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Abstract: Parameter adaptation is one of the key research fields in the area of evolutionary compu-
tation. In this study, the application of neuroevolution of augmented topologies to design efficient
parameter adaptation techniques for differential evolution is considered. The artificial neural net-
works in this study are used for setting the scaling factor and crossover rate values based on the
available information about the algorithm performance and previous successful values. The training
is performed on a set of benchmark problems, and the testing and comparison is performed on
several different benchmarks to evaluate the generalizing ability of the approach. The neuroevolution
is enhanced with lexicase selection to handle the noisy fitness landscape of the benchmarking results.
The experimental results show that it is possible to design efficient parameter adaptation techniques
comparable to state-of-the-art methods, although such an automatic search for heuristics requires
significant computational effort. The automatically designed solutions can be further analyzed to
extract valuable knowledge about parameter adaptation.

Keywords: differential evolution; neuroevolution; parameter adaptation; neuroevolution of
augmented topologies

1. Introduction

The area of Computational Intelligence (CI), which includes Artificial Neural Net-
works (ANN), Fuzzy Logic Systems (FLS) and Evolutionary Algorithms (EA), is one of
the most rapidly developing directions nowadays. These algorithms find applications in
many fields where prediction [1], modelling [2,3] or optimization problems [4] are solved.
Evolutionary algorithms are mostly applied for solving optimization problems, and they
are often state-of-the-art approaches in many areas, such as multiobjective optimization,
constrained optimization and black-box numerical optimization [5]. The algorithms which
are developed for solving single-objective numerical optimization problems often serve as
a basis for other techniques and are applicable to a wide range of real-world problems [6].

Among the numerical optimization techniques developed in the area of evolutionary
computation [7], Differential Evolution (DE) is currently one of the most widely used
approaches. The original DE algorithm proposed in [8] appeared to be efficient and
relatively simple in terms of implementation [9]. Further development of DE, which mainly
included new mutation strategies and parameter adaptation techniques, made it one of
the most efficient optimization methods today [10]. However, despite a certain level of
success, the topic of parameter adaptation remains one of the most studied, as DE is highly
sensitive to parameter values.

As opposed to the classical approach, whereby new algorithms are developed by hand
and based on the expert knowledge of researchers, several studies have made attempts to
automate the process of searching for optimization algorithms and techniques. In particular,
some studies addressed the problem of designing new algorithms directly [11,12] with
advanced genetic programming techniques, such as PushGP. Other studies, for example,
Refs. [13,14] focused on creating certain search operators for the existing algorithms. All
these methods could be generalized as Hyper-Heuristic (HH) approaches [15], which are
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applied to the Automated Design of Algorithms (ADA) problem [16]. Such methods are
of particular interest as they are not bounded by human perception of the problem and
corresponding bias in algorithmic design.

In this study, the problem of designing a parameter adaptation technique for differen-
tial evolution is considered. In particular, the Neuroevolution of Augmented Topologies
(NEAT) [17] algorithm is applied to set the scaling factor and crossover rate values in DE.
The Artificial Neural Networks (ANN) designed by NEAT are trained directly on the DE
algorithm, implementing the offline parameter adaptation approach [18], when parameter
values are chosen based on the set of experiments during training [19]. The training is
performed on a set of benchmark problems introduced for the Congress on Evolutionary
Computation (CEC) competition on bound-constrained numerical optimization in 2022 [20],
and the testing is performed on the CEC 2021 competition benchmark [21]. This study
is the continuation of our previous research, namely [22], where Genetic Programming
(GP) [23] was applied to the same problem, but a with different benchmark set. The main
features of the current study are:

1. Both the scaling factor F and crossover rate Cr are controlled by a single network
designed by NEAT;

2. ε-lexicase selection is applied, where the cases are the results of each run on each
benchmark function;

3. Difference-based mutation is applied in NEAT for enhanced weights tuning;
4. Evaluation of the designed artificial neural networks involves both convergence speed

and the final obtained function value.

The performed experiments show that the automatically designed parameter adap-
tation techniques in the form of neural networks are able to deliver comparable level
of performance not only on the set of functions on which they were trained but also on
different benchmarks.

The rest of the paper is organized as follows. The next section contains a short
description of DE and NEAT, as well as the proposed approach. After this, the experimental
setup and results are given, including the discussion. Finally, the conclusions and directions
of further work are provided.

2. Materials and Methods
2.1. Differential Evolution

Differential Evolution is a population-based evolutionary algorithm proposed by
Storn and Price [24]. The key idea of DE is the usage of difference vectors between
individuals, which allows for efficient exploitation of the functions’ landscape. DE starts
with an initialization step, whereby points are randomly generated within the boundaries
[xminj, xmaxj]: xi,j, i = 1 . . . NP, j = 1 . . . D, where D is the problem dimension and NP is
the population size.

The main loop of DE consists of mutation, crossover and selection operators. The
mutation is the main part of DE, which makes it different from other algorithms. Most
recent DE-based algorithms use the current-to-pbest/1 strategy [25], which generates
mutant (donor) vector vi for each target vector xi as follows:

vi,j = xi,j + F(xpbest,j − xi,j) + F(xr1,j − xr2,j), (1)

where pbest is an index of one of the p ∗ 100% best individuals, r1 and r2 are randomly
chosen indices from [1, NP]. F is called the scaling factor and is usually chosen in the range
[0, 1]. Note that pbest, r1 and r2 are generated to be different from each other.

After mutation, the generated donor vector vi is combined with a target vector xi
to produce a trial vector ui with crossover. The commonly used crossover operation is
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binomial crossover, in which the trial vector receives randomly chosen components from
the mutant vector with a probability Cr ∈ [0, 1]:

ui,j =

{
vi,j, if rand(0, 1) < Cr or j = jrand
xi,j, otherwise

, (2)

where jrand is a randomly chosen index from [1, D], required to make sure that the trial
vector is smaller than the target vector to avoid unnecessary fitness calculations.

