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Abstract: In the field of agricultural research, Machine Learning (ML) has been used to increase
agricultural productivity and minimize its environmental impact, proving to be an essential technique
to support decision making. Accurate harvest time prediction is a challenge for fruit production in a
sustainable manner, which could eventually reduce food waste. Linear models have been used to
estimate period duration; however, they present variability when used to estimate the chronological
time of apple tree stages. This study proposes the PredHarv model, which is a machine learning
model that uses Recurrent Neural Networks (RNN) to predict the start date of the apple harvest,
given the weather conditions related to the temperature expected for the period. Predictions are
made from the phenological phase of the beginning of flowering, using a multivariate approach,
based on the time series of phenology and meteorological data. The computational model contributes
to anticipating information about the harvest date, enabling the grower to better plan activities,
avoiding costs, and consequently improving productivity. We developed a prototype of the model
and performed experiments with real datasets from agricultural institutions. We evaluated the
metrics, and the results obtained in evaluation scenarios demonstrate that the model is efficient, has
good generalizability, and is capable of improving the accuracy of the prediction results.

Keywords: harvest date prediction; multivariate model; time series; recurrent neural network

1. Introduction

The science that studies the events that occur in the life cycle of plants is known as
phenology. Phenology is a tool to interpret the interactions of culture with local climatic
conditions. This allows us to characterize the occurrence of different stages and the duration
of crop development periods, relating them to seasonal variations [1]. Figure 1 shows the
sequence of the phenological stages of the apple tree. Phenological phases can be seen as
organ transformations in plants, such as germination, budding, flowering, defoliation, and
maturation. Phenological stages are specific phases or subdivisions that involve significant
changes or characterize any plant condition of the plant [2]. Phenological events vary
between years due to the variety of climatic elements, especially temperature [2]. Thermal
availability has a direct influence on plant phenology. Detecting changes in Phenology has
become a recurrent theme, and precision agriculture has increasingly attracted the attention
of farmers, governments, and researchers, since plant monitoring is one of the essential
tools for the management and optimization of agricultural resources [3]. The complex
interactions between plant development and the environment represent a significant source
of uncertainty for growers. The climate can change very quickly and have significant
implications for fruit production, representing costs for growers. Predicting the harvest
time is a challenge to develop sustainable fruit production and reduce food waste [4].
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Apples are perishable, high-value, and seasonal, and selling prices are often time-sensitive,
making harvest characteristics extremely valuable to growers [5].
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Figure 1. Apple phenologial stages.

Machine Learning (ML) is an area of Artificial Intelligence (AI) that, according to
Mitchell et al. [6], is concerned with the question of how to construct computer programs
that automatically improve with experience. ML approaches have been used in several
areas including, for example, applications in the construction industry [7], in the medical
field [8,9], in meteorology [10], and in biochemistry [11]. In the research field of agriculture,
ML has been used in a variety of applications [12–15]. Agri-technology and precision
agriculture have emerged as new scientific fields that use data-intensive approaches to
boost agricultural productivity and minimize environmental impact. The data generated in
modern agricultural operations allows a better understanding of the operating environment
(an interaction of dynamic crop, soil, and climatic conditions) and the operation, leading to
faster decision making [12]. In this context, ML is an important tool to support decision
making, assisting in planning, handling and management, forecasting, disease detection,
and the quality of agricultural production.

Linear models based on thermal sum have been used to estimate the occurrence
of phenological stages of different crops. However, these models, when adjusted to the
apple crop, show high variability for certain stages, failing to adequately represent the
occurrence of the phenomenon. Solutions proposed for other cultures need adaptation
due to the particularities of the apple tree culture. In this work, we developed PredHarv,
a machine learning model, based on thermal sum, but using a multivariate approach
with an RRN-based supervised learning algorithm. The model was developed to predict
the start date of the apple harvest, given the climatic conditions related to the expected
temperature for the period. A conventional pipeline of an LSTM network is used, which is
a type of network designed specifically for sequence prediction problems that can deal with
the temporal structure of inputs and capture the behavior dependent on the sequence of
environmental stimuli, which is implicit in the time series. We assumed as basic hypotheses,
which guided the development of this work, that the apple harvest date can be estimated
through ML methods using a multivariate approach based on historical data of phenology
and climatic parameters related to temperature, and also that multivariate models based on
thermal summation can improve the accuracy of predictions in days, better explaining the
relationship between temperature variables and the amount of heat needed for the plant to
complete its cycle. The model contributes with a methodology that makes the predictive
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capacity more effective, enabling the prospection of future scenarios. The development of
this work contributes to the fruit growing area, making it possible to anticipate information
about the harvest date, improving the accuracy of predictions. This information can be
helpful to the fruit grower to perform planned activities, avoiding unnecessary costs with
treatments, handling, and management as well as reflecting the quality of agricultural
production. It can be used as an essential tool to support decision making, generating
financial savings for the fruit grower.

