
����������
�������

Citation: Zeng, Y.; Wu, J.; Zhang, J.;

Ren, Y.; Zhang, Y. Trinity: Neural

Network Adaptive Distributed

Parallel Training Method Based on

Reinforcement Learning. Algorithms

2022, 15, 108. https://doi.org/

10.3390/a15040108

Academic Editor: Frank Werner

Received: 14 January 2022

Accepted: 18 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Trinity: Neural Network Adaptive Distributed Parallel Training
Method Based on Reinforcement Learning
Yan Zeng 1,2,3, Jiyang Wu 1, Jilin Zhang 1,2,3,*, Yongjian Ren 1,2,3 and Yunquan Zhang 4

1 School of Computing Science, Hangzhou Danzi University, Hangzhou 310018, China; yz@hdu.edu.cn (Y.Z.);
wujiyang@hdu.edu.cn (J.W.); yongjian.ren@hdu.edu.cn (Y.R.)

2 Key Laboratory for Modeling and Simulation of Complex Systems, Ministry of Education,
Hangzhou 310018, China

3 Data Security Governance Zhejiang Engineering Research Center, Hangzhou 310018, China
4 Institute of Computing Technology Chinese Academy of Sciences, Beijing 100086, China; zyq@ict.ac.cn
* Correspondence: jilin.zhang@hdu.edu.cn

Abstract: Deep learning, with increasingly large datasets and complex neural networks, is widely
used in computer vision and natural language processing. A resulting trend is to split and train
large-scale neural network models across multiple devices in parallel, known as parallel model
training. Existing parallel methods are mainly based on expert design, which is inefficient and
requires specialized knowledge. Although automatically implemented parallel methods have been
proposed to solve these problems, these methods only consider a single optimization aspect of
run time. In this paper, we present Trinity, an adaptive distributed parallel training method based
on reinforcement learning, to automate the search and tuning of parallel strategies. We build
a multidimensional performance evaluation model and use proximal policy optimization to co-
optimize multiple optimization aspects. Our experiment used the CIFAR10 and PTB datasets based
on InceptionV3, NMT, NASNet and PNASNet models. Compared with Google’s Hierarchical method,
Trinity achieves up to 5% reductions in runtime, communication, and memory overhead, and up to a
40% increase in parallel strategy search speeds.

Keywords: distributed machine learning; deep learning; reinforcement learning

1. Introduction

In recent years, with the rapid development of AI algorithms, hardware computing
power, and dataset development, deep learning has been widely used in various fields,
such as natural language processing [1,2], computer vision [3,4], and search recommen-
dation [5,6]. Deep learning technologies rely on deep and complex neural networks and
large-scale datasets. For example, BERT-Large [7], a transformer with 400 million parame-
ters, occupies over 32 GB of memory; and GPT-3 [8], with 175 billion parameters, occupies
over 350 GB of memory. Due to the limited computing power and storage capacity of the
hardware, a single device cannot process such large-scale models and datasets. Therefore, it
is necessary to divide the large-scale neural network into multiple submodels and schedule
them on different devices (CPU and GPU) for execution, a procedure known as model
parallel training.

Previously, parallel strategies were designed by expert experience [9–11]. They usually
dispatch the submodels of networks onto different devices for execution, preserving the
spatial nature of the original model as much as possible, and balancing the computing and
communication overhead.

For example, Wu [12] and Sutskever et al. [13] dispatched the LSTM layer, attention
layer, and softmax layer onto different devices for execution. However, imbalanced memory
uptake and computing costs between layers still present challenges for certain devices.
To solve these problems, researchers have proposed segmentation methods based on

Algorithms 2022, 15, 108. https://doi.org/10.3390/a15040108 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15040108
https://doi.org/10.3390/a15040108
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15040108
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15040108?type=check_update&version=1

Algorithms 2022, 15, 108 2 of 18

the granularity of the operator. For instance, Sun et al. [14] used skeleton networks to
achieve the random partition of the network and reduce redundancy. Ballard [15] and
Demmel et al. [16] further introduced high-performance computing (HPC) matrix portion
methods to achieve fine-grained parallelism for matrix multiplication operations inside
operators. However, as the granularity of the division becomes finer, the distributed
combinations increase exponentially [17]. It is also challenging to find an optimal parallel
strategy using expert experience, which requires knowledge in many fields, such as deep
learning, distributed computing and computer architecture; and it is difficult to generalize
an optimal parallel strategy to other networks.

To address these challenges, researchers proposed automated frameworks for finding
efficient parallelization strategies in a limited search space. These frameworks can be
roughly divided into two types: one is based on graph algorithms [18–25] and the other type
is based on machine learning [17,26–31]. For the former, Pellegrini et al. [18] followed HPC,
and proposed Scotch, a method to partition static graphs, including Multilevel Method [20],
k-way Fiduccia–Mattheyses (Fiduccia Mattheyses) [32], and RPM Recursive Bipartitioning
Mapping [18]. Although these methods balance the communication workloads, they
cannot be directly applied to dynamic environments. Jia et al. [21] proposed FlexFlow,
a deep learning framework that uses the guided randomized search of the search space
to find a fast parallelization strategy for a specific parallel machine. Peng et al. [22] built
a performance model for Parameter Server (PS) [33–35]) and minimized the job training
time based on predicting the training speed. Tofu [23] considered a similar problem, using
dynamic programming to automatically split dataflow graphs and minimize the total
communication costs. However, these approaches have limitations. FlexFlow is suitable
only for DNNs, Optimus is only based on a PS, and Tofu only considers the minimal
communication overhead. Moreover, their parallel strategy search space usually grows
exponentially. Therefore, these limitations make them difficult to further promote.

In addition to graph algorithms, the successful experience of machine learning in the
field of systems and resource scheduling has prompted researchers to use machine learning
to solve neural network segmentation and scheduling problems. Kim et al. [26] proposed
Parallex, a learning linear model that adjusts the size of variables to achieve adaptive
tensor partitioning. Frazier et al. [27] determined the credit size for scheduling using
Bayesian optimization. However, these two methods are based on traditional machine
learning, where the main body tuning model is relatively simple, and the performance
of parallel execution is limited. With the development of deep reinforcement learning,
Mirhoseini et al. [17] predicted the placement of operations in a neural network based
on reinforcement learning. As this method requires the manual grouping of operators,
Mirhoseini et al. [28] further proposed Hierarchical, an end-to-end hierarchical architecture
that uses Grouper to automatically group computer graph operators and uses Placer to
select the best execution equipment for each group of operators. Gao et al. [29] introduced
the method of minimizing the cross-entropy into the sampling process of reinforcement
learning to prove the improvement of the upper and lower bounds of the Markov process.
Addanki et al. [30] proposed Placeto to learn generalizable device placement policies that
can be applied to any graph with a graph neural network (GNN).

Graph algorithm (such as Mesh-TensorFlow, FlexFlow, and GPip) and machine learn-
ing (including RL methods) are two mainstream parallel search methods for strategies and
they are orthogonal and have different advantages. Graph algorithm methods have less
expensive search costs than RL methods, but they need to pay attention to the training
details and have to weigh the communication, computation, memory and throughput
costs of each tensor and operation. RL methods used a data-driven approach as a search
strategy and used rewards to guide learning. Therefore, RL methods cost more than graph
algorithm methods, but they do not need to focus on the details of parallel training and can
automate the scheduling of executions on arbitrary computational graphs.