Before calculating the goal function value for the trial vector ui the Bound Constraint
Handling Method (BCHM) should be applied. One of the often-used approaches is called
midpoint target [26]:

ui,j =

{ xminj+xi,j
2 , if ui,j < xminj

xmaxj+xi,j
2 , if ui,j > xmaxj

. (3)

After applying BCHM and the fitness calculation, the selection step is performed. If the
goal function value of the trial vector is small than that of the target vector (minimization
problem), then the replacement occurs:

xi,j =

{
ui,j, if f (ui) ≤ f (xi)

xi,j, if f (ui) > f (xi)
. (4)

Although the general scheme of DE is relatively simple, it comes with the price of
high sensitivity to parameter values. Nowadays there are many studies addressing this
issue [27], and further several well-known approaches will be considered. In [28] the jDE
algorithm was proposed, in which the parameter values were adapted as follows:

Fi,t+1 =

{
random(Fl , Fu), if random(0, 1) < τ1

Fi,t, otherwise
, (5)

CRi,t+1 =

{
random(0, 1), if random(0, 1) < τ2

CRi,t, otherwise
. (6)

where Fl and Fu are the lower and upper boundaries for F, and τ1 and τ2 control the
frequency of F anc Cr changes, usually set to 0.1. The jDE algorithm updates F and Cr
if the trial vector is better than the target vector storing the successful values. The jDE
approach is known to be quite efficient, and its modifications jDE100 [29] and j2020 [30]
demonstrated high efficiency on bound-constrained test problems.

Another branch of parameter adaptation techniques started with the JADE algo-
rithm [31], which ,together with the current-to-pbest/1 mutation strategy, proposed au-
tomatic parameter tuning. The crossover rate Cr and scaling factor F are generated for
each crossover and mutation using normal distribution with the mean set to µCr, standard
deviation set to 0.1, and Cauchy distribution with location parameter set to µF and scale
parameter 0.1. As the sampled values may fall away from the [0, 1] interval, they were
sampled again until they were inside the boundaries. However, if the sampled F > 1, then
it was set to F = 1. The JADE algorithm also included updating the memory values µCr
and µF depending on the successful values.

Further development of JADE resulted in the SHADE (Success-History Adaptive
Differential Evolution) algorithm, originally proposed in [32]. SHADE further developed
the ideas of JADE by introducing H memory cells, each containing a pair of (MF,h, MCr,h)
values, which are used for parameters sampling as follows:{

F = randc(MF,k, 0.1)
Cr = randn(MCr,k, 0.1)

, (7)
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where randc is a Cauchy distributed random value, randn is a normally distributed random
number and k is chosen from [1, H] for generating each trial vector.

At the end of the generation, the successful values of the F and Cr parameters were
stored in SF and SCr, as well as the corresponding goal function improvements S∆ f , where
∆ fi = | f (ui) − f (xi)|. The memory cells were updated one by one using the values
calculated with weighted Lehmer mean [33]:

meanwL =
∑
|S|
j=1 wjS2

j

∑
|S|
j=1 wjSj

, (8)

where wj =
S∆ f j

∑
|S|
k=1 S∆ f k

, S is either SCr or SF. The Lehmer mean results are further used to set

the new MF and MCr values at iteration t for one of the memory cells h:{
Mt+1

F,h = 0.5(Mt
F,h + mean(wL,F))

Mt+1
CR,h = 0.5(Mt

Cr,h + mean(wL,Cr))
, (9)

The index of the updated memory cell h is incremented every generation and is set to
1 once it reaches the number of cells H.

The JADE and SHADE algorithms also maintain an external archive of inferior solu-
tions, which is composed of parent vectors replaced during selection. Initially, the archive A
is empty and is filled with solutions until it reaches its predefined maximum size NA. After
this, the archive is updated by replacing a randomly chosen individual in the archive with
a new one. The archived solutions are used in the current-to-pbest/1 mutation strategy in
the r2 index: It is chosen from either the population or the archive. Thus, the archive set
allows the diversity of generated trial vectors to be improved. The SHADE algorithm has
gained high popularity due to its high efficiency, and has become a basis for a variety of
new approaches [34–37].

After SHADE, the L-SHADE algorithm was developed [38], which included a control
technique for the population size NP, one of the three main parameters of DE. The Linear
Population Size Reduction (LPSR) method decreases the population size based on current
computational resource and removes the worst individuals from the population. The
population size is recalculated every generation as follows:

NPg+1 = round(
NPmin − NPmax

NFEmax
NFE + NPmax), (10)

where NPmin = 4 and NPmax are the minimal and initial population sizes, and NFE
and NFEmax are the current and maximal number of function evaluations. Later the
modification of the LPSR method was proposed, in which the population size decreases
non-linearly (NLPSR) [39]. This approach is inspired by the one applied in the AGSK
algorithm [40] and updates the population size as follows:

Ng+1 = round((Nmin − Nmax)NFE1−NFEr
r + Nmax), (11)

where NFEr =
NFE

NFEmax
is the ratio of the current number of fitness evaluations. The NLPSR

approach sets the population size to smaller values compared to the LPSR.
Although the mentioned parameter adaptation techniques are considered to be quite

efficient, some studies show that there is room for further improvement [41], for example,
with biased parameter adaptation [42]. The automated search for efficient adaptation
heuristics is one of the possible ways of receiving valuable knowledge about differential
evolution [22]. In the next subsection, the NEAT approach will be briefly described.
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2.2. Neuroevolution

The problem of evolving artificial neural network topology is one of the most impor-
tant areas of studies because the number of neurons and their connectivity significantly
influences the efficiency and complexity of the resulting solutions. Several attempts were
made in combining ANN with evolutionary algorithms, and the Neuroevolution of Aug-
mented Topologies (NEAT) [17] remains one of the most promising directions of studies.
The main advantage of NEAT is that it allows both the topology and the weights of an
ANN to be evolved thanks to specific solution representation and operators. This allows
NEAT to be efficient in solving a variety of problems, such as classification, regression and
control, among others [43].

The main features of the NEAT algorithm are the usage of historical markers (or
innovation numbers), speciation mechanism and initialization with minimal structures.
NEAT starts with a population of simple networks, where only inputs and outputs are
connected, and the weights are assigned randomly. The search process consists of adding
new nodes and connections, i.e., augmenting the ANN topology via mutation and crossover
operators. The encoding scheme in NEAT is based on a set of nodes and a set of connections,
with each element in these sets having several properties. In particular, the nodes have
historical markers, a type of node (input, output, hidden) and an activation function, while
connections have historical markers, source and destination nodes numbers, a weight value
and an activation flag.

The historical markers indicate the moment when a certain node or connection was
added. These markers are required to align the corresponding genes during crossover,
which helps to solve the competing conventions problem, which occurs when the encoding
scheme allows several ways of expressing the same solution [17].

The NEAT algorithm follows a general scheme, starting with initialization, followed
by selection, crossover, mutation and speciation. The selection mechanism could be based
on any of the mechanisms widely used in EC, such as rank-based or tournament selection.
The crossover step combines the genetic information of two parents by aligning the genes
having identical innovation numbers. The offspring is composed of the genes, which are
randomly chosen from either the first or second parent. As the parents may have different
chromosome lengths, there is a possibility that disjoint genes or excess genes will occur. The
disjoint genes are the ones that are present in one parent, but not in the other, while there is
still a common part after that. The excess genes are the tail genes of the parent individuals,
which are present only in one of the parents, and there is no common part after that. The
disjoint and excess genes are taken from the parent with higher fitness during crossover.