This work is organized as follows. Section 2 presents an analysis of the works related
to the theme proposed in this article. Section 3 presents the model for predicting the harvest
date. Section 3.3 presents the evaluation methodology, details about prototype, input data
and parameters, evaluation metrics, and evaluation scenarios. Then, in Section 4, the results
obtained with the experiments carried out are presented. Section 5 includes a discussion of
the results obtained. Finally, Section 6 features the conclusion.

2. Related Works

The prediction of phenological stages has been extensively investigated in the
literature [1,16–21]. Many initiatives are found, which use different methods to offer
solutions for the most varied cultures. Among the works related to apple phenology, in
Petri et al. [1], the authors present studies on the phenology of apple trees in subtropical
climatic conditions. The study uses phenological and climatic data, using a statistical
approach, and presents important conclusions about the impacts on fruit production under
subtropical climate conditions. In Putti et al. [16], the authors evaluated the phenological
development of different fruit structures of apple trees with the objective of characterizing
the behavior of the phenological period from the complete flowering until the beginning of
the ripening of the apple. In Blazek and Pistekova [18], the fruit growth of apple cultivars
was evaluated. The authors recommend using the relationship between the diameters of
fruits at the T stage and fruits reached at harvest maturity to predict the harvest time and
variety yield of four apple cultivars. In general, these works use statistical approaches,
based on experiments, observing the evolution of the stages to verify the effect of the
amount of cold or heat and to characterize the behavior of the phenological period of the
apple. The authors conclude that the greater the number of cold units in dormancy, the
shorter the time and need for heat for sprouting. Due to the peculiarities of fruit growing,
the approaches generally developed for commodities need adaptations. In particular, there
is a need to use unique methods with specific cultivation characteristics, which makes it
difficult to apply techniques from other cultures without adaptation.

Thermal sum models, in the form of degree-days, have been adjusted to estimate heat
accumulation [21]. These models represent the integration of effective temperatures for
plant growth, which is fixed between the lower and upper limits. In Boechel et al. [19],
the authors investigated the use of methods Fuzzy-based Time Series (FTS) to predict
phenological stages of apple trees. The authors noted that the quality of results is improved
by combining variables and using multivariate FTS methods. Studies, such as those by
Rivero et al. [22], Darbyshire et al. [23], and Chitu and Paltineanu [21], evaluate the impacts
of rising temperatures and climate change on the flowering season of apple trees due to
global warming. These works produce statistics and relate meteorological and phenological
data due to global warming and how much the initial phenological stages have changed
due to climate change.

Approaches using ML methods are present in Chen et al. [20], Dai et al. [24], Czernecki
et al. [25], and Haider et al. [26]. Some authors have applied artificial neural networks
(ANN) to predict phenological stages, as in Yazdanpanah et al. [17] and Safa et al. [27].
In Yazdanpanah et al. [17], the authors used an ANN to anticipate different phonological
phases of the apple. The authors identified that most of the error was related to the
anticipation of the fruit development stage and concluded that it is possible to anticipate
the phenological stages of the apple with acceptable accuracy using climatic parameters. In
Safa et al. [27], the authors present a study where an Artificial Neural Network was applied
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to predict the production of dry wheat. The results demonstrate precision and efficiency
with a maximum error between 45 and 60 kg/ha. McCormick et al. [28] proposed a hybrid
model using a data-driven model using knowledge-based predictions to predict soybean
phenology. According to McCormick et al. [28], the potential that LSTM networks have to
capture the impact depends on the sequence of environmental stimuli, which in the context
of this work is analogous to, for example, a period of cold weather in plant development. In
Chen et al. [20], a hybrid method is proposed combining neural networks with integrated
learning to predict the flowering period of “Red Fuji” apple trees. The method uses LSTM
networks and the Random Forest and Adaboost classification functions. The proposed
model has high applicability and accuracy for flowering prediction. Haider et al. [26]
developed a wheat yield production forecasting model using LSTM networks. The objective
focuses on the development of a wheat yield prediction model using Robust-LOWESS as a
smoothing function in conjunction with an LSTM neural network model. The results show
that the proposed model achieves a good performance in terms of productivity prediction.