Although these methods have increased the upper bounds of the performance opti-
mization, there are still some problems to be improved upon:

Algorithms 2022, 15, 108 3 of 18

(1) Existing distributed parallel techniques are mainly guided by runtime or communica-
tion. The distributed training performance evaluation has a single dimension, which
cannot describe the distributed training performance of large-scale learning models in
a fine-grained manner.

(2) The parallel strategy search process relies on the real distributed environment, which
is expensive (usually takes several hours or even days).

(3) Hierarchical and Placeto use the policy gradient method to update the reinforce-
ment learning algorithm with a large variance and low sampling efficiency, which is
conducive to algorithm convergence.

In response to the aforementioned problems, this paper proposes Trinity, a deep
network adaptive distributed parallel training method based on reinforcement learning,
to solve the problem of optimizing large-scale complex neural network partition and
schedule strategies.

Our contributions are as follows:

(1) We qualitatively analyze the characteristics of deep learning large models and establish
quantitative evaluation models. In this paper, a quantitative evaluation model is used
to describe the execution performance of different distributed parallel strategies under
multi-dimensional attributes (such as parameters, samples, operators, etc.), to guide
the automatic search and tuning methods of distributed parallel strategies;

(2) We divided the operators into groups according to their attributes to determine the
degree of parallelism and used Node2vec to embed the operations. It can capture the
structural characteristics of the neural network and improve the performance limit of
the parallel strategy;

(3) We adopted the proximal policy optimization (PPO) method, which expands the offline
learning ability of the policy network and improves the stability and convergence rate
of the algorithm to optimize reinforcement learning;

(4) We introduce a simulator through which the single-step execution time of the dis-
tributed parallel strategy can be predicted, and the strategy search process can be
decoupled from a real cluster. The experiments show that the search time can be
reduced by up to 40% on average.

2. Problem Description

The goal of this paper is to search for an optimal model parallel strategy in a high-
dimensional space based on reinforcement learning for large-scale deep learning models.
Mainstream frameworks such as TensorFlow and Pytorch run neural networks in the form
of data flow graphs. Thus, we first define the optimization objective of this paper based on
the data flow graph.

2.1. Optimization Objective

The goal of Trinity is to search for a model parallel strategy that optimizes training
performance based on reinforcement learning. We first establish a directed acyclic compu-
tational graph and device topology diagram based on the neural network data flow and
cluster topology, and give the optimization objective.

Definition 1 (Computational Graph G(O, E)). According to the deep learning data flow, define
the computational graph G(O, E). O represents the operator sets, and the node oi ∈ O represents
the operator (such as multiple, reshape, and pooling, etc.). E is the set of directed edges between
nodes, including the data dependency between operators.

Definition 2 (Device Topology Diagram D(V, C)). According to the cluster device topology
information, define the cluster device topology diagram D(V, C), where the node vi ∈ V represents
a device (such as CPU or GPU). Edge cij =

(
vi, vj

)
represents the communication between vi and

vj. Communication methods include NVLink, PCIE, etc.

Algorithms 2022, 15, 108 4 of 18

Based on the above definitions, the optimization objectives of this paper are as follows:

(
πg, πs

)
= argmaxπg ,πs f (R;G,D). (1)

where R represents the execution performance of the parallel strategy. We pose the strategy
selection as a maximization optimization problem f on the condition of given G and D.
The strategy herein can be seen as two parts, namely πg and πs, where πg is the partition
strategy, which divide the computational graph nodes O into k submodels, denoted as
G = {g1, g2, . . . , gk}. Each submodel gi contains multiple operators, which form disjoint
subsets. The partition strategy is denoted as πg.

πs is schedule strategy, which schedules the submodels in G to be executed on different
devices. The schedule process denoted as πs := {s1, s2, . . . , sk}. Intuitively, it can be
described as si := gi → dj, the correspondence of group and devices.

The goal of Trinity is to search for the strategy combination (partition strategy πg and
schedule strategy πs), that can maximize the R(πg, πs) through reinforcement learning.
Here, (πg, πs) is the optimal parallel strategy that we seek.

Optimize Formula (1) needs to solve two core problems:

(1) We need to characterize the performance evaluation model R, evaluate the policy
performance, and guide the solution of optimization problems.

(2) We also need to build an agent optimization model. Use reinforcement learning to
solve the optimal value in the model-parallel space.

We then give the definition of model parallelism and analyze the factors that affect the
performance of model parallelism.

2.2. Model Parallelism

In this section, we will model the parallel training of the neural network and analyze
the main factors that affect its performance, and then explain the main problems to be
solved in this paper with mathematical expressions.

The goal of neural network training is the following: minimize the objective function
L by iteratively adjusting the weights of network parameters Θ according to N training
samples x = {xn, yn}N

n=1. This process can be expressed by Equation (2):

min
Θ
L(x; Θ) · s.t. · L(x; Θ) = `

(
{xn, yn}N

n=1; Θ
)
+ r(Θ). (2)

In Equation (2), a structure-including function r(·) places penalties for the intended
application on the values that Θ can take, namely regularization. ` captures the nonlinear
relationship between neural network model parameters. The model parallel usually solves
the scenario that the model scale Θ is too large, unable to be stored by a single device.

Model parallelism refers to strategies that place different parts of computation in
L in parallel using multiple devices. These can be divided into three different parallel
granularities as follows:

(1) Hierarchical parallelism. When the model is a multi-layer neural network, layers
can be scheduled to different devices. The parameters can be synchronized through
communication;

(2) Operator-level parallelism. Scheduling different computing operations to different
devices, such as matmul, pooling and reshape;

(3) Tensor-level parallelism. Partition the big matmul into multiple matmuls over small
submatrices, and let each device take care of one part therein.

Our approach focuses on the operator-level, combine the operators into submodels,
optimize the group, and schedule strategy of operators. We will then abstract the operator-
level parallel process into more general expression, and qualitatively analyze the key factors
restricting the improvement of parallel performance.

Algorithms 2022, 15, 108 5 of 18

Now, we suppose that the neural network model is divided into k disjoint submodels,
i.e., L = {Lk(θk)}K

k=1. We represent the core information of each sub-model lk(Lk) by the
following triples:

Memk =
(

Errk, Mem0
k ,Outk

)
. (3)

where Errk is the back propagation error of the topmost operator for the parameter up-
date. Outk is the activation function value at the bottom of the submodel. Errk and Outk
are the intermediate computation results of operators in back propagation and forward
propagation, respectively. The successor submodels rely on the intermediate computation
results Errk and Outk for subsequent computation. Mem0

k represents the memory of acti-
vation, error propagation and edge weights of each layer in the sub-model, except for the
propagation error of the topmost operator and the bottom activation function value.

When the device schedules sub-model Lk, it will read Mem0
k into the device’s memory.

After the sub-model computation is completed, the intermediate results Errk and Outk will
be scheduled to the device where other sub-models depend on them. Thus, the device
overhead can be modeled as Formula (4):

minπg ,πs ∑D
di ,dj

K

∑
k=1

C(Lk)

ci︸ ︷︷ ︸
Compute Cost

+
K

∑
k=1

Outk + Errk
bi,j︸ ︷︷ ︸

Communication Cost

+
K

∑
k=1

Mem0
k

mi︸ ︷︷ ︸
Memory Cost

. (4)

where D is the number of devices; C represents the floating-point operands; ci is the
calculation density of the device di; bi,j indicates the bandwidth between devices di; and dj.
mi represents the read and write speed of memory di.