The original NEAT algorithm proposed two mutation schemes: adding a new connec-
tion and adding a node to the connection. When adding a connection, a pair of nodes is
randomly selected, and a new connection gene is created at the end of the chromosome
with a new innovation number. The weight of the newly generated connection is randomly
sampled. When adding a node to the connection, one of the existing connections is ran-
domly chosen and split into two, and a randomly generated hidden node is placed in
between. One of the weights of the two new connections is set to 1, and the other keeps
the previous value. The new historical markers are assigned to both new connections and
the node.

The speciation step implements the innovation protection role in NEAT. When the new
connections or nodes are added to the individual, there is a significant chance that they will
decrease the efficiency of the solution, but further development of this solution may result
in more promising ones. To avoid deleting new solutions and still keep the population
evolving, the speciation (or niching) procedure is applied, which uses innovation numbers
to determine similarities and differences between individuals and create subgroups within
population. In NEAT, the first individual creates the first species, and the subsequent
individuals are either added to this species or create their own based on compatibility or
similarity distance. If this distance is smaller than a certain threshold, then an individual
belongs to the species. The distance combines the information about the number of excess
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genes E, the number of disjoint genes D and the average difference in weights of the
matching genes W as follows:

δ = c1 · E + c2 · D + c3 ·W, (12)

where c1, c2 and c3 are the importance coefficients. At the end of each generation, the
offspring individuals are assigned to species. After this, the best representatives of each
species create the new generation. The general scheme of NEAT is shown in Algorithm 1.

Algorithm 1 NEAT

1: for gen = 1 to NG do
2: Initialize population P with minimal solutions, calculate fitness f iti, i = 1, . . . , N
3: Assign species numbers to every individual
4: for i = 1 to N do
5: Perform tournament-based selection (t = 2) to get index tr
6: Perform crossover between Pi and Ptr, save offspring to Oi
7: Select the mutation operator to be used
8: Perform mutation on Oi and calculate fitness
9: end for

10: Perform speciation of combined parents P and offspring O populations
11: Create new population from the representatives of every species
12: end for
13: Return best found solution

A variety of studies have investigated ways of improving NEAT and applying it to
different fields, including studies on fitness landscape [44], using different activation func-
tions [45], meta-analysis [46] and using it as hyper-heuristic [47]. In the next subsection, the
proposed approach for evolving parameter adaptation heuristics with NEAT is described.

2.3. Proposed Approach

The problem of tuning parameters is one of the most studied in evolutionary com-
putation [48]. The idea of automating the search for parameter adaptation heuristics is,
to the best of our knowledge, relatively new, and was considered in [22]. In [22], genetic
programming (GP) [49] was applied to find heuristics for controlling the F and Cr values
via symbolic regression [50,51], and separate solutions were evolved for F and for Cr. In
this paper, instead of GP, which was previously used for designing hyper-heuristics [52],
the NEAT approach is applied. One of the advantages of NEAT over GP is that it is capable
of evolving structures with several inputs and outputs, and allows interaction between
inputs and outputs within one solution, unlike GP, where two separate trees were built to
control both F and Cr at the same time.

As a baseline approach to be used for hyper-heuristic design with NEAT, a simplified
version of the recently developed NL-SHADE-RSP approach [39] was considered. Being the
winner of the CEC 2021 competition on bound-constrained single-objective optimization
for biased, shifted and rotated cases, NL-SHADE-RSP represents a state-of-the-art approach.
Thus, improving its performance further is a challenging task. However, the version of NL-
SHADE-RSP used in this study is simplified (NL-SHADE-RSPs), i.e., some of the specific
parameter adaptation techniques are removed in order to allow improved flexibility for
NEAT during heuristics search.

NL-SHADE-RSPs uses non-linear population size reduction, as described above, and
the current-to-pbest/r mutation strategy with rank-based selection. The additional selection
mechanism, proposed in [53], and further studied in [54], assigns ranks Ri = e−i/NP in
an array sorted by fitness values, with largest ranks assigned to better individuals. These
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ranks are further used to calculate the probabilities of choosing an individual from the
population for the r2 index:

pri =
Ri

∑NP
j=1 Rj

, (13)

where i = 1 . . . NP. Hence, better individuals with larger fitness have higher chances of
being used in the mutation. The pb parameter in the current-to-pbest/r mutation strategy is
gradually increased, i.e., the initial value of pbmin is set to 0.2, and the number of individuals
to choose pbest from is linearly increased as follows:

pbest = max(2, NP(0.2 + 0.1
NFE

NFEmax
)). (14)

The minimal value of pb is set to 2 individuals.
NL-SHADE-RSPs uses only binomial crossover and does not apply any heuristics for

controlling the Cr value depending on current computational resource. NL-SHADE-RSPs
does not include adaptive archive probabilities and crossover rate sorting. The pseudocode
of NL-SHADE-RSPs is presented in Algorithm 2.

The inputs for the NEAT individuals included the following parameters:

• The ratio of the currently used computational resource NFEr =
NFE

NFEmax
;

• The success ratio, defined as SR = |A|
NP ;

• The individual number ratio IN = i
NP ;

• The last good F value for individual i;
• The last good Cr value for individual i.

For the third parameter, IN, to be informative, the whole population was sorted by
fitness at the beginning of each generation. It allows different values of F and Cr to be
assigned depending on the quality of an individual. This makes it possible to replicate
the sorting of Cr values, which was applied in NL-SHADE-RSP, by setting the appropriate
weights in the NEAT individual. The DE with built-in NEAT parameter adaptation does
not use memory cells, and the resulting values returned by the designed neural network
are used to sample F and Cr with Cauchy and normal distribution instead of memory
cell values.

The NEAT algorithm applied in this study had several features, which were specifically
added for the problem of parameter adaptation heuristic design. First of all, Difference-
Based Mutation (DBM), proposed in [55], was added, as it allows better fine-tuning of
the weight coefficients. In addition, according to the conclusions of [45], the following
activation functions were used:

• Linear: equals z;
• Negative: −z;
• Absolute value: |z|;
• Squared: z2;
• Unsigned step function: equals 1 if z > 0;
• Sigmoid: 1

1+e−z ;
• ReLU: max(0, z);

• Gaussian: e
−z2

2 ;
• Hyperbolic tangent: tanh(z);
• Sine: sin(πz);
• Cosine: cos(πz).

