article presents
the development of an information system that supports the efficient delivery of goods
within urban areas while bridging the gap between theory and business practices in freight
transportation.

2.2. Determining Feasible Time Slots

Most approaches in the literature [7,19–21] follow Savelsbergh’s “forward time slack”
approach [22], which we refer to as “simple insertion”, for validating the feasibility of all
possible delivery time windows for each incoming order. The advantages of this approach
lie in its simplicity and very short run times (see Section 4.1 for more details).

Hungerländer et al. [23] introduce the slot optimization problem (SOP) which aims to
determine the maximal number of available delivery time windows for a new customer.
They suggest an adaptive neighborhood search (ANS) to free up time during time windows
in order to enable the insertion of new customers. In a computational study, they compare
their ANS with two heuristics, the simple insertion method and a heuristic based on MILP
formulations for a sub-problem of the TSPTW, and showed that the ASN is able to find
much more time slots while still being fast enough for most online delivery services. Note
that their approach is restricted to non-overlapping time windows. However, to the best of
our knowledge, this is the only available paper which deals with a more effective feasibility
check than the simple insertion method. As our work is not restricted to non-overlapping
time windows, we must adapt the ANS [23] accordingly.

2.3. Slotting and Pricing

Agatz et al. [24] discuss how proven revenue management concepts can be translated
to AHD services. The authors differentiate into static methods, i.e., forecast-based methods
that are applied offline before the actual orders come in, and dynamic methods, i.e., order-

Algorithms 2022, 15, 125 5 of 24

based methods that are applied in real-time as new demand comes in. Moreover, capacity
allocation or “slotting” (which time slots are made available to which customers), and
pricing (using delivery fees to manage customer demand), are distinguished. Hence,
this results in the following four categories of demand management: (i) differentiated
(static) slotting: Defining the collection of delivery time windows based on geographical
regions or the preferences of customer groups. Hence, the concentration of customer
orders in a given area can be increased by limiting the availability of delivery options,
see references [25,26]. (ii) differentiated (static) pricing: Differentiating between different
delivery options (on a tactical level) offered to customers by charging different delivery
fees. Offering off-peak time discounts or peak-time premiums allows to smoothen the
demand over the day, see reference [27]. (iii) dynamic slotting: Deciding which delivery
time slots to offer an incoming customer based on the currently available capacity. More
sophisticated approaches may hide delivery time slots from unprofitable customers in order
to reserve capacity for highly profitable future customers (that are predicted to arrive later
on), see references [21,28–30]. (iv) dynamic pricing: Allows for finer levels of gradation of
incentives than (dynamic) slotting. Offering price incentives can be used to increase the
attractiveness of time slots during which the order can be delivered more efficiently, see
references [19,31–33].

In contrast to the presented works in this subsection, we investigate the acceptance
of new customer requests in terms of improving the chances of finding feasible insertions
(given an incomplete delivery schedule) rather than developing new acceptance criteria for
improving revenue management.

3. Problem Description and Formal Model

In this section, we provide a description of the ordering phase being the crucial part
of the AHD planning process. First, in Section 3.1, we discuss the tasks that must be
performed during the different steps of the ordering phase. We proceed with a formal
description of the VRPTW in Section 3.2, continue with definitions for arrival times and
feasible points of insertion in Section 3.3, and finally, state the SOP in Section 3.4.

3.1. Computational Steps during the Ordering Phase

When customers place their orders, the company must first decide if the order can
be accepted, and, if the order is accepted, integrate the order into the delivery schedule.
However, the naive approach of solving a new VRPTW instance from scratch for each new
order is far from being applicable in an online environment, even when using comparatively
fast meta-heuristics. An up-to-date taxonomic review of meta-heuristics for the most
common variants of the vehicle routing problem can be found in Elshaer and Awad [34].
To efficiently deal with the ordering process, we propose to split the computations during
the ordering phase into the following four steps (summarized in Figure 1).

3.1.1. Initialization Step

In the first step, the web service is being prepared to accept customer requests. There-
fore, a new VRPTW instance is created, including all available vehicles with corresponding
operation times. Since no orders have been placed yet, this results in an empty delivery
schedule with a fixed fleet of vehicles.

3.1.2. Determination Step

When a new customer wants to place an order, the system has to determine the
available delivery time windows that can be offered to this customer. This process has
to be performed in milliseconds as customers are usually impatient when they have to
wait for technical reasons. Note that for calculating the availabilities of time windows, the
routing service has to calculate the travel times between all pairs of customers based on
their provided addresses. The underlying mathematical problem of this step is the slot
optimization problem (SOP) [23].

Algorithms 2022, 15, 125 6 of 24

Optionally, for reasons of profit-maximizing, some available time windows can be
hidden from the customer or be offered at different rates. In this work, we do not consider
any (dynamic) slotting and pricing because the policy of our partnering grocery chain is to
offer available time slots on a “first-come-first-served” basis, and each customer is accepted
if possible. Nevertheless, we refer to Section 2.3, which provides a brief literature review
about this topic.

3.1.3. Insertion Step

Given the list of time slots (determined in the previous step), the customer now
chooses his or her preferred one. As it can take some time for the customer to decide on a
time window or because many customers are booking simultaneously, the system must
double-check if the selected time slot is still available. If the answer is yes, the customer can
be added to the working schedule. If the answer is no, the system calls the determination
step again to find an updated set of available time windows for the customer. This must be
performed every time a customer wants to place an order. Note that we do not allow any
simultaneous processing of the schedule to avoid queuing issues.

1. Tactical Planning Phase

2. Ordering Phase

3. Preparation Phase

4. Delivery Phase

Tactical Planning Phase

Initialize

Web Service
new customer

Determine TWs

Insert into Scheduleno yes

Insertion
possible?

Improvement

End Ordering

Preparation Phase

Delivery Phase

Figure 1. The planning process of an AHD system with focus on the ordering phase.

3.1.4. Improvement Step

In the last step, optimization techniques are applied to improve the schedule. These
are important for two reasons: (a) to offer as many time windows as possible to the
customers; (b) to serve as many customers as possible. This can be achieved by changing
the assignments of customers to vehicles and, furthermore, by improving the routes of the
delivery vehicles. We choose to minimize the total travel time as the objective function as
this has proven to be reasonable in practice. During times with high customer frequencies,
the improvement step can also be skipped or only invoked after a certain number of

Algorithms 2022, 15, 125 7 of 24

insertion steps to further improve the run time. At any time of the process, we allow for
having exactly one working schedule in the system.

The time window determination step, as well as the insertion step, requires solving
a feasibility version of the VRPTW. In contrast to that, the optimization version of the
VRPTW must be solved during the improvement step.

Our approach is aimed at accepting as many customers as possible on a “first-come-
first-served” basis, while offering each customer the largest possible selection of delivery
time windows. Ideally, the working schedule would contain few large chunks of idle time
rather than many short ones. As this is intractable to model in practice, we choose the
total travel time as the objective function to avoid introducing an unnecessarily compli-
cated model. Although Bent and Van Hentenryck [35] show that the use of a consensus
function in their multiple-scenario approach results in more robust schedules and the
acceptance of more customers, their approach is not applicable to our problem, as main-
taining several scenarios would introduce additional complexity and require too much
computational effort.

3.2. Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is concerned with finding
a delivery schedule having the minimal total travel time for a fleet of vehicles with given
capacity constraints to deliver goods to customers within assigned time windows. The
problem is known to be NP-hard [36].

A VRPTW instance is defined by a set of customers C, |C|= p, with a corresponding
order weight function c : C → R>0, and a service time function s : C → R>0. In the considered
AHD service, the individual items of an order a ∈ C are consolidated into several boxes of
fixed size. The number of required boxes defines the corresponding order weight c(a).

Secondly, the VRPTW consists of a set of time windowsW = {1, . . . , q}, where each
time window u ∈ W is defined through the times of its begin and end (Bu, Eu). We assume
that the time windows are unique, i.e., there do not exist time windows u, v ∈ W , u 6= v
with Bu = Bv and Eu = Ev. We consider overlapping and non-overlapping time windows.
Two time windows u and v are non-overlapping if and only if Eu ≤ Bv or Ev ≤ Bu. Further,
a function w : C → W is given that assigns to each customer a time window, during
which the delivery vehicle has to arrive at the customer. All vehicles depart from and
return to a depot d. The travel time between all points a ∈ V = C ∪ {d} is given by a
function t : V ×V → R≥0, where we set the travel time from a customer a to itself to 0, i.e.,
t(a, a) = 0, a ∈ V.

Each vehicle has an assigned tour. A tour A = (1, 2, . . . , n) contains n customers in
the order they are visited by the vehicle and has an assigned capacity CA. Furthermore,
each tour A has assigned start and end times that we denote as startA and endA, respectively.
Hence, the vehicle assigned to tour A can leave from the depot d no earlier than startA
and must return to the depot no later than endA. A schedule S = {A,B, . . . } consists of
|S| = m tours.

3.3. Arrival Times and Feasibility

In this section, we define the feasibility of a schedule as well as the feasibility of
inserting a new order into an existing schedule.