According to the above Formula (4), the parallel execution performance of the model
needs to balance computation costs, communication costs, and memory costs to achieve
load balancing in three aspects. At the same time, the performance of the above three
aspects will directly affect the training time of the model parallel strategy.

Therefore, the computation costs, communication costs, and memory costs are impor-
tant factors that determine the performance of the distributed training of neural networks.

Based on the above analysis, we will build an evaluation model that can measure the
performance of the model parallelism.

3. Performance Evaluation Model

In this section, we will define the cost model and build the complete performance
evaluation model (denoted as the MDPE model) R based on three key factors that affect
the efficiency of the parallel execution of the model: computation cost, communication cost,
and memory cost (see Definitions 3–5).

Definition 3 (Compute Cost). Define the runtime required for the submodel tensors to complete
the computation on device di as Ei:

Ei =
K

∑
k=1

C(Lk)

ci
=

N

∑
n=1

C(Tn,1, Tn,2, . . . , Tn,k)

ci
. (5)

where K represents the number of submodels computed at device di. N is the total number
of tensors involved in the calculation. Tn,1, Tn,2, . . . , Tn,k represent the k-dimensional size of
the current tensor. C is the floating-point operands. ci is the computing density of device di.

Definition 4 (Communication Cost). Define the communication and synchronization time for
intermediate results of the submodel as Ci,j:

Algorithms 2022, 15, 108 6 of 18

Ci,j =
K

∑
k=1

Outk + Errk
bi,j

=
N

∑
n=1

A(Tn)

bi,j
s.t.Ci,j ≤ Ĉi,j. (6)

where N represents the total number of tensors participating in the communication. Tn
represents the tensors transmitted between devices di and dj. A is the function of the
calculating the size of the tensor. bi,j represents the communication bandwidth between
devices di and dj. Ĉi,j is the upper limit of communication that the user can tolerate.

Definition 5 (Memory Cost). Define the memory cost of the device after the loading of the
submodel as Mi:

Mi =
K

∑
k=1

Mem0
k =

N

∑
n=1

A(Tn) s.t.Mi ≤ M̂i,j. (7)

where N represents the total number of tensors stored on the current device di, Ti represents
the current tensor, and A is the calculation tensor size scale function. M̂i is the upper limit
of memory that the user can tolerate.

The above three definitions characterize the parallel performance in terms of three
dimensions. We then linearly superimpose the three dimensions to obtain a multidimen-
sional performance evaluation model to obtain an MDPE model that guides the iterative
optimization of reinforcement learning. In particular, we adaptively find the optimal model
parallel strategy by maximizing R(πg, πs):

R
(
πg, πs

)
= − log

[
α f
(
Ei, Ci,j, di

)
+ βq

(
Ci,j, Mi, di

)]
s.t. di, dj ∈ D. (8)

Here, α and β denote the weight hyperparameters. f (·) represents the linear fitting
function for predicting the runtime. It was calculated according to the execution simulator.
q(·) represents the communication and memory penalty functions, which implements
penalties for the strategy that exceed the upper limit of communication and memory
overhead to ensure that the communication and memory costs meet user constraints.

Thus far, we established the MDPE model including the runtime, communication
costs, and memory usage based on theoretical analysis. In the next section, we will
introduce the overall architecture of Trinity and use the MDPE model to guide reinforcement
learning optimization.

4. Approach
4.1. Architecture Overview

After defining the MDPE model, we introduce the main reinforcement learning model.
We will establish a double-layer policy network to generate partition and schedule strategies.
To improve the sampling efficiency and algorithm convergence, we introduce proximal
policy optimization method, which perform comparably or better than state-of-the-art
approaches while being much simpler to implement and tune. The architecture of Trinity is
shown in Figure 1.

Trinity is composed of agent and environment. Agent is mainly used for the generation
of the model parallel strategy and iterative optimization strategy. Environment consists of
a simulator to evaluate the performance of the strategy.

The agent in Figure 1 is the main part of reinforcement learning, which consists of
double-layer policy networks: partition network Ng and schedule network Ns. Before
the strategy search, Trinity takes computational graph G and device topology diagram
D as input. The agent generates a model parallel strategy through a double-layer policy
network. The simulator in environment computes the linear relationship f (Ei, Ci,j) between
computation costs Ei and communication costs Ci,j, to simulate forward propagation, back
propagation, and parameter update. The simulator computes the MDPE model R(πg, πs)
according to Formula (8) by collecting performance data, for example, communication
costs, computation costs, and memory occupation. Then, environment feeds the reward

Algorithms 2022, 15, 108 7 of 18

R back to the agent, and iteratively optimizes the policy network through the proximal
policy optimization (PPO) and the above process is repeated until convergence. Finally,
the strategy which can maximize the MDPE model R(πg, πs) is executed in the real dis-
tributed environment.

Agent

Policy Network: LSTM

Schedule Policy
Policy Network: LSTM

Training

Policy Gradient

PG, PPO, TRPO, A3C, etc

Partition PoPolicylicy

PoPoliliccyy NNeetwtwoorrkk:: SSoofftMtMaaxx

Environment

Simulation

Overhead

Communication

Perform Queue

……

Computation

Policy

Predict

O
p
erato

r G
rap

h
O

p
erato

r G
rap

h

D
ev

ice L
ist

D
ev

ice L
ist

Optimal

R
eal D

istrib
u
ted

 E
n
v

iro
n

m
en

t

Memory Throughput

Strategy

Figure 1. The architecture of Trinity.

The double-layer policy network architecture of the agent including two networks:
namely the partition network used to perform coarse-grained grouping of neural network
operators; and the schedule network which generates a schedule policy of groups. The
detail is as shown in Figure 2.

Partition Network

time structure type

operation1

Group

Embedding

time structure type

operation1

Group

Embedding

operation2

Group

Embedding

operation2

Group

Embedding

operation100

Group

Embedding

operation100

Group

Embedding

...

Schedule Network

Encode

Decode

Encode

Decode

Encode

Decode Hidden

Group

Embedding

Hidden

Group

Embedding

Hidden

Group

Embedding

Hidden Hidden Hidden

Device1 Device2 Device4

... ...

...

...

...

Attention

out time structure type out time structure type out

Figure 2. The double-layer network of agent.

4.1.1. Partition Network Ng

Partition network Ng is a fully connected network contains two hidden layers of size
64 and 128, and a 30% dropout layer is introduced between them to prevent overfitting. As
shown in Figure 2, we embed each operation with four attributes. The following Table 1
lists the four parts of the operator features:

1. Runtime (time). Designates the runtime of executing the operator on the specified
device, in microseconds. To ensure algorithm convergence, standardization (Z-score)
processing is performed on the runtime.

2. Structure (structure). Use Node2vec to learn and generate graph embedding vectors.
Node2vec is a common graph feature extraction method in graph representation learn-
ing. It combines the RandomWalk and SkipGram models to learn the co-occurrence
relationship between nodes, and generates dense vectors for each node.