Here, z is the sum of inputs to a certain node. The default function is linear, and the
mutation may choose any of these functions with equal probability.
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Algorithm 2 NL-SHADE-RSPs

1: Set NPmax = 23D, NP = NPmax D, NFEmax,
2: H = 20D, A = ∅, MF,r = 0.5, MCr,r = 0.9, k = 1
3: NA = NP, pA = 0, g = 0
4: Initialize population P0 = (x1,j, . . . , xNP,j) randomly
5: while NFE < NFEmax do
6: SF = ∅, SCr = ∅, nA = 0
7: Sort and rank population according to fitness f (xi)
8: for i = 1 to NP do
9: Current memory index r = randInt[1, H + 1]

10: Crossover rates Cri = randn(MCr,r, 0.1)
11: Cri = min(1, max(0, Cr))
12: repeat
13: Fi = randc(MF,r, 0.1)
14: until Fi ≥ 0
15: Fi = min(1, Fi)
16: end for
17: for i = 1 to NP do
18: repeat
19: pbest = randInt(1, NP ∗ p)
20: r1 = randInt(1, NP)
21: if rand[0, 1] < pA then
22: r2 = randInt(1, NP)
23: else
24: r2 = randInt(1, NA)
25: end if
26: until i 6= pbest 6= r1 6= r2
27: for j=1 to D do
28: vi,j = xi,j + F(xpbest,j − xi,j) + F(xr1,j − xr2,j)
29: end for
30: Binomial crossover with Cr
31: Calculate f (ui)
32: if f (ui) < f (xi) then
33: xi → ArandInt[1,NA], xi = ui
34: F → SF, Cr → SCr, ∆ fi = f (xi)− f (ui)
35: end if
36: end for
37: Get NPg+1 and NAg+1 with NLPSR
38: if |A| > NAg+1 then
39: Remove random individuals from the archive
40: end if
41: if NPg > NPg+1 then
42: Remove worst individuals from the population
43: end if
44: Update MF,k, MCr,k
45: pA = |A|/NP
46: k = mod(k, H) + 1, g = g + 1
47: end while
48: Return best solution xbest

The mutation step also included two additional mutation operations other than adding
weight and adding a connection:

• Mutating random node: The type of operation performed in a randomly chosen node
is changed to another one, and the new innovation number is assigned to the node.

• Assigning random weights: Every connection is mutated with a probability of 1/NC,
and NC is the number of connections. The connection receives either weight chosen
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from randn(0, 0.1) or randn(1, 0.1). Otherwise, the current value of the weight is used
as a mean value to generate new ones as follows: w = randn(w, 0.01), where w is the
current weight value. With a probability of 1/NC, each weight is either activated
or deactivated.

• Difference-based mutation, which utilizes the idea of difference vectors used in DE
to mutate new weights. For this purpose, three individuals are selected: the tar-
get one with index i and two others with randomly chosen indices r1 and r2. The
genes with the same innovation numbers are identified, and if they have different
weights, they are marked as mutating. Next, the following equations are applied:
wi,j = wi,j + FNEAT ∗ (wr1,j − wr2,j), where j is the index of matching genes, and
FNEAT = 0.5.

In the NEAT algorithm used in this study, several mutation operations could be
applied to the same individual. The probabilities of mutation were set as shown in Table 1,
in accordance with the values used in [55].

Table 1. Probabilities of mutation operators in NEAT.

Mutation Type Probability to Use

Add connection 0.1
Adding node to connection 0.3

Mutating random node 0.2
Assigning random weights 0.2
Difference-based mutation 0.1

The crossover operation was performed only for the weights, i.e., disjoint and excess
genes were not added to the offspring, and each matching gene in the offspring received
a weight value from one of the parents with equal probabilities. After the crossover and
mutation steps, the newly generated offspring is checked for cycles in the network graph.
If cycles are present, then the offspring is discarded and generated again.

The evaluation of NEAT solutions was performed on a set of benchmark functions
from the CEC 2022 competition on numerical optimization. The benchmark consists of
12 functions defined for 10-dimensional and 20-dimensional search spaces. To evaluate
a single parameter adaptation heuristic designed by NEAT, 10 independent runs were
performed for each of the 12 test functions in 10D case. On each of the runs, the result con-
sisted of the best reached function value and the computational resource spent to reach the
goal, if it was reached. The CEC 2022 competition rules introduced the ranking of solutions
based on both convergence speed and the best-found solution, where, between the two
algorithms which found the solution, the one that did it faster was ranked higher. In order
to take such a mechanism into account, the following evaluation metric was proposed:

EM f n,r =

{
fr,NFEmax , if fr,NFEmax > 10−8

NFEs
NFEmax

· 10−9, otherwise
(15)

where NFEs is the number of goal function evaluations where the 10−8 threshold was
reached, fr,NFEmax is the best function value at the end of the search on run r and f n is
the function number. Such an evaluation metric allows two criteria to be combined into a
single one when those runs in which the algorithm found the global optimum are better
(have smaller EMr) than those runs in which the optimum was not found.

The quality of each parameter adaptation heuristic designed by NEAT is described
by a matrix of 12 by 10 values, which should be properly utilized in the search process.
The classical selection mechanisms, such as tournament selection, are not able to efficiently
compare such evaluation metrics, so for this purpose, lexicase selection was applied [56].
Lexicase selection implements a parent selection mechanism, which allows population
diversity to be increased by giving a chance to be selected to each individual capable of
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solving some part of the problem. Lexicase selection was shown to improve the problem-
solving power in program synthesis [57], as well as classifier systems [58] and other
approaches [59]. As the evaluation metric values in the current study are real numbers,
ε-lexicase selection was applied [60] because the standard case passing criteria is too strict
for continuous problems.

Lexicase selection works by adding the population into the selection pool, shuffling the
fitness values (EM matrix in this case, flattened to a vector EMFt, t = 1, . . . , 120), removing
the cases with fitness values larger than the fitness of the first case + ε1 level, and if more
than one individual remains, then the first case is removed and the algorithm is repeated.
If there are no more fitness cases, or only one case in the pool, then the parent individual is
chosen from the pool. The εt level is determined for a case t as follows:

εt = medianj(EMFt,j −mean(EMFt)). (16)

The idea of applying ε-lexicase selection in this study was to allow NEAT to evolve
specialists solutions are capable of solving certain types of optimization problems, so
that later such individuals could be combined to obtain universal parameter adaptation
heuristics.

Another mechanism in addition to lexicase selection applied in this study is the
behavior-based speciation inspired by [61]. The idea of this modified speciation mecha-
nism is to add the performance metrics on difference cases to the distance measure used
in speciation:

δ = c1 · E + c2 · D + c3 ·W + c4 · BD, (17)

BD =
120

∑
t=1

(1− 1
1 + |EMFj,t − EMFk,t|

), (18)

where importance coefficients are set to c1 = c2 = c3 = 1 and c4 = 10, and j and k are the
indices of compared individuals.