3.3.1. Earliest and Latest Arrival Times

We consider a fixed tour A = (0, 1, . . . , n, n + 1), where 0 and n + 1 denote the depot
d and (1, . . . , n) denote the customers assigned to the tour. We use the concept of earliest
and latest arrival time ei and `i, as in reference [37], which give the earliest (latest) time at

Algorithms 2022, 15, 125 8 of 24

which the vehicle may arrive at customer i, while not violating time window and travel
time constraints on the remaining tour:

e0 := startA, ej+1 := max
{

Bw(j+1), ej + s(j) + t(j, j + 1)
}

, j ∈ [n− 1]0,

en+1 := en + s(n) + t(n, n + 1),

`n+1 := endA, `j−1 := min
{

Ew(j−1), `j − t(j− 1, j)− s(j− 1)
}

, j ∈ [n] \ {1},

`0 := `1 − t(0, 1).

Here, we assume s(0) = s(n + 1) = 0.
Following the definitions, vehicles always leave as early as possible from the depot.

This generates unnecessary idle time before serving the first customer of a tour. Hence,
once the delivery schedule is finalized, we alter the start times of the vehicles accordingly.

A schedule S is feasible if all its tours are feasible. A tour A is feasible if it satisfies both
of the following conditions:

ei ≤ Ew(i), i ∈ [n] ∧ en+1 ≤ endA, TFEAS(A),

∑
i∈[n]

c(i) ≤ CA, CFEAS(A).

While TFEAS(A) ensures that the arrival times at each customer assigned to tour A
are within their assigned time windows, CFEAS(A) guarantees that the capacity of A is not
exceeded. Note that we do not need to check for TFEAS(A) if Bw(i) ≤ ei, i ∈ [n], as this is
ensured by the definition of ei.

3.3.2. Insertion Points

The set Θ(j,A) is required for the approaches applied in the time window determina-
tion step and defines after which customers we try to insert customer j into A during its
(pre)assigned time slot. Accordingly, we define:

Θ(j,A) := [Θ−(j,A), Θ+(j,A)],

where

Θ−(j,A) := min
i∈[n]0
{i : Bw(j) + s(j) ≤ `i},

Θ+(j,A) := max
i∈[n]0
{i : ei + s(i) ≤ Ew(j)}.

The index Θ−(j,A) defines the first customer (or the depot) on tourA after which customer
j could potentially be inserted. Likewise, Θ+(j,A) defines the last customer. Clearly, if
Θ−(j,A) > Θ+(j,A), the insertion of j during w(j) is infeasible.

3.3.3. Feasibility of an Insertion

The feasibility of the possible insertion points Θ(j,A) can be checked easily with
earliest and latest arrival times, e.g., see reference [37]. Similar to the definitions above and
with the help of ei and `i, i ∈ A, we define the earliest and latest arrival time ẽj,i and ˜̀ j,i
for inserting a new customer j /∈ A after i ∈ Θ(j,A) ⊆ A within the (pre)assigned time
window w(j) as follows:

ẽj,i := max
{

Bw(j), ei + s(i) + t(i, j)
}

,

˜̀ j,i := min
{

Ew(j), `i+1 − t(j, i + 1)− s(j)
}

.

Algorithms 2022, 15, 125 9 of 24

Thus, customer j can be inserted between customers i and i + 1, such that j and all
subsequent customers of A can be served within their assigned time windows if and only
if the following condition holds.

ẽj,i ≤ ˜̀ j,i, TFEAS(j, i,A),

We refer to Figure 2 for an illustration.

Bw Ew

i i + 1jj
t(i, j) t(j, i + 1)

s(j)s(i)

ẽj,i ˜̀ j,iei `i+1≤

Time

Bw Ew

i

i + 1

j

j

t(i, j)

t(j, i + 1)
s(j)

s(i)

ẽj,i˜̀ j,iei `i+1

�
Time

Figure 2. In the upper figure TFEAS(j, i,A) holds, in the bottom one it does not.

Additionally, we must check if the sum of the weights of the customer orders assigned
to tour A does not exceed its capacity CA. The insertion of j into tour A is feasible with
respect to capacity if the following condition holds:

∑
i∈[n]

c(i) + c(j) ≤ CA, CFEAS(j,A).

Assuming that all earliest (latest) arrival times and the sum of order weights on a
tour A have already been calculated, TFEAS(j, i,A) and CFEAS(j,A) allow to check the
feasibility of a possible insertion into a given time window in O(1) time provided that
the sequence of A (except for j) stays the same. If the feasibility check was successful and
we decide to insert j, we obtain a new tour Ã = A+i j = (0, 1, . . . , i, j, i + 1, . . . , n, n + 1).
Customer j is then assigned to index i + 1, and all indices of succeeding customers are
incremented. Clearly, the earliest and latest arrival times and the sum of order weights of
the modified tour must be updated. This requires O(n) time [38]. In general, there exist
cases where a feasible insertion of j is only possible when the order of A is changed, which
makes the problem NP-hard.

3.4. Slot Optimization Problem

With the introduced notation, we can recall the formal definition of the slot optimiza-
tion problem (SOP) [23], which arises in the time window determination step. We are given
a feasible schedule S containing all scheduled customers C, a new customer j, j /∈ C, and
the given set of time slotsW . Then, the SOP asks for the largest set of time slots Tj ⊆ W
such that j can be serviced during each delivery slot u ∈ Tj by at least one vehicle of the
fleet, while assuring that all other scheduled orders stay within their assigned time slot.
Hence, the objective is to maximize |Tj|.

In more detail, the SOP aims to find at least one feasible schedule for each of the
VRPTW instances consisting of the already scheduled customers C and the new customer
j being temporarily assigned to one of the time windows u ∈ W . Choosing one delivery
slot for the new customer order makes the SOP equivalent to the feasibility version of the

Algorithms 2022, 15, 125 10 of 24

VRPTW. As the VRPTW is strongly NP-hard [39], the SOP is also strongly NP-hard and
consists of several feasibility problems that are all strongly NP-complete.

4. Algorithms for the VRPTW

We start with introducing the algorithms that we use to tackle our proposed AHD
system in Sections 4.1–4.4. Then, in Section 4.5 we describe how they are combined and
applied to the different steps of the ordering phase.

4.1. Simple Insertion Heuristic

The simple insertion heuristic, based on Savelsbergh [22], takes a new customer j
and a tour A, and tries to insert j into the temporarily assigned time window w(j) ∈ W .
It stops as soon as it finds a feasible insertion point i ∈ Θ(j,A), i.e., when TFEAS(j, i,A)
and CFEAS(j,A) hold. Note, since the order of customers is not altered, the procedure has
a linear run time O(|A|). We iteratively apply the simple insertion heuristic to all time
windows u ∈ W and all tours A ∈ Su to calculate the set of time windows that can be
offered to the new customer j. Su defines the set of tours including the time window u, i.e.,
A ∈ Su if and only if startA ≤ Bu < Eu ≤ endA. A time window is considered as being
available if at least one feasible insertion point can be found.

4.2. Local Search Heuristic

We apply a local search heuristic that uses the following neighborhoods for exchanging
customer orders between two tours. The 1move neighborhood moves a customer j from a
tourA to another tour B,A 6= B. If at least one feasible insertion position for j in B is found,
i.e., TFEAS(j, i,B) and CFEAS(j,B) hold, which additionally decreases the total travel time
of the delivery schedule, we denote the 1move as improving. The 1swap neighborhood
exchanges two customers between two different tours, e.g., it exchanges j ∈ A with i ∈ B.
Again, if a feasible swap with a decreased total travel time is found, we denote the 1swap as
improving. Savelsbergh [22] uses similar neighborhoods, calling them Relocate and Exchange.
Clearly, if no improving 1move (1swap) can be found for a pair of tours (A,B) ∈ S , A 6= B,
and both tours have not been modified meanwhile, then there is no need to perform
those operations for this pair of tours again. Preliminary experiments showed that the
computation times are reduced by a third by storing this information during the updates.

4.3. Adaptive Neighborhood Search Heuristic

We extend the ANS for solving the SOP proposed by Hungerläender et al. [23] such
that it can also be applied to overlapping time windows. This results in different interde-
pendencies between time windows as well as slightly weaker (in)feasibility conditions. In
the following, we state all definitions required to describe our ANS.

4.3.1. First/Last Customer

For a given tour A we define the first and last customer belonging to a given time slot
u ∈ W as

f (u) := min
i∈[n]

{
i : Bu ≤ Bw(i) ≤ Ew(i) ≤ Eu

}
,

l(u) := max
i∈[n]

{
i : Bu ≤ Bw(i) ≤ Ew(i) ≤ Eu

}
.

If above sets are empty, then the indices are not defined, i.e., [f (u), l(u)] = ∅. In case
of non-overlapping time slots and if w(j) = u, j /∈ A, and u is not empty, i.e., there is at
least one customer i ∈ A assigned to u, the following statement holds:

Θ(j,A) ⊆ { f (u)− 1, . . . , l(u)}.

Algorithms 2022, 15, 125 11 of 24

4.3.2. Neighborhoods

Our ANS heuristic considers two different neighborhoods for a time window u ∈ W
and a tour A ∈ S .