Algorithms 2022, 15, 108 8 of 18

3. Node type (type). This includes the calculation time of the node, the memory size
of the node, and the operator type of the node. We use natural language processing
methods; collect 200 commonly used operator words in the TensorFlow API, such as
Conv2D, MaxPool, or MalMul; and build a vocabulary, such as Conv2D, MaxPool,
or MalMul.

4. Output shape (out). Accumulate all output tensor dimensions of the current operator.
Accumulate the dimensions of all output tensors of the current operator. For example,
if the existing convolution operator outputs a four-dimensional tensor with shape
(2, 2, 1, 64), the output shape is 256 = 2× 2× 1× 64. The output size of an operator
can not only represent the maximum traffic that the operator may generate, but also
reflect the memory overhead that the operator may generate.

Table 1. Computational graph feature extraction content.

Feature Name Description

time runtime The runtime required by the operator, using normalization (Z-
score) processing

structure structure Using Node2vec to extract graph structure features

type node type Building TensorFlow common API vocabulary index

out output shape Accumulating the dimensions of all output tensors of the cur-
rent operator

After the embedding of all operators, the embedding is input to the partition network
to generate groups, and the operators in the group are merged into group embedding and
output to the schedule network as follows, as shown in Table 2.

1. Group type. Take the average of all operator type embeddings in the group as the first
part of the group embedding.

2. Group outsize. The output tensor size of all operators in the group is averaged as the
second part.

3. Relationship Between Groups. This represents the connection relationship between
groups. The length of the embedding represents the number of groups (for example,
if the operator is divided into 256 groups, the vector length is 256). If an operator in
the current group is connected to an operator in the ith group, the ith position of the
vector is set to 1, otherwise, it is 0.

Table 2. Group feature extraction content.

Feature Name Description

group type Calculating the mean of all operator types in the group

group outsize The sum of the output sizes of the operators in the group

relationship between groups Indicating the connection between groups, and the connec-
tion position is set to 1

4.1.2. Schedule Network Ns

Ns is a Seq2Seq network with an attention mechanism and LSTM, and the input and
output sequences of variable length are processed through the encoder and the decoder,
respectively. As shown in Figure 2, encoder Ns reads the group embedding of gi at a time
and generates k hidden states, where k is a hyperparameter equal to the number of groups.

The decoder obtains a device dj per prediction and generates an infinite length se-
quence of the output device. The generated device sequence and the input sequence are in
a one-to-one correspondence order, i.e., all operators in the first group will be scheduled
to the first device output by the decoder, etc. It is worth noting that each device has a
trainable embedding, and the embedding of the previous device will be input to the next
decoding prediction.

Algorithms 2022, 15, 108 9 of 18

Moreover,Ns also uses the attention mechanism [13] to pay attention to the state of the
encoder. The decoder will sample the device dt from the softmax layer at step t during the
training process. To make the schedule network activation function ut flatter, we introduce
softmax temperature and logarithmic clipping [36], and the activation function ut can be
expressed by the temperature T and the tanh constant C. Therefore, the following methods
are used for sampling:

dt ∼ softmax(C tanh(ut/T)). (9)

Finally, the device sequence output by the decoder is the schedule strategy correspond-
ing to the input packet. The simulator can further simulate the partition and schedule strat-
egy and obtain the reward value through the collaborative optimization (Ng,Ns) model.

The iterative optimization of the two-layer policy network requires appropriate and
efficient reinforcement learning method. Thus, this paper adopts proximal policy optimiza-
tion to iteratively optimize the reinforcement learning model.

4.2. Proximal Policy Optimization

Trinity collaboratively optimizes the partition and schedule network using PPO. The
goal of PPO is to maximize the expectation of the reward (i.e., MDPE model) and update
the policy network parameters.

Therefore, the objective function can be expressed as below:

J(π) = J
(
πg, πs

)
= Ep(g,s;θ)(R) (10)

Convert expectations to probability distributions, which can also be written as

J(π; θ) = ∑
πg ,πs

[p(g, s; θ)R] (11)

The essence of the optimization algorithm is to control the parameters of the policy
network and change the probability distribution of the policy to maximize the expected
reward. p(g, s; θ) represents the probability distribution of the distributed parallel strategy
under the given network parameter conditions. R is the reward, which is calculated by the
partition strategy g and the schedule strategy s according to MDPE.

The expectation in Formula (10) is approximated by Monte Carlo sampling and iter-
ative optimization using gradient ascent. However, when the parameters are optimized
using the gradient, the probability distribution p(g, s; θ) will change. Even small parame-
ter changes can cause drastic changes in p(g, s; θ), requiring resampling after parameter
update. The violent jittering of the probability distribution is also not conducive to algo-
rithm convergence.

Therefore, based on importance sampling, we adopted PPO and rewrote the objective
function as the following formula:

max
p

Eπold∼pold

[
p(g, s; θ)

pold(g, s; θold)
(R− b)

]
. (12)

s.t. KL[pold (g, s; θold), p(g, s; θ)] ≤ ε. (13)

where θold is the vector of policy parameters before the update. We take the probability
distribution pold(g, s; θold) of the old policy as the proposal distribution and still sample
from the old probability distribution. The Formula (13) maintains the difference between
pold and p within ε; b is the mean moving baseline. The optimization problem with
constraints can be solved by the conjugate gradient algorithm, but the cost is high.

Algorithms 2022, 15, 108 10 of 18

Let rt(θ) donate the probability ratio rt(θ) =
p(g,s;θ)

pold(g,s;θold)
. We modify the objective to

Formula (14) to penalize rt(θ) for being far from ε:

Jθ = maxEπold [r(g, s; θ)(R− b), clip(r(g, s; θ), 1− ε, 1 + ε)(R− b)]. (14)

where ε is a hyperparameter that controls the difference between the old and new dis-
tributions, and clip is the truncation function used to truncate the maximum and mini-
mum values of the objective function to ensure that the control always remains between
[1− ε, 1 + ε].

Finally, the objective function is maximized by the stochastic gradient ascent. The
complete algorithm execution is shown in Algorithm 1.

Algorithm 1: Parallel policy automatic search algorithm based on PPO.

Data: devices: D = {d1, d2, . . . , dn}, policy network parameters
{

θg, θs
}

Result: optimal parallel strategy: π∗, policy network parameters:
{

θ∗g , θ∗s

}
Initialization min→ ∞ and R = 0;
for i = 1, 2, 3, . . . , N do

πg → {g1, g2, . . . , gm} ;
for gi in {g1, g2, . . . , gm} do

group.append(gi) ;
end
πs(group)→ {(g1, d1), (g2, d2), . . . , (gm, dn)} ;
apply πs to networks and obtain the reward R ;
if R < min then

π∗ =
(
πg, πs

)
;

min = R ;
Jθ = Eπold [r(g, s; θ)(R− b), clip(r(g, s; θ), 1− ε, 1 + ε)(R− b)] ;
Jθ = Jθ +∇Jθ according to Formula (14) ;

end
return π∗ and R

In this paper, Adam [37] is used to complete the gradient descent. To reduce the
variance, we also introduce a baseline b. If N is the hyperparameter representing the period,
then the recursive formula of the exponential moving average reward baseline EMAN(bn)
is as follows:

EMAN(bn) =
2bn + (N − 1)EMAN(bn−1)

N + 1
. (15)

4.3. Simulator

If all the parallel strategies were run in a real distributed environment, a large-scale
cluster and considerable time would be needed. Therefore, Trinity introduces a simulator,
which can simulate a parallel strategy without relying on real distributed environments.