The speciation mechanism is designed to maintain a fixed number of species (7) during
the algorithm’s run. For this purpose, the speciation threshold is adaptively adjusted every
generation. The representative of each species is chosen as the best individual in this
species, and other individuals are compared to the representative. At the end of each
generation, all individuals are assigned to species sorted by fitness values, and only several
best individuals of each species are copied to the next generation. The fitness values for
each individual f iti, used in speciation only, are determined using the Friedman ranking
procedure of the results on all functions. For this, the EMF values of all individuals on
each run and function are sorted and ranked, and the fitness values are set as the sum of
ranks. This fitness assignment mechanism was applied in [22].

The results of benchmarking a certain parameter adaptation heuristic designed by
NEAT are random, as NL-SHADE-RSPs intensively uses random values during the search.
To avoid promoting solutions which were occasionally ranked very high, all individuals are
re-evaluated at the beginning of each generation. This means that some solutions will be
evaluated more than once. However, it allows heuristics with genuinely poor performance
to be filtered out. The described neuroevolutionary algorithm will be further referred to as
HA-NEAT-DBM (Heterogeneous Activation NEAT with Difference-Based Mutation).

In the next section, the experimental setup and results are provided.

3. Results

The computational experiments were performed to evaluate the ability of the proposed
HA-NEAT-DBM to design parameter adaptation heuristics. For this purpose, the algorithm
was trained on CEC 2022 benchmark functions and then evaluated. Such an approach
implements offline parameter adaptation [19,62], as opposed to online adaptation [63],
where parameters are tuned during the optimization process.
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Training a single ANN with NEAT requires significant computational effort, and
in the case of the current study, it is multiplied by the goal function complexity, which
requires 10 runs of the NL-SHADE-RSPs algorithm on 12 test functions from the CEC
2022 competition [20]. Therefore, to reduce calculation time, HA-NEAT-DBM and NL-
SHADE-RSPs were both implemented in C++11, compiled with GCC and ran on the
OpenMPI-powered cluster of seven AMD Ryzen 1700 processors with eight cores each.
There were 50 independent runs of HA-NEAT-DBM performed, each on a separate core,
the computational resource was set to 10000 HA-NEAT-DBM evaluations and the time
required to perform the training was around 16 days running 24/7. Testing the algorithms,
however, required much less computation, as only the best solutions of each run were
analyzed. The best solution was determined by the Friedman ranking of the results at
the last generation, as described in the previous section. The post-processing of results,
statistical tests and graphs were performed with Python 3.8 and matplotlib. The main
parameters of NL-SHADE-RSPs are given in Algorithm 2.

The first set of efficiency comparison experiments was performed on the CEC 2022
benchmark functions. The designed parameter adaptation heuristics, presented in the
form of networks, were compared with the baseline NL-SHADE-RSPs and the original
NL-SHADE-RSP, which is the winner of the previous year’s competition CEC 2021 for
biased, shifted and rotated functions. To compare the efficiency, all the ANNs were tested
on all 12 functions, 30 independent runs and 10D and 20D cases. For every function, the
Mann–Whitney statistical test was performed, with significance level p = 0.01, normal
approximation and tie-breaking, i.e., runs with equal results were assigned averaged ranks,
and the standard score Z value was calculated. In Table 2, the aggregated results are shown,
i.e., the number of wins (+), ties (=) and losses (−) of one of the 50 heuristic compared to
NL-SHADE-RSPs or NL-SHADE-RSP.

The comparison of statistical tests results in Table 2 demonstrates that the neuroevo-
lutionary parameter adaptation performs better than the standard SHADE parameter
adaptation of the simplified NL-SHADE-RSPs algorithm in both 10D and 20D scenarios. It
should be mentioned, however, that the heuristics are usually better on the same functions:
For example, in the 20D case, almost all automatically designed parameter adaptation
techniques are better on 3 functions and comparable on 9. These significant improvements
were observed for F1 (Shifted and full Rotated Zakharov Function), F3 (Shifted and full
Rotated Expanded Schaffer’s f6 Function) and F5 (Shifted and full Rotated Levy Function),
and the improvements were in terms of the number of function evaluations required to
reach the optimum. On all other functions, the results were equal or comparable. As for
the 10D scenario, the designed heuristics were better for most of the functions, except F4
(Shifted and full Rotated Non-Continuous Rastrigin’s Function) and F8 (Hybrid Function
3, including Katsuura, HappyCat, Griewank’s plus Rosenbrock’s, Modified Schwefel’s
and Ackley’s).

The comparison with the original NL-SHADE-RSP, which uses specific crossover
rate adaptation, adaptive archive probabilities and exponential crossover, shows that the
designed heuristics for parameter adaptation are still capable of competing with this
approach, but the results are worse in general. In the 10D case, there are from 2 to 4 losses,
although the number of wins is larger, and in the 20D case, there are almost always 3 wins
and 1 loss. This means that these algorithms behave differently on different functions, and
the designed parameter adaptation techniques have other principles compared to success-
history adaptation. In particular, losses on 10D functions were observed on F6 (Hybrid
Function 1, including Bent Cigar, HGBat and Rastrigin’s functions), F8, F10 (Composition
Function 2, including Rotated Schwefel’s, Rotated Rastrigin’s and HGBat functions) and
F12 (Composition Function 4, including HGBat, Rastrigin’s, Modified Schwefel’s, Bent
Cigar, High Conditioned Elliptic and Expanded Schaffer’s functions). Here, the best
parameter adaptation technique was designed at run 29: It performs well against both
NL-SHADE-RSPs and NL-SHADE-RSP.
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The results in Table 2 seem promising, but it should be taken into account that the
HA-NEAT-DBM algorithm used these functions to train and select best solutions here.
Thus, a certain overfitting may have occurred here. The results in the 20D case could be
considered as testing, but even though the dimension of the problems is different, the
functions have the same structure and similar landscape. To test the efficiency of parameter
adaptation the previous year’s benchmark set, CEC 2021 was considered. In CEC 2021,
there are eight different benchmarks, which combine different function alternations, such
as bias, shift and rotation [21]. Table 3 contains the aggregated comparison on all eight
benchmarks. Note that in the case of CEC 2021, the statistical tests did not use information
about convergence speed, according to the competition rules.