• inside includes all operations with customers inside u :
in(u,A) := {i ∈ A : i ∈ [f (u), l(u)]};

• outside represents operations with customers outside u :
out(u,A) := A \ (in(u,A) ∪ {0, n + 1}).

The inside of u consists of customers i ∈ A that are: (a) assigned to time window
u = w(i); (b) assigned to a time window that is included in u: su ≤ sw(i) ≤ ew(i) ≤ eu; or (c)
captured by customers of u (or its included time windows), e.g., there exist two customers
j, k ∈ A with w(j) = w(k) = u such that j < i < k and i, j, k ∈ [n].

Clearly, in(u,A) is dependent on the actual tour sequence. However, in case of non-
overlapping time windows, the customers inside u are exactly those who are assigned to u,
i.e., in(u,A) = {i ∈ A : w(i) = u}.

In Figure 3, we illustrate the definitions that have been introduced so far. We display
the position of the first f (u) and last customers l(u) of u in case of overlapping time
windows. Moreover, we indicate the positions of the insertion points Θ−(j,A) and Θ+(j,A)
(vertical lines). In the given example, we notice that Θ(j,A) and { f (u)− 1, . . . , l(u)} differ
as also the insertion of j after customer l(u) + 1 must be considered. Furthermore, we
observe that customer f (u) + 2 is inside u although being assigned to time window u− 1.

Bu Eu
Eu−1

Bu+1

Eu+1 Bu+2

f (u) f (u) + 1 f (u) + 2 l(u)− 1 l(u) l(u) + 1

u− 1: 08:00-09:30 u + 1: 09:00-09:45 u: 09:00-11:00 u + 2: 10:00-11:30

Θ−(j,A) Θ+(j,A)

Time

Figure 3. The first f (u) and the last customer l(u) of time window u in case of overlapping time
windows. We indicate the positions of the insertion points Θ−(j,A) and Θ+(j,A) (vertical lines).

4.3.3. Loss and Free Time

For a tour A and a new customer j who has to be inserted into time slot u, we define

χ−u (j,A) := max
(

e f (u), max
i∈Θ(j,A), i≤ f (u)

ẽj,i

)
− Bu,

χ+
u (j,A) := Eu −min

(
`l(u), min

i∈Θ(j,A), i≥l(u)
˜̀ j,i

)
.

The value χ−u corresponds to the amount of time that is “lost” at the beginning of time
slot u. This can be caused by the service time required for the last customer order before
(outside) u or the travel time needed for going from that customer to the first customer
inside u. Similarly, χ+

u corresponds to the loss of time at the end of time slot u caused by
the time required for traveling to the first customer after (outside) u or the service time at
the last customer inside u.

Further, we denote χu(j,A) := χ−u (A, j) + χ+
u (j,A) as the loss time of time window u.

In case that [f (u), l(u)] = ∅, the loss time is given by

χu(j,A) = max
i∈Θ(j,A)

(
(ẽj,i − su) + (eu − ˜̀ j,i)

)
.

Figure 4 illustrates the values χ−u (j,A) and χ+
u (j,A) for a tour with non-overlapping

time windows. Clearly, if χu(j,A) = 0, then a violation of TFEAS(A) for j can only be
repaired by removing (exchanging) customers that are inside u.

Algorithms 2022, 15, 125 12 of 24

f (u)− 1 f (u) j l(u) l(u) + 1

χ−u (j,A) χ+
u (j,A)

Bu Eu
e f (u)−1 e f (u) `l(u) `l(u)+1

u

Time

Figure 4. The loss time χu(j,A). Here, the case that the new customer j is inserted into a tour, with
non-overlapping time windows, between two other customers assigned to time slot u, is considered.

Furthermore, we want to quantify the amount of service and travel time that is needed
for inserting j during time window u. For a given tour A, the free time of time slot u is
defined as

λu(A) := (Eu − Bu)︸ ︷︷ ︸
(I)

−
l(u)−1

∑
i= f (u)

(
s(i) + t(i, i + 1)

)
︸ ︷︷ ︸

(I I)

,

where (I) is the length of u and (I I) is the amount of service and travel time that must be
handled within u. In case that the indices f (u) and l(u) are not defined, i.e., in(u,A) = ∅,
term (I I) is set to 0. In Figure 5, we provide an illustration of the free time.

f (u) f (u) + 1 l(u)− 1 l(u)
λu(A)

u

Bu Eu

Time

Figure 5. The free time λu(A) for a single time window.

Considering non-overlapping time windows, the insertion of customer j after a cus-
tomer i ∈ { f (u)− 1, . . . , l(u)} requires an additional amount of (travel and service) time
that must be handled within time window u and can be calculated by λu(A)− λu(A+i j).
This assumes that all customers between f (u) and l(u) can be moved arbitrarily (while
maintaining their sequence) within time slot u, i.e., all customers assigned to u can be seen
as one consecutive block, the length of which is given by (I I). Hence, the above statement
is weakened in the case of overlapping time windows, as some customers inside u may be
restricted by their assigned time windows such that no consecutive block of customers can
be formed. Therefore, a larger amount of time than (I I) may be required for tour A after
the insertion of customer j.

4.3.4. Feasibility and Infeasibility Conditions

The insertion of j into A is infeasible if the following holds:

max
i∈Θ(j,A)

λu(A+i j) < 0. (1)

We note that condition (1) solely depends on the customers inside u. Hence, in case of
non-overlapping time windows, it is only dependent on the customers assigned to time
slot u. Moreover, in case of non-overlapping time slots, the insertion of j into A is feasible
for at least one insertion position if the following inequality holds:

max
i∈Θ(j,A)

λu(A+i j)− χu(A, j) ≥ 0. (2)

Note that the statement does not hold in the case of overlapping time windows.

Algorithms 2022, 15, 125 13 of 24

4.3.5. Algorithm

Finally, we can concisely describe the details of our ANS for the SOP as follows. We
temporarily assign the new customer j to each time window u ∈ W . For each tour A ∈ Su
we apply the steps described below, which try to insert j into A within its assigned time
window w(j) = u. If this is possible, u is added to the set of available time windows
Tj ⊆ W .

In step 1, we ensure that the current tourA fulfills CFEAS(j,A). If ∑
i∈[n]

c(i)+ c(j) > CA

holds, then customer a cannot be feasibly inserted into tour A. In this case, we have to
reduce the overall weight ∑

i∈[n]
c(i) ofA. This is achieved by applying local search operations

1move and 1swap, while as few operations as possible are used. Therefore, as much weight
as possible is moved in each step and the operations stop once there is sufficient spare
capacity onA to insert j, i.e., ∑

i∈[n]
c(i) + c(j) ≤ CA holds. If we do not succeed in modifying

A such that CFEAS(j,A) holds, we terminate.
In step 2, we aim to increase the free time λu(A) through local search operations

within inside until the infeasibility condition (1) does not hold anymore. λu(A) is increased
by applying as few operations as possible. That way, the previously optimized schedule
Su is not altered more than necessary. If a local optimum is reached, meaning no further
improvements can be achieved by local search operations, and (1) is still satisfied, the
algorithm stops because the following steps cannot result in a feasible insertion of the
new customer.

Next, step 3 is concerned with reducing the loss time χu(j,A) of time slot u through
local improvement operations within outside. The operations are applied until either the
new customer order can be inserted into the tour, the loss time is equal to zero χu(j,A) = 0,
or a local optimum is reached.

Finally, in step 4 we try to further increase the free time through local search operations
within inside. The free time is increased until either the insertion of customer j is possible or
a local optimum (of the free time objective) is reached and hence, we are not able to insert j
within time slot u.

Note that we apply local search operations during steps 2–4 only if CFEAS(j,A) still
holds. Further, we apply local search operations during step 3 only if the infeasibility
condition (1) does not hold for the resulting tour A.

4.4. Exact Approach for Solving a Sub-Problem

In this subsection we consider the TSPTW, a sub-problem of the VRPTW, which was
first introduced by Savelsbergh [22]. The TSPTW is concerned with minimizing the travel
time of a single tour A ∈ S of the VRPTW, while all other tours in the schedule are fixed.
Hungerländer and Truden [40] give two competitive MILP formulations for the TSPTW
that we utilize in our hybrid approaches (described in Section 4.5): (i) a general model
that can be applied to any TSPTW instance (having asymmetric travel times) regardless
of the structure of the defined time windows W ; (ii) a second model that is tailored to
the TSP with structured time windows (TSPsTW). It is assumed that the time windowsW
are pair-wise, non-overlapping, and that the number of customers |C| = p is much larger
than the number of time windows |W| = q, i.e., p � q, and therefore typically several
customers are assigned to the same time window. This assumption allows a simplified
MILP formulation that performs significantly better.

We refer the reader to the following paper in reference [40] for details on both MILPs
as well as a short computational study that compares both formulations. In contrast to
the VRPTW, the TSP(s)TW is concerned with single tours. Hence, it is unnecessary to
include a capacity constraint in the MILP models, as the sum of order weights of a tour is
independent of the actual sequence of the customers on the tour.