In the beginning, the parallel strategy will be executed in a real distributed environ-
ment to collect the running performance of the model on all devices. Then, the simulator
will take over the real distributed environment, and predict the training time by computing
the linear relationship between the computation costs Ei and the communication costs Ci.

The design of the simulator follows these three principles: (1) per-device d FIFO queues
hold runnable operations; (2) communication overlaps with computing; and (3) operators
which on the same devices should be executed serially. The simulator workflow is shown
in Figure 3.

Algorithms 2022, 15, 108 11 of 18

The simulator maintains two first-in–first-out queues for each device in a dual-
threaded manner and generates a time pipeline through a trigger mechanism which mainly
includes three key processes: operator execution, tensor communication, and status check-
ing. For the convenience of the explanation, let Qrun

d denote the operator execution queue
on device d, and record the sequence of operators to be run. Then, let Qcom

d denote the
tensor queue that will communicate from device d to the other devices. This forms the
collection of tensors. The details of the three key processes are as follows.

1. Operator Execution
The operator oi to be executed from the queue Qrun

d is fetched, the operation is com-
pletely executed and the output is processed, as the execution in Figure 3I. First, operation
oi is dequeued from the local execution queue Qrun

dk
to be executed. Second, all operators

connected to the operator oi, denoted as oj, are obtained, and the device dl where node
oj is checked. If dj 6= di, the output tensor ti of oi is enqueued to Qcom

dk
, and if dj = di,

whether oj meets the execution principle is checked, and if it is, it is enqueued to Qrun
dk

.
Finally, the status of Qrun

dk
is checked. If it is empty, trigger the idle state of device dk; and if

not, dequeue the next operation from Qrun
dk

to execute. The detail of operator execution is
described in Algorithm 2.

2. Tensor Communication
After tensor ti communication is completed, other operators that depend on the

current tensor are processed, as the execution in Figure 3II. First, dequeue tensor ti from the
communication queue Qcom

dk
to communicate. Second, obtain all operators ok that depend

on ti, and check whether it is ready to start with the operating principle. If it is ready, put it
into queue Qrun

dk
. Finally, judge whether Qcom

dk
is empty. If it is empty, the communication

triggering the state of device dk is idle. If not, this process is cyclically executed.
3. Status Check
Judge whether Qrun

d and Qcom
d are empty. If they are empty, the idle state will be

triggered; and if they are not empty, they will immediately dequeue to execute the operator
execution or conduct tensor communication.

Algorithm 2: Operator Execution (oi executes on dk).

Data: G(O, E), D, Qrun
dk

, Qcom
dk

Result: None
initialization;
while TRUE do

dequeue(Qrun
dk

);
run(oi,dk);
operations = oi.depend();
for oj in operations do

if oj.device() 6= di: then
Qcom

dk
.push(oi.outputs())

else if oj.device() == di and oj.canRun() then
Qrun

dk
.enqueue(oj)

end
end

Algorithms 2022, 15, 108 12 of 18

pop()

run()

push()

push()

pop()

com()

push()

canRun()

!canRun()

Execution

Communication

Status

Checkout

Ⅲ

Ⅰ

Ⅱ

Figure 3. The running process of the simulator.

5. Experiment

In this section, we applied Trinity to widely used neural networks in computer vision
and natural language processing: InceptionV3, NMT, GNMT, NASNet (large) and PNASNet
(large). We measured the performances on the CIFAR10 and PTB datasets and compared
the performances with that of Hierarchical proposed by Google.

5.1. Experimental Settings

In this section, we will introduce the experimental settings.
(1) Model. We chose 5 types of deep neural networks widely used in CV and NLP,

which are shown in Table 3.
(2) Baseline. We compared the strategy found by Trinity to the following baseline.
Single GPU. We executed the model on a single GPU. Neural networks usually run

fast on a single GPU because they incur no cross-device communication cost. Thus, a single
GPU is an important baseline. However, a single GPU cannot afford the training of
larger networks.

Layered Expert. We used different parallel strategies for different models. For Incep-
tionV3, we trained it on a single device because it is difficult to achieve parallel operations
with high communication performance for this method. For the 2-layer NMT, we scheduled
each LSTM layer to different devices and bind the attention mechanism and softmax layer
to the same device. We divided NASNet into different layers, including NASNet-Large
and PNASNet-Large.

Hierarchical. Google proposed a hierarchical method using reinforcement learning to
search for the best placement of operators based on a 2-layer policy network. However,
this method only considers the single optimization aspect of runtime and the cost of this
method is high.

(3) Environment of experiments. We performed experiments on a single cluster,
including a genuine Intel CPU with 12 GB of memory and 4 NVIDIA Tesla P100 high-
performance GPU with 11 GB of memory and a bandwidth of 28 MB/s (Santa Clara, CA,
USA). The software configuration is shown as below:

The operating version is Ubuntu 18.04.4 LTS (Canonical Ltd., London, UK), Linux
kernel version is Linux 4.15.0-123-generic, GPU version is NVIDIA Tesla P100, CUDA
version is CUDA10.1.243 (NVIDIA) and TensorFlow version is TensorFlow1.15.0 (Google
Brain Team, Mountain View, CA, USA).

(4) Algorithm Configuration. The partition policy network Ng uses a feed forward
neural network with softmax, which contains two hidden layers with sizes of 64 and 128.
The softmax output size is set to be equal to the number of groups, and both are 256. For
the schedule policy network Ns two-layer LSTM, the size of the hidden layer is set to 256,
and the softmax output size was set to 2, 4, or 8 equal to the number of devices.

Algorithms 2022, 15, 108 13 of 18

Table 3. The model and datasets selected for the experiment.

Networks Operators Edges Datasets Field

InceptionV3 12,745 21,928
CIFAR-10 CVNASNet-Large 18,644 27,505

PNASNet-Large 14,063 20,718
GNMT 8738 16,564 PTB NLPNMT-2layers 16,432 24,235

5.2. Comparison of Experimental Results

In the experiment, Adam is used to collaboratively optimize the partition and schedule
policy networks. We use the gradient clipping method with a learning rate of 0.1 and a
norm of 1.0, where the constant of tanh is set to C = 5.0 and temperature T = 10.0. To
prevent falling into local minimum and encourage more exploration, we add noise to
the logits of the policy networks in the first 500 training steps, and the maximum noise
is 0.1. For the reward, the MDPE model is adopted, and the hyperparameters are set as
follows: α = 0.5, β = 0.3, and γ = 0.2. User tolerance Ĉ and M̂ are both set to 8. We give
recommended values for the hyperparameters in this paper based on the experiments and
communication of some industry experts.

5.3. Strategy Visualization

In this section, we take the NMT model as an example. We will display the best
parallel strategy searched by Trinity on 4 GPUs clusters. Figure 4 shows the fine-grained
partition of the NMT model by Trinity. Compared with the Layered Expert, Trinity has
a finer-grained division of the LSTM layer, attention layer and softmax layer. This is not
possible for expert design: it colocates all operations in a step. Compared with Hierarchical,
the partition and schedule strategy of Trinity is generally similar to Hierarchical, but Trinity
groups the LSTM operations in the decoder more intensively, and tends to trade part of the
memory overhead for the optimization of the communication cost.

...