The numbers in Table 3 are the number of wins, ties and losses over all 8 benchmarks,
each containing 10 test functions. Analyzing the results of CEC 2021, the difference between
different automatically discovered heuristics could be clearly seen. For example, in some
cases, the heuristics are always equal or worse than the NL-SHADE-RSPs parameter
adaptation, and in other cases, the heuristics are usually better. For example, runs 2, 22,
28, 36, 42 and 49 could be considered as relatively successful as they have comparable
or better performance on both 10D and 20D. However, when compared to the original
NL-SHADE-RSP, the results of the ANNs designed by HA-NEAT-DBM are relatively poor:
Even run 49, which is one of the most successful, has only 13 wins on 10D and 43 losses.
Such a difference in performance is probably due to the fact that NL-SHADE-RSP was
specifically designed for the CEC 2021 benchmark, and has special parameter adaptation
mechanisms that allow it to reach high a performance level.

The experiments on the CEC 2021 benchmark also allow the efficiency of the designed
heuristics to be determined in solving biased, shifted and rotated problems. To perform the
comparison, the baseline NL-SHADE-RSPs was compared to the heuristic from run 49 on
different benchmarks, and the results are shown in Table 4.

The results of statistical tests in Table 4 show that in the basic scenario, without
bias, shift and rotation of functions, the heuristic from run 49 performs quite well in
the 10D and 20D cases; however, if the functions are shifted, the results are worse. The
rotation procedure, which significantly changes the landscape, does not influence the
performance of the heuristic compared to NL-SHADE-RSPs. Moreover, in the 20D case,
it appears to be better for the Rotation and Bias benchmarks on 4 functions out of 10. In
particular, here the improvements were achieved on F2 (Shifted and Rotated Schwefel’s
function), F3 (Shifted and Rotated Lunacek bi-Rastrigin function), F6 (Hybrid Function 2,
including Expanded Schaffer, HGBat, Rosenbrock’s and Modified Schwefel’s functions)
and F7 (Hybrid Function 3, including Expanded Schaffer, HGBat, Rosenbrock’s, Modified
Schwefel’s and High Conditioned Elliptic functions). Therefore, it can be concluded that
the designed parameter adaptation allows rotated problems to be solved more efficiently.

For a deeper understanding of how the designed parameter adaptation techniques
operate during the algorithm run, in Figure 1, the graphs of inputs to the neural network
and outputs from it are shown for CEC 2022 test functions, and the solution from run 29
is considered.
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Table 2. Comparison of HA-NEAT-DBM heuristics on CEC 2022 benchmark functions,
Mann–Whitney tests.

Run NL-SHADE-RSPs NL-SHADE-RSP
10D 20D 10D 20D

1 5+/6=/1− 3+/9=/0− 6+/3=/3− 3+/8=/1−
2 6+/4=/2− 3+/9=/0− 8+/1=/3− 3+/8=/1−
3 7+/4=/1− 3+/9=/0− 7+/3=/2− 3+/8=/1−
4 6+/3=/3− 3+/9=/0− 7+/1=/4− 3+/8=/1−
5 4+/6=/2− 2+/9=/1− 6+/2=/4− 2+/9=/1−
6 6+/6=/0− 3+/9=/0− 7+/2=/3− 3+/8=/1−
7 5+/6=/1− 3+/9=/0− 6+/2=/4− 3+/8=/1−
8 5+/6=/1− 3+/9=/0− 6+/3=/3− 3+/8=/1−
9 6+/4=/2− 3+/9=/0− 7+/2=/3− 3+/8=/1−

10 6+/4=/2− 3+/9=/0− 7+/1=/4− 3+/8=/1−
11 5+/5=/2− 3+/9=/0− 6+/2=/4− 3+/8=/1−
12 7+/4=/1− 3+/9=/0− 7+/3=/2− 3+/8=/1−
13 5+/5=/2− 3+/9=/0− 7+/1=/4− 3+/8=/1−
14 7+/5=/0− 3+/9=/0− 7+/3=/2− 3+/8=/1−
15 7+/5=/0− 3+/9=/0− 7+/3=/2− 3+/8=/1−
16 8+/2=/2− 3+/9=/0− 7+/2=/3− 3+/8=/1−
17 5+/5=/2− 3+/9=/0− 6+/2=/4− 3+/8=/1−
18 6+/5=/1− 3+/9=/0− 7+/3=/2− 3+/8=/1−
19 7+/5=/0− 3+/9=/0− 7+/3=/2− 3+/8=/1−
20 6+/5=/1− 3+/9=/0− 7+/1=/4− 3+/8=/1−
21 6+/4=/2− 3+/9=/0− 6+/3=/3− 3+/8=/1−
22 6+/4=/2− 3+/9=/0− 7+/2=/3− 3+/8=/1−
23 5+/7=/0− 3+/9=/0− 7+/2=/3− 3+/8=/1−
24 5+/6=/1− 3+/9=/0− 6+/3=/3− 3+/8=/1−
25 6+/3=/3− 3+/9=/0− 7+/1=/4− 3+/8=/1−
26 6+/5=/1− 3+/9=/0− 7+/2=/3− 3+/8=/1−
27 6+/4=/2− 3+/9=/0− 7+/2=/3− 3+/8=/1−
28 6+/5=/1− 3+/9=/0− 8+/1=/3− 3+/8=/1−
29 8+/3=/1− 3+/9=/0− 8+/1=/3− 3+/8=/1−
30 7+/4=/1− 3+/9=/0− 7+/2=/3− 3+/8=/1−
31 7+/3=/2− 3+/9=/0− 7+/2=/3− 3+/8=/1−
32 6+/5=/1− 3+/9=/0− 7+/1=/4− 3+/8=/1−
33 5+/5=/2− 3+/9=/0− 6+/2=/4− 3+/8=/1−
34 6+/5=/1− 3+/9=/0− 7+/3=/2− 3+/8=/1−
35 6+/4=/2− 3+/9=/0− 7+/2=/3− 3+/8=/1−
36 6+/5=/1− 3+/9=/0− 7+/2=/3− 3+/8=/1−
37 6+/5=/1− 2+/10=/0− 6+/2=/4− 2+/9=/1−
38 6+/4=/2− 2+/9=/1− 7+/3=/2− 3+/8=/1−
39 7+/4=/1− 3+/9=/0− 7+/2=/3− 3+/8=/1−
40 5+/5=/2− 3+/9=/0− 7+/2=/3− 3+/8=/1−
41 6+/4=/2− 3+/9=/0− 7+/1=/4− 3+/8=/1−
42 6+/6=/0− 3+/9=/0− 7+/3=/2− 3+/8=/1−
43 3+/5=/4− 2+/10=/0− 6+/2=/4− 2+/9=/1−
44 6+/5=/1− 3+/9=/0− 7+/3=/2− 3+/8=/1−
45 6+/5=/1− 3+/9=/0− 7+/2=/3− 3+/8=/1−
46 6+/5=/1− 3+/9=/0− 7+/2=/3− 3+/8=/1−
47 6+/5=/1− 3+/9=/0− 7+/1=/4− 3+/8=/1−
48 5+/5=/2− 2+/10=/0− 6+/2=/4− 2+/9=/1−
49 7+/5=/0− 3+/9=/0− 7+/3=/2− 3+/8=/1−
50 6+/5=/1− 3+/9=/0− 7+/2=/3− 3+/8=/1−
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Table 3. Comparison of HA-NEAT-DBM heuristics on CEC 2021 benchmark functions,
Mann–Whitney tests.