Algorithms 2022, 15, 125 14 of 24

4.5. Solution Approaches

In this subsection, we describe how we combine the heuristics and MILPs presented
above such that we can conduct the different steps of the ordering phase sufficiently fast.

First, in the determination step, we aim to quickly identify all time windows Tj ⊆ W
during which a new customer j can be inserted into (at least one of) the current tours. We
compare to the following approaches.

• Simple insertion heuristic;
• ANS heuristic;
• A feasibility version of the suggested MILPs for solving the TSP(s)TW, which are

applied for each time slot u ∈ W and for each A ∈ Tu.

Once customer j has selected a time window u ∈ Tj, in the insertion step we double-
check its availability in the same way as in the determination step and then immediately
insert j into u at the best insertion point found. In contrast to the determination step, we
run the simple insertion heuristic or the ANS over all tours and all insertion points and
select the feasible insertion point that results in the lowest increase of the total travel time
of the schedule. Thus, we do not stop the algorithm once the first feasible insertion point is
found. In the case of the TSP(s)TW MILPs we apply their standard formulations for finding
an optimal tour after the insertion of j, rather than their corresponding feasibility versions.

In the improvement step, we aim to reduce the total travel time of the schedule. We
compare the following approaches.

• 1move + (1swap). The computationally cheap yet quite effective local search heuris-
tic builds the foundation of the improvement step. We apply 1move (and 1swap)
operations, where we focus on the 1move operations if possible, because they are
computationally cheaper and, in general, more effective than 1swap operations. We
stop our local search heuristic once we reach a local minimum of the objective function
with respect to the selected neighborhood;

• 1move + 1swap + TSP(s)TW. After applying the local search heuristic, we additionally
run our TSP(s)TW MILP on all tours that have changed since the last improvement
step. We use the current tours of our delivery schedule as the initial solution for
TSP(s)TW MILP. While 1move and 1swap exchange customers between different tours,
the TSP(s)TW MILP re-orders them within the tours, which makes it a useful com-
plement to the local search heuristics. In practice, optimizing the single tours of a
schedule to optimality has proven to be critical to ensure driver satisfaction as it
guarantees that drivers do not encounter any inefficiencies on their routes.

Above presented improvement procedures are arranged in ascending order with
respect to their computational effort.

During the ordering phase, the proposed local search procedures only perform improv-
ing operations. However, the algorithms can be simply altered to a simulated annealing
approach [41] by allowing also non-improving operations. However, this is more suitable for
the preparation phase, when more time is available for improving the delivery schedule.

5. Computational Study and Analysis

We want to provide a performance evaluation of the different steps and approaches of
the ordering phase. First, in Section 5.1, we describe the design of our test instances. In
Section 5.2, we analyze how well, in terms of run time and solution quality, the different
approaches for the time window determination step perform. Then, we compare the
different improvement approaches in Section 5.3. Finally, in Section 5.4, we compare
the performances of different combinations of approaches for the determination and the
improvement step.

Algorithms 2022, 15, 125 15 of 24

5.1. Design of the Instances

The benchmark instances are derived from those originally proposed by reference [13].
They are designed to reproduce the characteristics of an online grocery shopping service
offered by an international grocery retailer.

Each instance corresponds to one delivery region that is served by one depot, which
has its assigned fleet of vehicles. All instances are based on a 20 km × 20 km square grid.
A total of 80% of the customer locations have been randomly assigned to 15 clusters. The
center (location) of each cluster µ = (µx, µy) is sampled from a two-dimensional uniform

distribution. The shape of each cluster is defined by the covariance matrix Σ =

(
σx

2 0
0 σy

2

)
,

where σx
2 and σy

2 both follow a uniform distribution. Furthermore, the clusters have been
rotated by a random angle between 0 and 2π. Customer locations have been sampled from
the multivariate normal distribution N(µ, Σ) of the assigned cluster and all coordinates
have been rounded to integers. The remaining 20% of the locations are sampled from a two-
dimensional uniform distribution. The numbering of the customers is randomly permuted.

We consider two different placements of the depot: (a) at the center of the grid; (b) at
the center of the top-left quadrant. In each test set-up, there are equally many instances
for both variants. Each vehicle has a loading capacity of 200 units. The order weights of
customers have been sampled from a truncated normal distribution with a mean of 7 and
standard deviation of 2, where the lower bound is 1 and the upper bound is 15. The service
time of each customer is 5 min. All tours have the same start and end times while vehicle
operation times are set such that they do not overly restrict the problem.

We apply a very simple customer choice model to simulate the customer’s choice if
they place an order or not after being presented the selection of time windows. Similar
to Cleophas and Ehmke [28], every customer has just one desired delivery time window
(defined in the benchmark instance). The customer refuses to place an order if this preferred
time window is not offered. Furthermore, we assume that all delivery time windows are
equally prominent among customers (randomly selected from W) to obtain unbiased
results that allow for an easier identification and clearer interpretation of the key findings.

We define three sets of delivery time windows W : (a) WNO: 10 non-overlapping
time windows with a length of 1 h each, e.g., 08:00–09:00, 09:00–10:00, etc. (b) WOV1.5:
10 overlapping time windows with a length of 1.5 h each (except for the last time window,
which has a 1 h length), where each window overlaps the preceding time window by 30 min,
e.g., 08:00–09:30, 09:00–10:30, etc. (c)WOV3: 12 overlapping time windows, consisting of
nine windows with a length of 1 h each, 08:00–09:00, 10:00–11:00, . . . , 16:00–17:00 and (as
used by Köhler et al. [21]) three time windows of 3 h length, morning: 08:00–11:00, noon:
11:00–14:00, afternoon: 14:00–17:00.

In summary, our assumptions were chosen to find a good compromise between real-
istic instances and enabling a concise description and interpretation of the experimental
set-up. All experiments were performed on an Ubuntu 14.04 machine powered by an
Intel Xeon E5-2630V3 @ 2.4 GHz 8 core processor and 132 GB RAM. We implemented all
algorithms in Java Version 8 and used Gurobi 8.1.0 as the MILP solver in single-thread
mode. Parallelization of the applied methods is not considered. We run each experimental
configuration on 100 instances and report average values. Note that the absence of overlap-
ping time windows allows for the use of a more efficient MILP formulation of the TSPTW
forWNO than forWOV1.5 andWOV3 (see Section 4.4).

5.2. Comparing Approaches for the Determination Step

In this subsection, we evaluate the performance of different approaches for the time
window determination step, i.e., we compare the simple insertion heuristic, the ANS
heuristic, and the TSP(s)TW insertion approach in terms of run time and solution quality.

To allow a proper comparison of the methods for solving the SOP, we constructed
instances which consist of (a) a feasible schedule that contains p customers, and (b) a
new customer order for which the availability of delivery time slots must be decided. To

Algorithms 2022, 15, 125 16 of 24

create SOP instances for benchmarking, we had to create feasible delivery schedules that
are already filled with orders. Hence, we created delivery schedules by iteratively trying
to insert 2000 customers into each schedule. The simple insertion heuristic was used to
conduct the feasibility checks. The number of customers that are contained in the resulting
schedule is denoted by p̂. We consider p̂ as being a sufficiently good approximation of the
maximal number that can be inserted into a schedule considering a given configuration.
Hence, we distinguish two scenarios: (i) in the first scenario, we perform no optimization
between the insertion steps, and (ii) in the second scenario, the schedule is re-optimized
by applying 1move after each customer insertion. This reduces the total travel time of the
schedule. We restrict the improvement step to the most simple approach to avoid unwanted
bias when evaluating the performance of the different approaches for the determination
step. In general, the schedules in the second scenario contain more orders while utilizing
the same number of vehicles.

Since the practical hardness of the SOP increases as the schedules are filled up with
customers, we consider SOP instances with different fill levels. The fill level f of a schedule
is defined as the ratio between the number of customers p in the schedule and the maximal
number of customers p̂ that can be inserted into the schedule. For benchmarking at a
given fill level f , we select the schedule that was generated by above described process,
which contained p = d f · p̂e orders. For each generated instance, we solve the SOP
using the simple insertion heuristic, the TSP(s)TW insertion n approach, and the proposed
ANS heuristic. In order to investigate the differences between the considered methods,
we analyze their performance on all three sets of time windows (WNO, WOV1.5, WOV3),
instance sizes, and fill levels. Hence, we run tests on benchmark instances with 60 tours
(vehicles) and consider fill levels of 85%, 90%, 95%, and 99%.

We report the number of feasible time slots found by each method and required run
times (mm:ss.zzz) for all scenarios, i.e., optimized and non-optimized schedules. We report
the results forWNO in Table 1, forWOV1.5 in Table 2, and forWOV3 in Table 3. Moreover,
we report the number of feasible time slots that are found by combining the findings of
all three methods, denoted as “combined” in the tables. Additionally, we report p̂, the
number of customers at a 100% fill level. All reported numbers are average values over
100 instances each.

Table 1. Summary of the computational experiments concerning the approaches for the determination
step usingWNO considering non-optimized and 1move-optimized schedules.