Encoder Decoder

...

...LSTM2

...LSTM1

...

... Softmax

... Attension

... LSTM2

LSTM1

EmbeddingEmbedding

Figure 4. Partition and schedule strategy visualization. The color represents the device.

Experiments show that the Trinity method supports the fine-grained division of
neural network layers and has the ability to trade off computation and communication
overhead. In Figure 4, different colors in the figure represent different GPUs. We find
the following: (1) embedding is a typical parameter-intensive submodel. The results
show that Trinity is suitable for embedding to use memory or storage in exchange for
computing and communication resources; (2) The LSTM is a computationally intensive
operation. Trinity seeks to divide the LSTM layer more flexibly and achieves load balancing
by weighing the computation and communication costs. Attention and softmax both have
parameter and computation intensiveness, i.e., dual intensiveness. Trinity implements
partition and schedule costs for attention and softmax from multiple dimensions, to reduce
the parameter synchronization while ensuring load balancing. The parallel strategy of

Algorithms 2022, 15, 108 14 of 18

the layered NMT network model shown in Figure 4 takes only 2.56 s to execute forward
propagation, backpropagation, and gradient computation.

Figure 5 shows the convergence curves of the Trinity algorithm based on NMT, NAS-
Net, and InceptionV3. We proved the convergence and effectiveness of this method. It is
worth noting that, in this experiment, we used the standard Adam method to implement
the gradient descent algorithm. No noise is introduced in the initial stage of training, and
only the standard Adam method is used to implement the gradient descent algorithm. The
total number of iterations step = 100. We recorded the loss value for each iteration. It can
be seen from the curve that the algorithm continues to converge. The results show that,
whether for the NLP network (NMT) or CV network (InceptionV3 and NASNet), it only
takes approximately 25 rounds of iterations for the loss of the reinforcement learning search
algorithm to drop to less than 10.

0 25 50 75 100
Training step(s)

0

500

1000

lo
ss

NMT-4Layer Model Convergence Curve

0 25 50 75 100
Training step(s)

0

500

1000

NasNet-Large Model Convergence Curve

0 25 50 75 100
Training step(s)

0

500

1000

InceptionV3 Model Convergence Curve

Figure 5. Trinity algorithm convergence analysis. The x axis is the loss value of the reinforcement
model and the y axis is the iteration steps.

5.4. Strategy Performance Analysis

In this section, we will compare the performance of Trinity with other baselines from
different perspectives including runtime, peak communication, peak memory, and search
time. Our experiment uses the CIFAR-10 and PTB datasets and tests the Inception, NMT,
NASNet (large), and PNASNet (large) models.

The experimental results are shown in Figures 6–8 and Table 4 below. We show the
performance comparison with Trinity and GPU only, layered expert, and Hierarchical from
three dimensions: (1) runtime: the model completes a single forward propagation and
derivation; (2) peak communication: the maximum communication cost among all hard-
ware devices; (3) peak memory: the maximum memory occupation among all hardware
devices. In the legend of Figures 6–8, the numbers (2 or 4) represent the number of GPUs.
Expert, Hierarchical and Trinity are the baseline and the method proposed in this paper,
respectively. Single step means that the model completes a single forward propagation and
derivation.

InceptionV3 (64) GNMT (64) PNASNet (8) NMT (64) NASNet-L (8)
Execution Environment: 2 GPUs

0

1

2

3

4

5

Si
ng

le
St

ep
 R

un
 T

im
e

(s
)

0.75 0.73 0.73
0.42 0.39 0.37

1.91 1.89 1.72

3.01
2.76 2.76

2.1
1.82 1.79

2-Expert 2-Hierarchical 2-Trinity

InceptionV3 (64) GNMT (64) PNASNet (8) NMT (64) NASNet-L (8) NASNet-L (32)
Execution Environment: 4 GPUs

0

1

2

3

4

5

6

0.75 0.75 0.75
0.51 0.4 0.42

2.01 1.85 1.71

2.81 2.67 2.56
2.12

1.81 1.81

IF IF

5.21

4-Expert 4-Hierarchical 4-Trinity

Figure 6. Comparison of the runtime performances of Trinity and the methods of different models. The
x axis represents different approaches for different models and y axis is the runtime of single step (s).

InceptionV3 (64) GNMT (64) PNASNet (8) NMT (64) NASNet-L (8)
Execution Environment: 2 GPUs

0

2

4

6

8

10

12

Si
ng

le
St

ep
 P

ea
k

Co
m

m
un

ica
tio

n
(G

)

6.0 5.6

1.2 1.0

9.1

7.1 6.9
6.1

3.8
3.3

2-Hierarchical 2-Trinity

InceptionV3 (64) GNMT (64) PNASNet (8) NMT (64) NASNet-L (8) NASNet-L (32)
Execution Environment: 4 GPUs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

7.8 7.9

1.8 1.9

5.2
4.4

7.2 7.2

IF

12.2

4.5

1.8

4-Hierarchical 4-Trinity

Figure 7. Comparison of the communication overhead performances of Trinity and the methods of
different models. The x axis represents different approaches for different models and y axis is the
peak communication load (GB).

Algorithms 2022, 15, 108 15 of 18

InceptionV3 (64) GNMT (64) PNASNet (8) NMT (64) NASNet-L (8)
Execution Environment: 2 GPUs

0

2

4

6

8

10

12

Si
ng

le
St

ep
 P

ea
k

M
em

or
y

(G
)

5.8
5.3

2.1 2.5

6.9 7.2

4.6
3.7

6.3 6.3

2-Hierarchical 2-Trinity

InceptionV3 (64) GNMT (64) PNASNet (8) NMT (64) NASNet-L (8) NASNet-L (32)
Execution Environment: 4 GPUs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

6.0

3.4

1.0 1.1

8.7 8.8

4.0 3.9

IF

11.3

4.3

6.0

4-Hierarchical 4-Trinity

Figure 8. Comparison of the memory overhead performances of Trinity and the methods of different
models. The x axis represents different approaches for different models and y axis is the peak memory
load (GB).

Table 4. Performance comparison of Trinity and parallel strategies of different models.

Runtime(s) Numbe Runtime(s) Runtime/PeakCommunication/Memory

Network GPU GPUS Expert Hierarchical Trinity

InceptionV3 (64) OOM 2 0.75 0.73 6.0 5.8 0.73 5.6 5.3
4 0.75 0.75 7.8 6.0 0.75 7.9 3.4

GNMT
2layer (64) 0.30 2 0.42 0.39 1.2 2.1 0.37 1.0 2.5

4 0.51 0.40 1.8 0.9 0.42 1.9 1.1
NMT

2layer (64) OOM 2 2.76 3.01 9.1 6.9 2.76 7.1 7.2
4 2.81 2.67 5.9 8.7 2.60 4.4 8.8

NASNet-L (8) OOM
2 2.10 1.82 6.9 4.6 1.79 6.1 3.7
4 2.12 1.81 7.3 4.0 1.81 7.2 3.9

NASNet-L (32) 4 OOM OOM 5.21 12.2 11.3

PNASNet-L (8) 1.45 2 1.91 1.90 3.8 6.3 1.70 3.3 6.3
4 2.01 1.85 4.5 4.3 1.71 1.8 6.0

Compared with Google’s Hierarchical, the InceptionV3, and GNMT networks, the
runtime of the parallel strategy searched by Trinity is similar, but it has a better performance
in communication and memory. For large-scale networks, such as NASNet-L and PNASNet-
L, Trinity has a better balance of performance. It is worth noting that the Hierarchical
method cannot search for a suitable model parallel strategy for NASNET-L based on 4 GPU,
but Trinity can. It only takes 5.21 s to execute the parallel strategy. Trinity has less runtime
than layered expert methods.