Run NL-SHADE-RSPs NL-SHADE-RSP
10D 20D 10D 20D

1 7+/52=/21− 9+/42=/29− 9+/25=/46− 7+/19=/54−
2 13+/44=/23− 20+/34=/26− 7+/29=/44− 7+/21=/52−
3 0+/57=/23− 6+/41=/33− 6+/28=/46− 8+/15=/57−
4 1+/41=/38− 4+/35=/41− 5+/28=/47− 6+/19=/55−
5 0+/44=/36− 1+/33=/46− 6+/26=/48− 5+/18=/57−
6 7+/57=/16− 14+/48=/18− 9+/27=/44− 8+/19=/53−
7 0+/45=/35− 2+/40=/38− 7+/26=/47− 6+/18=/56−
8 14+/46=/20− 15+/43=/22− 8+/26=/46− 9+/20=/51−
9 1+/42=/37− 3+/39=/38− 5+/28=/47− 6+/19=/55−

10 0+/48=/32− 6+/37=/37− 6+/27=/47− 8+/17=/55−
11 2+/45=/33− 3+/40=/37− 8+/23=/49− 8+/17=/55−
12 3+/62=/15− 13+/50=/17− 10+/28=/42− 8+/19=/53−
13 2+/45=/33− 2+/40=/38− 6+/26=/48− 7+/17=/56−
14 3+/59=/18− 6+/45=/29− 7+/31=/42− 8+/16=/56−
15 2+/49=/29− 6+/40=/34− 7+/26=/47− 8+/17=/55−
16 1+/46=/33− 5+/38=/37− 4+/28=/48− 8+/17=/55−
17 2+/40=/38− 3+/38=/39− 7+/24=/49− 6+/19=/55−
18 1+/47=/32− 5+/38=/37− 6+/27=/47− 7+/18=/55−
19 10+/57=/13− 19+/49=/12− 10+/26=/44− 8+/19=/53−
20 3+/44=/33− 3+/38=/39− 8+/23=/49− 6+/19=/55−
21 1+/50=/29− 5+/40=/35− 8+/25=/47− 8+/16=/56−
22 15+/46=/19− 20+/43=/17− 9+/28=/43− 8+/21=/51−
23 0+/55=/25− 6+/49=/25− 8+/24=/48− 7+/18=/55−
24 4+/41=/35− 4+/38=/38− 9+/23=/48− 6+/18=/56−
25 0+/40=/40− 3+/37=/40− 5+/28=/47− 7+/18=/55−
26 0+/54=/26− 7+/48=/25− 11+/23=/46− 8+/17=/55−
27 0+/45=/35− 3+/39=/38− 6+/27=/47− 7+/18=/55−
28 8+/59=/13− 21+/44=/15− 7+/30=/43− 7+/20=/53−
29 0+/49=/31− 4+/41=/35− 9+/23=/48− 8+/17=/55−
30 0+/53=/27− 7+/36=/37− 9+/26=/45− 8+/17=/55−
31 0+/41=/39− 3+/39=/38− 5+/27=/48− 6+/19=/55−
32 2+/45=/33− 3+/41=/36− 9+/24=/47− 7+/18=/55−
33 2+/44=/34− 2+/38=/40− 8+/22=/50− 6+/18=/56−
34 4+/55=/21− 6+/50=/24− 12+/22=/46− 7+/18=/55−
35 13+/46=/21− 16+/45=/19− 10+/26=/44− 6+/21=/53−
36 10+/51=/19− 21+/43=/16− 6+/32=/42− 6+/25=/49−
37 3+/43=/34− 2+/38=/40− 9+/22=/49− 7+/17=/56−
38 4+/59=/17− 7+/54=/19− 12+/28=/40− 7+/20=/53−
39 0+/51=/29− 6+/41=/33− 6+/27=/47− 8+/17=/55−
40 2+/43=/35− 3+/44=/33− 6+/25=/49− 6+/18=/56−
41 1+/44=/35− 2+/40=/38− 6+/27=/47− 6+/18=/56−
42 11+/53=/16− 20+/46=/14− 9+/27=/44− 8+/19=/53−
43 0+/57=/23− 4+/48=/28− 10+/22=/48− 6+/19=/55−
44 8+/56=/16− 16+/46=/18− 12+/24=/44− 8+/20=/52−
45 5+/56=/19− 15+/49=/16− 9+/27=/44− 7+/20=/53−
46 1+/47=/32− 3+/41=/36− 7+/25=/48− 8+/17=/55−
47 0+/41=/39− 4+/37=/39− 5+/27=/48− 6+/19=/55−
48 2+/41=/37− 1+/36=/43− 6+/26=/48− 6+/17=/57−
49 12+/54=/14− 22+/42=/16− 13+/24=/43− 8+/21=/51−
50 2+/47=/31− 3+/42=/35− 8+/24=/48− 7+/17=/56−
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Table 4. Comparison of HA-NEAT-DBM heuristics on different benchmarks of CEC 2021,
Mann–Whitney tests, run 49.

Run NL-SHADE-RSPs
10D 20D

Basic (000) 4+/6=/0− 2+/7=/1−
Bias (100) 2+/7=/1− 3+/6=/1−
Shift (010) 1+/6=/3− 3+/4=/3−

Rotation (001) 2+/7=/1− 4+/5=/1−
Bias, Shift (110) 1+/5=/4− 4+/3=/3−

Bias, Rotation (101) 1+/8=/1− 4+/5=/1−
Shift, Rotation (011) 0+/9=/1− 1+/6=/3−

Bias, Shift, Rotation (111) 1+/6=/3− 1+/6=/3−
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Figure 1. Process of parameter adaptation with solution from run 29, CEC 2022 test functions, 10D.