WNO (10 Windows)—60 Vehicles

Non-Optimized Schedules Optimized Schedules
Avg. p̂ 408.0 1907.3
Fill level 85% 90% 95% 99% 85% 90% 95% 99%

Avg. run time
(mm:ss.zzz)
simple insertion 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001
TSP(s)TW insertion 00:00.223 00:00.422 00:01.112 00:01.970 00:00.592 00:00.580 00:00.743 00:00.455
ANS 00:00.024 00:00.089 00:00.468 00:04.031 00:00.049 00:00.052 00:00.077 00:01.377

Avg. number
of feasible slots
Simple insertion 9.82 9.47 7.67 2.00 9.98 9.98 9.83 4.20
TSP(s)TW insertion 9.85 9.62 8.60 4.30 9.98 9.98 9.83 4.29
ANS 9.96 9.94 9.93 9.39 9.98 9.98 9.98 9.63

Combined 9.96 9.94 9.93 9.43 9.98 9.98 9.98 9.63

Algorithms 2022, 15, 125 17 of 24

Table 2. Summary of the computational experiments concerning the approaches for the determination
step usingWOV1.5 considering non-optimized and 1move-optimized schedules.

WOV1.5 (10 Windows)–60 Vehicles

Non-Optimized Schedules Optimized Schedules
Avg. p̂ 628.0 1880.0
Fill level 85% 90% 95% 99% 85% 90% 95% 99%

Avg. run time
(mm:ss.zzz)
Simple insertion 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001
TSP(s)TW 00:03.505 00:11.182 00:52.761 02:22.804 00:41.024 01:01.611 01:03.537 00:11.598
ANS 00:00.032 00:00.138 00:00.683 00:07.837 00:00.036 00:00.040 00:00.066 00:08.343

Avg. number
of feasible slots
Simple insertion 9.57 9.05 7.40 0.76 9.98 9.98 9.68 0.72
TSP(s)TW insertion 9.84 9.68 8.96 5.04 10.00 10.00 9.84 0.70
ANS 9.99 9.95 9.83 8.43 10.00 10.00 9.84 6.36

Combined 9.99 9.95 9.87 8.76 10.00 10.00 10.00 6.36

Table 3. Summary of the computational experiments concerning the approaches for the determination
step usingWOV3 considering non-optimized and 1move-optimized schedules.

WOV3 (12 Windows)–60 Vehicles

Non-Optimized Schedules Optimized Schedules
Avg. p̂ 406.0 1897.9
Fill level 85% 90% 95% 99% 85% 90% 95% 99%

Avg. run time
(mm:ss.zzz)
Simple insertion 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001 00:00.001
TSP(s)TW insertion 00:02.645 00:15.541 01:27.422 05:20.061 00:56.969 00:54.405 01:04.239 00:17.879
ANS 00:00.012 00:00.112 00:00.847 00:08.412 00:00.052 00:00.057 00:00.073 00:08.981

Avg. number
of feasible slots
Simple insertion 11.84 11.02 8.54 1.21 12.00 12.00 11.90 0.73
TSP(s)TW insertion 11.93 11.73 10.78 6.65 12.00 12.00 11.92 0.69
ANS 12.00 11.98 11.94 10.16 12.00 12.00 12.00 7.59

Combined 12.00 11.99 11.97 10.73 12.00 12.00 12.00 7.59

As a reference to compare against, we select the simple insertion heuristic. Both
other methods, TSP(s)TW insertion and ANS, are entitled to find at least the delivery time
slots that are determined by the simple insertion heuristic. This property is guaranteed
due to the construction of those methods. Unfortunately, we can not provide an upper
bound for the number of feasible delivery time slots as, to the best of our knowledge, there
is no more powerful search method applicable for the SOP in the current literature. In
our experiments, we restrict the ANS to 1move operations, as preliminary experiments
showed that allowing 1swap operations yields unacceptably long run times (up to some
minutes). Additionally, the results are only insignificantly better. Primarily, we notice that
the simple insertion heuristic returns solutions for the SOP in less than one millisecond for
all considered instances. At fill level (85%) the instances are still rather easy and, hence,
the simple insertion heuristic determines nearly all time slots as being feasible. While the
simple insertion heuristic still performs well at 90% and 95% on optimized schedules, it
performs poorly on non-optimized schedules with the same fill levels due to the lower
quality of the schedules.

Furthermore, we observe that the TSP(s)TW insertion approach yields a slight im-
provement over the simple insertion heuristic in terms of available time windows at 85–95%.
However, a significant improvement can be observed when it is applied to non-optimized
schedules at a 99% fill level. TSP(s)TW insertion shows acceptable run times forWNO. In
contrast, run times forWOV1.5 andWOV3 are between 3 s and nearly 4 min and are thus
unacceptable. Hence, considering these findings, the TSP(s)TW insertion turns out to
be impractical for AHD systems. Moreover, we notice that the ANS yields significantly
more feasible time slots than the simple insertion heuristic (and TSP(s)TW insertion) on
non-optimized schedules at 95% and 99%. Similar behavior can be observed on optimized

Algorithms 2022, 15, 125 18 of 24

schedules at 99%. The run times of the ANS stay below 1 s for nearly all experiments
with up to a 95% fill level. The ANS clearly performs best in terms of solution quality on
instances having a 99% fill level, resulting in up to 11 times more available delivery time
windows than with simple insertion. However, on those instances its run time reaches up
to 9 s. It is worth pointing out that the performance of the ANS is nearly constant over all
three sets of time windows, showing that it can also deal with instances having overlapping
delivery time windows.

In general, we notice a slight performance drop of the ANS (compared to the TSP(s)TW
insertion approach) when being applied non-optimized schedules compared to optimized
schedules. This can be explained by the fact that identifying feasible time windows is less
hard for non-optimized schedules as they contain less orders on average. Additionally,
there is more potential for improvement when applying TSP(s)TW insertion as the single
tours have not been improved in any way after inserting the customers. Additionally, we
observe that “combined” shows only a marginal improvement over the ANS for optimized
schedules. On the other hand, we notice a strong improvement of “combined” compared
to the TSP(s)TW insertion approach and ANS for non-optimized schedules at a 99% fill
level. This can be explained by the fact that the TSP(s)TW insertion approach has a larger
potential of finding a feasible insertions (compared to the simple insertion heuristic) if the
tours are of low quality (as there is more room to rearrange the tours) due to the already
observed weaker performance of the ANS in this case.

Our experiments show that the ANS heuristic is capable of finding a larger number
of feasible delivery slots than the simple insertion heuristic, requiring run times that are
still well suited for AHD services when dealing with moderately sized problem instances.
However, to efficiently tackle very large instances, the parallelization of the ANS is advised.
In summary, the ANS heuristic is clearly the best method for solving the SOP when being
concerned with the solution quality while the simple insertion heuristic is the method of
choice in cases of tight run time restrictions.

5.3. Comparing Approaches for the Improvement Step

To compare the proposed improvement approaches, we perform experiments where
we iteratively insert new customers into the schedule, simulating customers placing orders
online. Due to the iterative benchmark set-up, we can insert the new order without double-
checking the availability of the selected delivery time slot. Again, to avoid bias, we stick to
the most simple approach for the determination step, the simple insertion heuristic. Then,
for the improvement step we compute the following metrics:

• Average improvement over insertion step: the average reduction of the objective
function when applying the optimization approaches to the schedule after inserting
the new customer (given in percentage);

• Average improvement of the cost of insertion: the average reduction of the objective
function relative to the increase of the objective function caused by inserting the new
customer (given in percentage);

• Average number of TSPsTW MILPs solved;
• Average run time of each improvement strategy.

Additionally, we report the average total number of customer orders that have been
inserted into the final schedules. Note that for the MILPs we set a time limit of 60 s.

5.3.1. Average-Sized Grocery Home Delivery Problems

First, we want to analyze the improvement approaches for instance sizes which we
found to appear most commonly in practice. Hence, we consider 500 customers that are
served by 16/18/20 vehicles with a capacity of 200 units each. The number of used vehicles
corresponds to the practical difficulty of the instances. The numbers are chosen such that
the instances are reasonably difficult. In that sense, using 20 vehicles results in accepting
nearly all 500 customers on average. These instances are designed to reflect the majority of

Algorithms 2022, 15, 125 19 of 24

delivery regions as they were encountered during our project with a leading supermarket
chain. The results for these experiments are reported in Table 4.

Table 4. Summary of the computational experiments for the improvement approaches considering
instances with 500 customers.