To be clear, a single GPU is the strongest baseline, which incur no cross-device com-
munication cost. Model parallelism is suitable for scenarios in which the AI model scale is
too large and cannot be trained on a single GPU. So, Trinity and single GPU training are
applicable to different scenarios. Trinity is not trying to surpass, but hopes to be closer to
the runtime under a single GPU.

We compute the improvement of the performance indicators compared with Hierar-
chical in Table 5 and compare the time required for the Hierarchical and Trinity methods
in the case of 100 search iterations. The table analysis shows that the trinity will exchange
part of the memory overhead for communication optimization. The overall performance is
more balanced, and the runtime is also reduced to varying degrees.

Due to the introduction of the execution simulator in Trinity, it can achieve up to a 40%
increase in parallel strategy search speeds, in most cases. It can be proven that the introduc-
tion of the execution simulator can greatly reduce the time required for search and sampling.
Although Trinity introduces a simulator to simulate the execution process, the performance
evaluation using these experimental data is performed in a real distributed environment.

5.5. Simulator Performance Analysis

To verify the effectiveness of the simulation accuracy of the simulator for the reinforce-
ment learning algorithm, this paper takes InceptionV3 as an example and plots the real
operating performance and simulated operating performance under different strategies
in Figure 9. As shown in Figure 5, the abscissa represents the simulated operating perfor-
mance, and the ordinate represents the true distribution. The operating performance of the
environment is measured from left to right as follows: runtime, communication load, and

Algorithms 2022, 15, 108 16 of 18

memory load. The left figure compares the runtime error, and the simulated error interval
is approximately ±0.05 s. The middle picture compares the peak communication error, and
the simulated error interval is approximately ±0.4 GB. The right picture compares the peak
memory error, and the simulated error interval is approximately ±0.4 GB. The experiments
prove that the simulator has a reasonable range of errors during operation, communication,
and memory, which has little effect on reinforcement learning training.

Table 5. The comparison of the parallel performance improvement rate and search time.

Search Time (1000 Iterations) Percentage Decrease

Network GPUS Hierarchical Trinity Runtime Communication Memory Search Time

InceptionV3 (64) 2 1.2 K 0.7 K 0.0% 6.8% 8.6% 41.7%
4 3.6 K 2.0 K 0.0% −0.8% 43.4% 44.4%

GNMT
2layer (64)

2 18.9 K 8.9 K 5.1% 16.1% −18.8% 52.9%
4 20.6 K 9.8 K −5.0% −7.1% −14.6% 52.4%

NMT
2-layers (64)

2 27.8 K 10.3 K 8.3% 20.9% −4.5% 62.9%
4 30.5 K 17.1 K 4.1% 14.7% −0.3% 43.9%

NasNet-L (8) 2 12.5 K 9.8 K 1.6% 12.5% 20.0% 21.6%
4 12.6 K 9.1 K 0.0% 1.6% 2.7% 27.8%

NasNet-L (32) 4 21.6 K 16.6 K - - - 23.1%

PNasNet-L (8) 2 18.6 K 18.7 K 9.0% 13.8% 0.0% −0.5%
4 28.8 K 20.1 K 7.6% 60.2% −40.0% 30.2%

Furthermore, compared with the real distributed environment, the simulator increases
the parallel strategy search speeds up to 40% on average.

0.7 0.8 0.9 1.0
Estimated time (s)

0.7

0.8

0.9

1.0

R
ea

l t
im

e
(s

)

Compare Real Time to Estimated

12 13 14 15 16 17 18 19 20 21
Estimated Communication Load (G)

12
13
14
15
16
17
18
19
20
21

R
ea

l C
om

m
un

ic
at

io
n

L
oa

d
(G

)Compare Real Communication Load to Estimated

8 9 10 11 12
Estimated Memory (G)

8

9

10

11

12
R

ea
l M

em
or

y
(G

)
Compare Real Memory to Estimated

Figure 9. Trinity algorithm convergence analysis. The x axis represents the simulation value and the
y axis represents real value.

6. Conclusions

This paper addresses on the problem of the poor performance of model parallel train-
ing caused by a single optimization aspect, and proposes the Trinity method, which uses
reinforcement learning to achieve the automatic search and tuning of parallel algorithms
for large-scale complex neural network models. Furthermore, this paper constructs a three-
dimensional collaborative optimization evaluation model to guide reinforcement learning
iterative optimization, and improves the comprehensive performance in terms of the run-
time, communication load and memory consumption. A simulator is also introduced to
improve the sampling efficiency and accelerate the policy search time. Our experiments use
CIFAR10 and PTB datasets based on Inception, NMT, NASNet (large) and PNASNet (large)
models. The result shows that, compared with the hierarchical method, Trinity can achieve
the performance load balancing with less memory overhead in exchange for performing
the optimization of runtime and communication costs.

Author Contributions: Conceptualization, J.Z., Y.Z. (Yunquan Zhang) and Y.R.; methodology, Y.Z.
(Yan Zeng); supervision, Y.Z. (Yan Zeng); project administration, Y.Z. (Yan Zeng); software, J.W.; data
curation, Y.Z. (Yan Zeng) and J.W. All authors have read and agreed to the published version of
the manuscript.

Algorithms 2022, 15, 108 17 of 18

Funding: This research was funded by National Natural Science Foundation of China OF FUNDER
grant number 62072146; The Key Research and Development Program of Zhejiang Province under
Grant OF FUNDER grant number 2019C01059; The Key Research and Development Program of
Zhejiang Province under Grant OF FUNDER grant number 2019C03135; The Key Research and
Development Program of Zhejiang Province under Grant OF FUNDER grant number 2019C03134;
National Natural Science Foundation of China OF FUNDER grant number 61972376; National Natural
Science Foundation of China OF FUNDER grant number 62072431.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhong, Z.; Jin, L.; Huang, S. Deeptext: A new approach for text proposal generation and text detection in natural images. In

Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 19 June 2017; pp. 1208–1212.

2. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language
understanding. arXiv 2019, arXiv:1906.08237.

3. Yuan, Y.; Chen, X.; Wang, J. Object-contextual representations for semantic segmentation. arXiv 2019, arXiv:1909.11065.
4. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
5. Liu, B.; Zhu, C.; Li, G.; Zhang, W.; Lai, J.; Tang, R.; He, X.; Li, Z.; Yu, Y. Autofis: Automatic feature interaction selection in

factorization models for click-through rate prediction. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, Virtual Event, 6–10 July 2020; pp. 2636–2645.

6. Song, Q.; Cheng, D.; Zhou, H.; Yang, J.; Tian, Y.; Hu, X. Towards automated neural interaction discovery for click-through rate
prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual
Event, 6–10 July 2020; pp. 945–955.

7. Peters, M.E.; Ammar, W.; Bhagavatula, C.; Power, R. Semi-supervised sequence tagging with bidirectional language models.
arXiv 2017, arXiv:1705.00108.

8. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language models are few-shot learners. arXiv 2020, arXiv:2005.14165.

9. Chen, X.W.; Lin, X. Big data deep learning: Challenges and perspectives. IEEE Access 2014, 2, 514–525. [CrossRef]
10. Lee, H.; Hsieh, C.J.; Lee, J.S. Local critic training for model-parallel learning of deep neural networks. IEEE Trans. Neural Netw.

Learn. Syst. 2021. [CrossRef] [PubMed]
11. Yu, H.; Yang, S.; Zhu, S. Parallel restarted SGD with faster convergence and less communication: Demystifying why model

averaging works for deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton Hawaiian Village,
Honolulu, HI, USA, 2019; Volume 33, pp. 5693–5700.

12. Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s
neural machine translation system: Bridging the gap between human and machine translation. arXiv 2016, arXiv:1609.08144.

13. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. arXiv 2014, arXiv:1409.3215.
14. Sun, S.; Chen, W.; Bian, J.; Liu, X.; Liu, T.Y. Slim-DP: A multi-agent system for communication-efficient distributed deep learning.

In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, Stockholm, Sweden,
10–15 July 2018; pp. 721–729.

15. Ballard, G.; Buluc, A.; Demmel, J.; Grigori, L.; Lipshitz, B.; Schwartz, O.; Toledo, S. Communication optimal parallel multiplication
of sparse random matrices. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, Montreal, QC, Canada, 23–25 July 2013; pp. 222–231.

16. Demmel, J.; Eliahu, D.; Fox, A.; Kamil, S.; Lipshitz, B.; Schwartz, O.; Spillinger, O. Communication-optimal parallel recursive
rectangular matrix multiplication. In Proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing, Cambridge, MA, USA, 20–24 May 2013; pp. 261–272.

17. Mirhoseini, A.; Pham, H.; Le, Q.V.; Steiner, B.; Larsen, R.; Zhou, Y.; Kumar, N.; Norouzi, M.; Bengio, S.; Dean, J. Device placement
optimization with reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning, Sydney,
Australia, 6–11 August 2017; PMLR, International Convention Centre: Sydney, Australia, 2017; pp. 2430–2439.

18. Pellegrini, F.; Roman, J. Experimental analysis of the dual recursive bipartitioning algorithm for static mapping. In TR 1038-96,
LaBRI, URA CNRS 1304, Univ. Bordeaux I; Citeseer: Bordeaux, France, 1996.

19. Pellegrini, F. Distillating knowledge about Scotch. In Dagstuhl Seminar Proceedings; Schloss Dagstuhl-Leibniz-Zentrum, DSP; Für
Informatik: Wadern, Germany, 2009.

20. Barnard, S.T.; Simon, H.D. Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems.
Concurr. Pract. Exp. 1994, 6, 101–117. [CrossRef]

http://doi.org/10.1109/ACCESS.2014.2325029
http://dx.doi.org/10.1109/TNNLS.2021.3057380
http://www.ncbi.nlm.nih.gov/pubmed/33606645
http://dx.doi.org/10.1002/cpe.4330060203

Algorithms 2022, 15, 108 18 of 18

21. Jia, Z.; Zaharia, M.; Aiken, A. Beyond data and model parallelism for deep neural networks. arXiv 2018, arXiv:1807.05358.
22. Peng, Y.; Bao, Y.; Chen, Y.; Wu, C.; Guo, C. Optimus: An efficient dynamic resource scheduler for deep learning clusters. In

Proceedings of the Thirteenth EuroSys Conference, Porto, Portugal, 23–26 April 2018; pp. 1–14.
23. Wang, M.; Huang, C.c.; Li, J. Supporting very large models using automatic dataflow graph partitioning. In Proceedings of the

Fourteenth EuroSys Conference 2019, Dresden, Germany, 25–28 March 2019; pp. 1–17.
24. Cai, Z.; Ma, K.; Yan, X.; Wu, Y.; Huang, Y.; Cheng, J.; Su, T.; Yu, F. TensorOpt: Exploring the Tradeoffs in Distributed DNN

Training with Auto-Parallelism. arXiv 2020, arXiv:2004.10856.
25. Yi, X.; Luo, Z.; Meng, C.; Wang, M.; Long, G.; Wu, C.; Yang, J.; Lin, W. Fast Training of Deep Learning Models over Multiple GPUs.

In Proceedings of the 21st International Middleware Conference, Delft, The Netherlands, 7–11 December 2020; pp. 105–118.
26. Kim, S.; Xing, E.P. Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL

mapping. Ann. Appl. Stat. 2012, 6, 1095–1117. [CrossRef]
27. Frazier, P.I. A tutorial on Bayesian optimization. arXiv 2018, arXiv:1807.02811.
28. Mirhoseini, A.; Goldie, A.; Pham, H.; Steiner, B.; Le, Q.V.; Dean, J. A hierarchical model for device placement. In Proceedings of

the International Conference on Learning Representations, Vancouver, BC, Canda, 30 April–3 May 2018.
29. Gao, Y.; Chen, L.; Li, B. Post: Device placement with cross-entropy minimization and proximal policy optimization. In Proceedings

of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–5 December 2018; pp. 9971–9980.
30. Addanki, R.; Venkatakrishnan, S.B.; Gupta, S.; Mao, H.; Alizadeh, M. Placeto: Learning generalizable device placement algorithms

for distributed machine learning. arXiv 2019, arXiv:1906.08879.
31. Paliwal, A.; Gimeno, F.; Nair, V.; Li, Y.; Lubin, M.; Kohli, P.; Vinyals, O. Reinforced genetic algorithm learning for optimizing

computation graphs. arXiv 2019, arXiv:1905.02494.
32. Fiduccia, C.M.; Mattheyses, R.M. A linear-time heuristic for improving network partitions. In Proceedings of the 19th Design

Automation Conference, Las Vegas, NV, USA, 14–16 June 1982; pp. 175–181.
33. Li, M.; Andersen, D.G.; Park, J.W.; Smola, A.J.; Ahmed, A.; Josifovski, V.; Long, J.; Shekita, E.J.; Su, B.Y. Scaling distributed

machine learning with the parameter server. In Proceedings of the 11th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), Broomfield, CO, USA, 6–8 October 2014; pp. 583–598.

34. Li, M.; Andersen, D.G.; Smola, A.J.; Yu, K. Communication Efficient Distributed Machine Learning with the Parameter Server.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS), New York, NY, USA, 8–13 December 2014;
Volume 2, pp. 1–4.

35. Li, M.; Zhou, L.; Yang, Z.; Li, A.; Xia, F.; Andersen, D.G.; Smola, A. Parameter server for distributed machine learning. In
Proceedings of the Big Learning NIPS Workshop, Lake Tahoe, SN, USA, 9–10 December 2013; Volume 6, p. 2.

36. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,
arXiv:1611.09940.

37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://dx.doi.org/10.1214/12-AOAS549

	Introduction
	Problem Description
	Optimization Objective
	Model Parallelism

	Performance Evaluation Model
	Approach
	Architecture Overview
	Partition Network Ng
	Schedule Network Ns

	Proximal Policy Optimization
	Simulator

	Experiment
	Experimental Settings
	Comparison of Experimental Results
	Strategy Visualization
	Strategy Performance Analysis
	Simulator Performance Analysis

	Conclusions
	References