The curves shown in Figure 1 represent the inputs to the NEAT solution, as shown
in Section 2.3 of this paper, and the outputs, which will be used to sample F and Cr with
Cauchy and normal distribution. Here, the Success F and Success Cr are the last successful
parameter values, which are averaged over the whole population, and the index ratio is
shown only for the last individual. The resulting F and Cr values are also averaged as they
depend on the individual index ratio. Analyzing the behavior of parameter adaptation, it
can be noted that the resulting HA-NEAT-DBM F are highly dependent on the successful F
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values; in particular, they are following opposite trends: If a successful F increases, then
the resulting F decreases. For example, after around 20% of the computational resource
on F1, F2, F5, F9, F11 and F12. Another observed dependence is on the success ratio: If it
increases, then the resulting F values also increase, and vice versa. In addition, the index
of the individual has a certain influence: It can be observed by the step-like curve of the
resulting F, which is similar to the index ratio. The index ratio of the last individual has
these steps at the end of the search because the population size decreases and the last
individual at the end has an index of 3 (out of 4), giving a value of 0.75. In general, the
resulting F follows the successful values, sometimes being below or above them. As for
the Cr values, the solution from run 29 seems to set them as high as possible, and for all
functions the resulting Cr values were set to 1. This may explain the high performance on
rotated functions.

Visualizing the considered solution from run 29 could be helpful in understanding the
reasons for such behavior. Figure 2 shows the NEAT solution graph for run 29.
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Figure 2. Graph of solution from run 29.

Figure 2 shows that, for example, input 4 (successful F) has a direct influence on output
1 (resulting F) with a weight coefficient of 1. This means that there is a direct influence.
However, input 3 (individual index) also has a positive coefficient. That is, the larger the
index of the individual in a sorted array, the larger the F values set for it. Thus, worse
individuals receive higher F values, while the best ones have smaller F values. Such a
mechanism is similar to the sorting of crossover rates used in NL-SHADE-RSP. As for the
crossover rates, inputs to Out_2 are mostly positive, resulting in very high values, which
are then truncated to the [0, 1] range.

Figure 3 shows the graph of the solution from run 49, and Figure 4 shows the process
of parameter adaptation for the CEC 2021 benchmark. Solution from run 49 is chosen for
comparison as it has shown the most promising results.
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Figure 3. Graph of solution from run 49.

The parameter adaptation technique from run 49 is not very complicated and relatively
easy to analyze. For example, the successful F values as well as the individual index and
current computational resource ratio have a direct positive influence on the resulting F. As
for the crossover rate, again, the successful Cr values have a weight value of 0.284, meaning



Algorithms 2022, 15, 122 17 of 21

that these values are not as important as some others. However, successful F values have
an influence on the resulting Cr, in particular, there are three paths from input 4 to output 2
with sigmoid and tanh functions. The graphs in Figure 4 show how this solution works on
biased, shifted and rotated benchmark functions.

As can be seen from Figure 4, here, the resulting crossover rates Cr have more complex
behavior. They are dependent on other variables and, in general, are reducing closer to the
end of the search process. The resulting F values mainly follow the successful F values, but
there is an influence of the success rate. In general, however, F values are increasing closer
to the end of the search.
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Figure 4. Process of parameter adaptation with solution from run 49, CEC 2021 test functions, 10D,
biased, rotated and shifted functions.

In the next section, the discussion of the presented results is given.

4. Discussion

The results of the computational experiments presented in the previous section demon-
strate the possibility of applying a neuroevolutionary approach to the problem of the
automatic design of parameter adaptation techniques. The results also show that there is a
certain overfitting to the problems which are used for training. Thus, to receive more gener-
alized solutions capable of controlling the parameters of DE efficiently, more training cases
should be considered. Moreover, these training scenarios should be diverse, i.e., represent
different cases which may occur during the search by DE. In addition, the dependence on
the available computational resource should be analyzed: In the performed experiments,
the computational resource during the whole training process was fixed, and the testing
was performed with the same resource.
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The approach used in this study follows the ideas of automatic heuristic generation
presented in several studies, such as [64–67]. These hyper-heuristics are aimed at designing
solutions for complex problems with heuristic approaches, and one of our previous studies
has shown that it is possible to use genetic programming for the problem of designing
parameter adaptation techniques [22]. The hyper-heuristics are important for several
reasons: They not only create a solution to the problem (which could be in the form of an
algorithm, graph or neural network), which could be directly used, but also discover new,
non-trivial ways of solving problems. This is possible due to the fact that the algorithms
are random and are not biased by the human perception of the problem. As an example,
to the best of our knowledge, there are no efficient parameter adaptation techniques for
DE, which would use success ratio values directly, and here, it appeared to be informative
for generating F and Cr. Moreover, such values as the ratio of an index of an individual in
the population sorted by fitness is an example of an input value, which is quite difficult
to apply for parameter adaptation, simply because its influence is unclear. However, the
NEAT approach, for example, HA-NEAT-DBM used in this study, is able to make use
of these values and apply them to the samples F and Cr. Of course, this does not mean
that these values are reliable information sources; however, the analysis of solutions may
help researchers gain insights into how these values could be of use and what the internal
mechanisms could be blocking the algorithm from achieving better search results.

In this manner, applying hyper-heuristic approaches to parameter adaptation in DE
could be considered as a knowledge extraction procedure, or even ’algorithm mining’ (an
analogy for data mining). An important part of this is that the computational experiments
are performed without a high-level theory, which would describe the possible outcomes and
predict the results. Here, the experiment has ’a life of its own’, where massive computation
and application of evolutionary principles lead to automatic knowledge extraction. Such
studies are known to follow the concept of new experimentalism [68], which is a part of
any experimental research in the area of evolutionary computation.

Taking into account all of the above, the application of hyper-heuristics to parameter
adaptation is a research direction where new and important results could be found for
the whole evolutionary algorithms area, and the particular learning algorithm used is not
so important: should it be genetic programming, neuroevolution, fuzzy logic system or
something else, while it allows the direct analysis of solutions, it can be considered as a
knowledge extraction method.

5. Conclusions

In this study, the modification of neuroevolution of augmented topologies, in partic-
ular, the HA-NEAT-DBM algorithm with heterogeneous activation functions, difference-
based mutation, lexicase selection and behavior-based speciation, was applied to the
problem of designing parameter adaptation techniques. The performed computational
experiments have shown that the proposed approach is able to create efficient adapta-
tion schemes, which behave differently from existing well-known mechanisms, such as
success-history adaptation. The analysis of the best solutions has shown that the designed
heuristics are relatively simple, although they use other information sources compared to
existing state-of-the-art approaches. Further directions of study in the area of generative
hyper-heuristics for parameter adaptation may include training on larger sets of bench-
mark functions, applying them to population size adaptation, and using other mechanisms
than neuroevolution.
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