Average-Sized Grocery Home Delivery Problems

WNO WOV1.5 WOV3

Vehicles 16 18 20 16 18 20 16 18 20

Avg. p̂ 450.80 491.60 498.00 459.60 495.80 499.20 453.00 496.60 499.00
Avg. number of
time windows offered 9.01 9.84 9.97 9.21 9.93 9.98 10.83 11.92 12.00

Avg. run time
(mm:ss.zzz)
1move 00:00.015 00:00.099 00:00.108 00:00.097 00:00.124 00:00.134 00:00.090 00:00.111 00:00.120
1move+1swap 00:00.632 00:00.776 00:00.766 00:00.952 00:01.170 00:01.145 00:00.925 00:01.106 00:01.106
1move+1swap+TSP(s)TW 00:00.678 00:00.833 00:00.821 00:03.481 00:03.757 00:03.655 00:01.314 00:01.478 00:01.485

Avg. improvement
over Insertion (%)
1move 0.30 0.29 0.29 0.37 0.37 0.37 0.34 0.34 0.34
1move+1swap 0.41 0.40 0.39 0.52 0.50 0.50 0.50 0.50 0.49
1move+1swap+TSP(s)TW 0.45 0.43 0.42 0.60 0.57 0.56 0.55 0.54 0.53

Avg. improvement
of cost of Insertion (%)
1move 35.82 38.00 38.76 38.36 40.75 41.66 37.11 39.39 39.58
1move+1swap 49.88 51.34 51.44 53.62 55.37 55.64 54.65 57.62 57.23
1move+1swap+TSP(s)TW 53.83 55.34 55.26 61.80 63.33 63.48 59.53 62.37 61.90

Avg. number of
MILPs solved
1move+1swap+TSP(s)TW 2.01 2.09 2.11 2.36 2.49 2.48 2.32 2.42 2.42

We observe that all approaches considered are applicable in an online service as
the average run time per step is below 4 s, which is very reasonable for instances of this
size. Furthermore, a reduction of our objective function by 0.29% to 0.60% per step is
remarkable as between two improvement steps the schedule is altered only by the insertion
of one customer. This can be further underlined by the reported average reduction of the
cost of inserting the new customer ranging from 35.82% to 63.48%. These numbers show
that our approaches meet the requirements of modern AHD systems. The experiments
reveal that 1move + 1swap clearly outperforms 1move in terms of improving the objective
function (across all three types of time windows). Additionally, solving the TPS(s)TW
afterwards results in a further improvement of the objective. Considering different delivery
time windows, we notice that the approaches perform best with respect to run time on
instances withWNO and worst on instances withWOV1.5. While there is a slight difference
for the local search operations, the difference is nearly 3 s when additionally applying the
TSP(s)TW MILP. This is due to the fact that the absence of overlapping time windows allows
for a more efficient MILP formulation (Section 4.4). Thus, during peak times and in case of
overlapping time windows, we advise to stick to 1move (or 1move + 1swap). Furthermore,
the average number of customers that can be inserted into the schedule deviates at most
by 9 (+1.9%) between WNO and WOV1.5. Hence, allowing overlapping time windows
accounts for a small benefit concerning the degree of capacity utilization. Similarly, in
case of overlapping time windows (WOV1.5 andWOV3) the travel time reduction is slightly
larger than forWNO.

5.3.2. Dealing with Large-Problem Instances

Large supermarket chains offer their services across the whole country. Caused by the
different geographies, the sizes of the delivery regions that are covered by a depot strongly
vary ranging from a few hundred up to around 2000 customers per day. Dealing with
such large delivery regions is especially challenging during periods where many customer
requests arrive within a short time frame. To accommodate these periods of high request
frequency, we propose to run the improvement step only after each ith successful insertion
step, instead of after each.

We want to validate this idea by running computational experiments. We consider
instances with 2000 customers (the largest number we encountered in practice) and 80 vehi-

Algorithms 2022, 15, 125 20 of 24

cles for these experiments and report the results in Table 5. Each column shows results for
different values of i. For these experiments we can only report the average improvement of
the schedule when applying the respective improvement strategy. First, we notice that the
run time of the improvement step increases with i: the more often we skip an improvement
step, the longer it takes to improve the schedule’s total travel time. Moreover, we observe
an increased improvement per step with increasing i. Apparently, the improvement that
was omitted can be made up (up to a certain extent), by applying the improvement step at
a later point in time. It shows that performing the improvement step only after every ith
successful insertion is a viable option.

Table 5. Summary of the computational experiments for the improvement approaches considering
instances with 2000 customers served by 80 vehicles. The improvement step is triggered after every
ith (i = 10, 20, 30) successful insertions.

Large-Scale Problem Instances—80 Vehicles

WNO WOV1.5 WOV3
i 10 20 30 10 20 30 10 20 30

Avg. p̂ 1997.20 1998.50 1998.50 1999.40 1999.40 1999.40 1999.80 1999.80 1999.80
Avg. number of
time windows offered 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.99

Avg. run time
(mm:ss.zzz)
1move 00:04.303 00:06:907 00:10:578 00:05.360 00:08.930 00:12.587 00:04.939 00:08.126 00:11.208
1move+1swap 00:59.003 01:28:161 01:57.892 01:25.017 02:02.721 02:31.010 01:13.358 01:40.780 02:10.395
1move+1swap+TSP(s)TW 00:59.980 01:29.274 01:59.241 01:40.952 02:25.107 02:56.644 01:16.316 01:50.400 02:14.499

Avg. improvement
over Insertion (%)
1move 1.62 3.27 4.93 1.69 3.54 5.12 1.60 3.29 4.82
1move+1swap 2.29 4.16 5.94 2.46 4.57 6.28 2.33 4.26 5.92
1move+1swap+TSP(s)TW 2.35 4.24 6.05 2.56 4.73 6.48 2.39 4.35 6.03

Avg. number of
MILPs solved
1move+1swap+TSP(s)TW 23.43 30.64 33.58 24.65 31.41 34.48 24.09 31.09 34.22

While 1move stays below 6 s for i = 10, its run time increases up to 13 s for i = 30.
The run times of 1move + 1swap are between 1 min and 2 min (overlapping time windows),
which is still acceptable. We observe that solving the TSP(s)TW MILP does increase the
run times (on top of the local search heuristics) insignificantly while still showing some
additional improvements of the objective. In general, the observations from the previous
experiments with 500 customers carry over to this experiment. Again, we notice shorter run
times forWNO than forWOV1.5 andWOV3. However, we observe less significant differences
than for the experiments with 500 customers.

In summary, the results show that skipping the improvement step allows us to deal
with temporarily high customer request rates, even for very large schedules with a vast
number of customers. Furthermore, we see that applying the improvement step less often
leads to an increased improvement per step at the cost of longer run times. Finally, note
that triggering the improvement step dynamically when there are no new requests is also a
valid option.

5.4. Interplay of Approaches for the Determination and the Improvement Step

In this final experiment, we want to find out which combinations of the different
approaches for the determination and the improvement step are most beneficial and which
should be avoided. From Section 5.2, we learn that simple insertion is the fastest method
for the determination step, showing a solid performance, while the ANS is the best method
in terms of solution quality. However the ANS has the drawback that it can only be applied
when the customer request rate is moderate (or on small instances).

In Section 5.3, we observe that 1move is a solid approach for the improvement step that
scales well for larger problem instances. The application of more sophisticated local search
operations in combination with an exact approach for a selected sub-problem (1move +
1swap + TSP(s)TW) shows the best performance in terms of solution quality at the price of
high (but still acceptable) run times.

Algorithms 2022, 15, 125 21 of 24

Further evaluations are based on the average-sized grocery delivery-use case (Section 5.3)
and will focus on aforementioned time window determination and improvement ap-
proaches. Hence, we compare the resulting four combinations {simple insertion, ANS} ×
{1move, 1move + 1swap + TSP(s)TW} concerning the following key figures:

• Average run time of the determination and improvement step;
• Average number of offered delivery time windows;
• Average total number of customer orders that have been inserted into the final schedules.

In Table 6, we report the results of this experiment. First, we notice that now when
analyzing the interplay of the determination and the improvement step the differences
between ANS and the simple insertion heuristic become less evident. ANS shows little
benefit compared to the simple insertion heuristic in terms of the number accepted orders
p̂ (at most a 0.4% improvement) and the number of offered time windows. The use of ANS
reduces the run time of the improvement step. This effect is most evident when overlapping
time windows are used (WOV1.5 andWOV3), especially for the 1move + 1swap + TSP(s)TW
approach where a reduction of the run time of up to 71.4% is observed. Presumably, ANS
creates better schedules when inserting the new customer, and therefore the improvement
approaches have a better starting solution.

Table 6. Summary of the computational experiments for different combinations of
time window determination (simple insertion, ANS) and improvement approaches
(1move, 1move + 1swap + TSP(s)TW) considering instances with 500 customers.

Average-Sized Grocery Home Delivery Problems

WNO WOV1.5 WOV3
Vehicles 16 18 20 16 18 20 16 18 20

Determination: simple insertion, Improvement: 1move

Avg. p̂ 453.35 491.80 498.65 455.75 495.10 498.65 451.00 495.50 499.60
Avg. number of
time windows offered 9.07 9.84 9.97 9.15 9.90 9.98 10.81 11.88 11.99

Avg. run time
(mm:ss.zzz)
Determination 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001
Improvement 0:00.076 0:00.103 0:00.114 0:00.103 0:00.134 0:00.138 0:00.096 0:00.123 0:00.127

Determination: simple insertion, Improvement: 1move + 1swap + TSP(s)TW

Avg. p̂ 454.25 494.00 499.05 456.95 495.95 499.00 452.80 496.00 499.65
Avg. number of
time windows offered 9.09 9.87 9.98 9.15 9.92 9.98 10.86 11.91 12.00

Avg. run time
(mm:ss.zzz)
Determination 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001 0:00.001
Improvement 0:00.758 0:00.852 0:00.957 0:03.139 0:03.234 0:03.133 0:01.345 0:01.672 0:01.598

Determination: ANS, Improvement: 1move

Avg. p̂ 455.35 498.50 499.55 458.00 499.05 499.75 453.10 499.44 499.80
Avg. number of
time windows offered 9.11 9.97 9.99 9.16 9.98 9.99 10.88 11.99 12.00

Avg. run time
(mm:ss.zzz)
Determination 0:00.098 0:00.022 0:00.017 0:00.090 0:00.014 0:00.012 0:00.120 0:00.020 0:00.017
Improvement 0:00.060 0:00.077 0:00.086 0:00.073 0:00.091 0:00.100 0:00.073 0:00.092 0:00.098

Determination: ANS, Improvement: 1move + 1swap + TSP(s)TW

Avg. p̂ 455.55 498.95 499.65 457.85 499.15 499.75 452.90 499.55 499.80
Avg. number of
time windows offered 9.12 9.98 9.99 9.16 9.99 9.99 10.87 11.99 12.00

Avg. run time
(mm:ss.zzz)
Determination 0:00.104 0:00.026 0:00.020 0:00.088 0:00.014 0:00.014 0:00.114 0:00.023 0:00.019
Improvement 0:00.713 0:00.889 0:00.862 0:00.898 0:01.138 0:01.099 0:00.883 0:01.158 0:01.161

In summary, we can conclude that using the ANS for the time window determination
(and the insertion) step is preferred as long as the instances are sufficiently small (as in our
use case) such that it can still be performed in accordance with the run-time requirements
of the considered AHD service. However, the ANS gives a slight improvement compared
to the simple insertion heuristic (as already shown in Section 5.3) and should therefore be

Algorithms 2022, 15, 125 22 of 24

utilized if the frequency of incoming orders is sufficiently low, such that the additionally
required run times do not cause issues. If the expected time between incoming order
requests temporarily increases, e.g., during peak times, one can switch to the 1move heuristic
without having to fear major drawbacks.

6. Conclusions

In this work, we considered an attended home delivery (AHD) system in the context
of an online grocery shopping service offered by an international retailer. AHD systems are
used whenever the customers must be present when their deliveries arrive. For an efficient
delivery process, the supermarket and the customer must both agree on a time window
during which the delivery can be guaranteed.

We focused on the phase during which customers place their orders through a web
service. Generally, this is the most challenging phase of an AHD system from a compu-
tational point of view. As for most AHD approaches in the literature, we considered a
vehicle routing problem with time windows to be the underlying optimization problem.
The online characteristic of this phase requires that the delivery schedule is built dynami-
cally as new orders are placed. We split the computations into four steps and proposed
solution approaches that allow to determine which delivery time windows can be offered
to potential customers and to iteratively build the schedule.

Finally, we presented a comprehensive experimental evaluation of the proposed
heuristic approaches, which are based on local search operations and mixed-integer linear
programming formulations. Our goal was to determine the efficiency of the approaches on
benchmark sets motivated by an international supermarket chain’s online grocery shopping
service. We elaborated certain aspects of the problem by varying the structure of the time
windows, the number of available vehicles, and the number of total customer requests.
In particular, we compared different approaches for inserting new customers into the
existing delivery schedule and for re-optimizing the schedule once a new customer has
been added to the schedule. The computational study shows that the suggested algorithms
can solve the considered benchmark instances sufficiently fast to comply with the run time
restrictions of an grocery home delivery service having high customer request rates. It can
be a guideline for practitioners when designing a grocery delivery system.

For future research, a variety of extensions of the framework are possible and could
be integrated without major changes to its general architecture. Primarily, incorporating
dynamic slotting methods into the decision process as well as the use of vehicles having
different temperature compartments (where applicable) could largely improve the practical
performance of any AHD system. A combination of the home delivery approach and
dedicated pick-up locations would be another interesting research direction.

Author Contributions: Conceptualization, C.T., K.M. and A.J.; data curation, C.T.; formal analysis,
C.T., K.M. and A.J.; methodology, C.T., K.M. and A.J.; project administration, C.T.; software, C.T.,
K.M. and A.J.; visualization, C.T., K.M. and A.J.; writing—original draft, C.T., K.M., A.J. and P.H.;
writing—review and editing, C.T., K.M. and A.J.; funding acquisition, P.H.; supervision, P.H. All
authors have read and agreed to the published version of the manuscript.

Funding: Christian Truden is supported by a grant from the Government of Carinthia within the
CARINTHIja 2020 project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The benchmark instances are made available by the authors and can
be found at https://bit.ly/3doVvve (accessed on 5 March 2022).

Acknowledgments: The authors would like to thank Mario Ruthmair for his valuable advice and feedback.

Conflicts of Interest: The authors declare no conflict of interest.

https://bit.ly/3doVvve

Algorithms 2022, 15, 125 23 of 24

References
1. Eurostat. Internet Purchases by Individuals (Until 2019) (Online Data Code: ISOC_EC_IBUY). Available online:

https://ec.europa.eu/eurostat/databrowser/view/ISOC_EC_IBUY (accessed on 5 March 2022).
2. Eurostat. Internet Purchases by Individuals (2020 Onwards) (Online Data Code: ISOC_EC_IB20). Available online:

https://ec.europa.eu/eurostat/databrowser/view/ISOC_EC_IB20/ (accessed on 5 March 2022).
3. Eurostat. Internet Purchases—Goods or Services (2020 Onwards) (Online Data Code: ISOC_EC_IBGS). Available online:

https://ec.europa.eu/eurostat/databrowser/view/ISOC_EC_IBGS (accessed on 5 March 2022).
4. Nielsen. The Future of Grocery. Available online: https://www.nielsen.com/wp-content/uploads/sites/3/2019/04/nielsen-

global-e-commerce-new-retail-report-april-2015.pdf (accessed on 5 March 2022).
5. Breitbarth, E.; Groß, W.; Zienau, A. Protecting vulnerable people during pandemics through home delivery of essential supplies:

A distribution logistics model. J. Humanit. Logist. Supply Chain. Manag. 2021, 11, 227–247. [CrossRef]
6. Publications Office of the European Union. Overview Report Official Controls on Internet Sales of Food in EU Member States; European

Union: Brussels, Belgium, 2019. [CrossRef]
7. Campbell, A.M.; Savelsbergh, M.W.P. Decision Support for Consumer Direct Grocery Initiatives. Transp. Sci. 2005, 39, 313–327.

[CrossRef]
8. Vazquez-Noguerol, M.; Comesaña-Benavides, J.; Poler, R.; Prado-Prado, J.C. An optimisation approach for the e-grocery order

picking and delivery problem. Cent. Eur. J. Oper. Res. 2020. [CrossRef]
9. Vazquez-Noguerol, M.; Comesaña-Benavides, J.A.; Riveiro-Sanroman, S.; Prado-Prado, J.C. A mixed integer linear programming

model to support e-fulfillment strategies in warehouse-based supermarket chains. Cent. Eur. J. Oper. Res. 2021. [CrossRef]
10. Bucur, P.A.; Hungerländer, P.; Jellen, A.; Maier, K.; Pachatz, V. Shift Planning for Smart Meter Service Operators. In Proceedings

of the Data Science—Analytics and Applications, Dornbirn, Austria, 13 May 2020; Haber, P., Lampoltshammer, T., Mayr, M.,
Plankensteiner, K., Eds.; Springer: Wiesbaden, Germany, 2021; pp. 8–10. [CrossRef]

11. Parragh, S.N.; Dörner, K.F.; Hartl, R.F. A survey on pickup and delivery problems: Part II: Transportation between pickup and
delivery locations. J. Betriebswirtschaft 2008, 58, 81–117. [CrossRef]

12. Fikar, C.; Hirsch, P. Home health care routing and scheduling: A review. Comput. Oper. Res. 2017, 77, 86–95. [CrossRef]
13. Cwioro, G.; Hungerländer, P.; Maier, K.; Pöcher, J.; Truden, C. An Optimization Approach to the Ordering Phase of an Attended

Home Delivery Service. In Proceedings of the Integration of Constraint Programming, Artificial Intelligence, and Operations
Research, Thessaloniki, Greece, 4–7 June 2019; Rousseau, L.M., Stergiou, K., Eds.; Springer International Publishing: Cham,
Swizerland, 2019; pp. 208–224. [CrossRef]

14. Agatz, N.; Campbell, A.M.; Fleischmann, M.; Savels, M. Challenges and Opportunities in Attended Home Delivery. In The Vehicle
Routing Problem: Latest Advances and New Challenges; Golden, B., Raghavan, S., Wasil, E., Eds.; Springer: Boston, MA, USA, 2008;
pp. 379–396. [CrossRef]

15. Han, S.; Zhao, L.; Chen, K.; Luo, Z.-W.; Mishra, D. Appointment scheduling and routing optimization of attended home delivery
system with random customer behavior. Eur. J. Oper. Res. 2017, 262, 966–980. [CrossRef]

16. Pan, S.; Giannikas, V.; Han, Y.; Grover-Silva, E.; Qiao, B. Using customer-related data to enhance e-grocery home delivery. Ind.
Manag. Data Syst. 2017, 117, 1917–1933. [CrossRef]

17. Ehmke, J.F. Attended Home Delivery. In Integration of Information and Optimization Models for Routing in City Logistics; Springer:
Boston, MA, USA, 2012; pp. 23–33. [CrossRef]

18. Gayialis, S.P.; Kechagias, E.P.; Konstantakopoulos, G.D. A city logistics system for freight transportation: Integrating information
technology and operational research. Oper. Res. Int. J. 2022. [CrossRef]

19. Yang, X.; Strauss, A.K.; Currie, C.S.M.; Eglese, R. Choice-Based Demand Management and Vehicle Routing in E-Fulfillment.
Transp. Sci. 2016, 50, 473–488. [CrossRef]

20. Gendreau, M.; Hertz, A.; Laporte, G.; Stan, M. A Generalized Insertion Heuristic for the Traveling Salesman Problem with Time
Windows. Oper. Res. 1998, 46, 330–335. [CrossRef]

21. Köhler, C.; Ehmke, J.F.; Campbell, A.M. Flexible time window management for attended home deliveries. Omega 2020, 91, 102023.
[CrossRef]

22. Savelsbergh, M.W.P. The Vehicle Routing Problem with Time Windows: Minimizing Route Duration. ORSA J. Comput. 1992,
4, 146–154. [CrossRef]

23. Hungerländer, P.; Rendl, A.; Truden, C. On the Slot Optimization Problem in On-Line Vehicle Routing. Transp. Res. Procedia 2017,
27, 492–499. [CrossRef]

24. Agatz, N.; Campbell, A.M.; Fleischmann, M.; van Nunen, J.; Savelsbergh, M. Revenue management opportunities for Internet
retailers. J. Revenue Pricing Manag. 2013, 12, 128–138. [CrossRef]

25. Agatz, N.; Campbell, A.; Fleischmann, M.; Savelsbergh, M.W.P. Time Slot Management in Attended Home Delivery. Transp. Sci.
2011, 45, 435–449. [CrossRef]

26. Hernandez, F.; Gendreau, M.; Potvin, J. Heuristics for tactical time slot management: A periodic vehicle routing problem view.
Int. Trans. Oper. Res. 2017, 24, 1233–1252. [CrossRef]

27. Klein, R.; Neugebauer, M.; Ratkovitch, D.; Steinhardt, C. Differentiated Time Slot Pricing Under Routing Considerations in
Attended Home Delivery. Transp. Sci. 2019, 53, 236–255. [CrossRef]

28. Cleophas, C.; Ehmke, J.F. When are deliveries profitable? Bus. Inf. Syst. Eng. 2014, 6, 153–163. [CrossRef]

https://ec.europa.eu/eurostat/databrowser/view/ISOC_EC_IBUY
https://ec.europa.eu/eurostat/databrowser/view/ISOC_EC_IB20/
https://ec.europa.eu/eurostat/databrowser/view/ISOC_EC_IBGS
https://www.nielsen.com/wp-content/uploads/sites/3/2019/04/nielsen-global-e-commerce-new-retail-report-april-2015.pdf
https://www.nielsen.com/wp-content/uploads/sites/3/2019/04/nielsen-global-e-commerce-new-retail-report-april-2015.pdf
http://doi.org/10.1108/JHLSCM-07-2020-0062
http://dx.doi.org/10.2772/57153
http://dx.doi.org/10.1287/trsc.1040.0105
http://dx.doi.org/10.1007/s10100-020-00710-9
http://dx.doi.org/10.1007/s10100-021-00778-x
http://dx.doi.org/10.1007/978-3-658-32182-6_2
http://dx.doi.org/10.1007/s11301-008-0036-4
http://dx.doi.org/10.1016/j.cor.2016.07.019
http://dx.doi.org/10.1007/978-3-030-19212-9_14
http://dx.doi.org/10.1007/978-0-387-77778-8_17
http://dx.doi.org/10.1016/j.ejor.2017.03.060
http://dx.doi.org/10.1108/IMDS-10-2016-0432
http://dx.doi.org/10.1007/978-1-4614-3628-7_3
http://dx.doi.org/10.1007/s12351-022-00695-0
http://dx.doi.org/10.1287/trsc.2014.0549
http://dx.doi.org/10.1287/opre.46.3.330
http://dx.doi.org/10.1016/j.omega.2019.01.001
http://dx.doi.org/10.1287/ijoc.4.2.146
http://dx.doi.org/10.1016/j.trpro.2017.12.046
http://dx.doi.org/10.1057/rpm.2012.51
http://dx.doi.org/10.1287/trsc.1100.0346
http://dx.doi.org/10.1111/itor.12403
http://dx.doi.org/10.1287/trsc.2017.0738
http://dx.doi.org/10.1007/s12599-014-0321-9

Algorithms 2022, 15, 125 24 of 24

29. Ehmke, J.F.; Campbell, A.M. Customer acceptance mechanisms for home deliveries in metropolitan areas. Eur. J. Oper. Res. 2014,
233, 193–207. [CrossRef]

30. Lang, M.A.; Cleophas, C.; Ehmke, J.F. Multi-criteria decision making in dynamic slotting for attended home deliveries. Omega
2021, 102, 102305. [CrossRef]

31. Asdemir, K.; Jacob, V.S.; Krishnan, R. Dynamic pricing of multiple home delivery options. Eur. J. Oper. Res. 2009, 196, 246–257.
[CrossRef]

32. Klein, R.; Mackert, J.; Neugebauer, M.; Steinhardt, C. A model-based approximation of opportunity cost for dynamic pricing in
attended home delivery. OR Spectr. 2018, 40, 969–996. [CrossRef]

33. Yang, X.; Strauss, A.K. An approximate dynamic programming approach to attended home delivery management. Eur. J. Oper.
Res. 2017, 263, 935–945. [CrossRef]

34. Elshaer, R.; Awad, H. A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants.
Comput. Ind. Eng. 2020, 140, 106242. [CrossRef]

35. Bent, R.W.; Van Hentenryck, P. Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Oper.
Res. 2004, 52, 977–987. [CrossRef]

36. Lenstra, J.K.; Kan, A.H.G.R. Complexity of vehicle routing and scheduling problems. Networks 1981, 11, 221–227. [CrossRef]
37. Campbell, A.M.; Savelsbergh, M.W.P. Incentive Schemes for Attended Home Delivery Services. Transp. Sci. 2006, 40, 327–341.

[CrossRef]
38. Campbell, A.M.; Savelsbergh, M.W.P. Efficient Insertion Heuristics for Vehicle Routing and Scheduling Problems. Transp. Sci.

2004, 38, 369–378. [CrossRef]
39. Kohl, N.; Madsen, O.B.G. An Optimization Algorithm for the Vehicle Routing Problem with Time Windows Based on Lagrangian

Relaxation. Oper. Res. 1997, 45, 395–406. [CrossRef]
40. Hungerländer, P.; Truden, C. Efficient and Easy-to-Implement Mixed-Integer Linear Programs for the Traveling Salesperson

Problem with Time Windows. Transp. Res. Procedia 2018, 30, 157–166. [CrossRef]
41. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680.

[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.ejor.2013.08.028
http://dx.doi.org/10.1016/j.omega.2020.102305
http://dx.doi.org/10.1016/j.ejor.2008.03.005
http://dx.doi.org/10.1007/s00291-017-0501-3
http://dx.doi.org/10.1016/j.ejor.2017.06.034
http://dx.doi.org/10.1016/j.cie.2019.106242
http://dx.doi.org/10.1287/opre.1040.0124
http://dx.doi.org/10.1002/net.3230110211
http://dx.doi.org/10.1287/trsc.1050.0136
http://dx.doi.org/10.1287/trsc.1030.0046
http://dx.doi.org/10.1287/opre.45.3.395
http://dx.doi.org/10.1016/j.trpro.2018.09.018
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860

	Introduction
	Related Work
	Attended Home Delivery
	Determining Feasible Time Slots
	Slotting and Pricing

	Problem Description and Formal Model
	Computational Steps during the Ordering Phase
	Initialization Step
	Determination Step
	Insertion Step
	Improvement Step

	Vehicle Routing Problem with Time Windows
	Arrival Times and Feasibility
	Earliest and Latest Arrival Times
	Insertion Points
	Feasibility of an Insertion

	Slot Optimization Problem

	Algorithms for the VRPTW
	Simple Insertion Heuristic
	Local Search Heuristic
	Adaptive Neighborhood Search Heuristic
	First/Last Customer
	Neighborhoods
	Loss and Free Time
	Feasibility and Infeasibility Conditions
	Algorithm

	Exact Approach for Solving a Sub-Problem
	Solution Approaches

	Computational Study and Analysis
	Design of the Instances
	Comparing Approaches for the Determination Step
	Comparing Approaches for the Improvement Step
	Average-Sized Grocery Home Delivery Problems
	Dealing with Large-Problem Instances

	Interplay of Approaches for the Determination and the Improvement Step

	Conclusions
	References