Aiming at a comparative analysis between the analyzed works, Table 1 presents
the main characteristics of each approach. All works present some solutions to related
problems. Although they do not have the same focus, they have a solid relationship with
interest. The Culture column shows the work related to the apple tree culture. The ML
column shows works that use ML techniques. The Other approach column shows works
that use some other strategy to predict phenological stages and harvest prediction. The
ANN and RNN columns present jobs that use these techniques. The literature review
resulted in a set of articles that focus on harvest time prediction initiatives and others
related to predicting the phenological stages in general of apple trees and other crops.
Among the works, we can emphasize some characteristics. We see a solid tendency to
assess the impacts of rising global temperature and climate change on plant phenology.
We observe works with approaches in the sense of analysis or even making the function
of phenology as a function of climate or other factors that alter phenomena. Many jobs
are related to the cultivation of wheat, soybeans, and corn. We observe that a large part
of the work related to harvest forecasting is focused on yield forecasting. Although there
are many solutions related to the prediction of phenological stages, we observed a gap
regarding the use of computational intelligence for a prediction start date of the harvest of
apple trees. We did not find an approach similar to the one proposed in this work.

Table 1. Comparative table of approaches in the related work.

Reference(s) Culture
(Apple) ML ANN RNN Other

Approach

Predict
Harvest

Date

[18] X X X
[19] X X
[20] X X X
[21] X X
[25] X
[24] X X
[23] X X
[26] X X
[28] X X
[1] X X
[16] X X
[22] X X
[29] X X X
[27] X X
[17] X X X
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3. Materials and Methods
3.1. PredHarv Model Architecture

Figure 2 presents the architecture of the PredHarv model and its main elements.
Initially, the model must be trained before making the predictions, with data from the
phenology and temperature historical series. The blue arrows in Figure 2 represent the
training step flow. The model only needs to be trained once unless there is a need to
incorporate new data into the training dataset. Briefly, the phenological data identify the
beginning and the end of the periods, and the meteorological data are the daily values of
the variables in this period. The data consistency is checked in the pre-processing module,
ensuring that all data are in the proper format to be presented to the model. In this step,
lost data imputation operations are also carried out, including data normalization, and
transformation in input and output patterns when necessary. After training, it is assumed
that the model is trained, minimizing the error. This step is represented in Figure 2 by the
Trained model module. Based on what is learned from the training stage, inferences are
made from the new inputs informed by the user. The red arrows in Figure 2 represent the
prediction step flow after training. Scenarios A, B, and C in the output step of Figure 2
represent the output of the model, that is, the duration of the period. These perspectives
are possible due to the flexibility and predictive capacity of the model based on input data
and allow prospecting for future scenarios.

y1 y2y3

Scenario A

Scenario B

Scenario C

(Harvest date prediction)

Output

Meteorological data 

Input
(time series)

New input

PredHarv Model

Pre-processing
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Figure 2. PredHarv model architecture.

The model inputs are time series of meteorological data, which are ordered in time,
related, and contribute to the phenomenon’s occurrence. We used six variables that serve
as input for the model: daily minimum temperature (tmin), maximum daily temperature
(tmax), daily average temperature (tmed), average daily minimum temperature (mtmin), the
average temperature of the period (mtmed), and cumulative degree days (CDD). The input
variables use the values of previous observations (t − n, . . . , t − 2, t − 1). These previous
observations are called lags, which correspond to the value immediately preceding the
series. This technique is called a sliding window [30]. We use seven lags for each input
variable, that is, the values corresponding to seven lags immediately previous to the current
time (t). We performed tests with window sizes of three, five, and seven lags to observe the
variability of these models with windows of different sizes. The best results are obtained
with seven lags. The output variable is a specific numerical value, which corresponds to
the duration of the period in the prediction horizon one step ahead (t + 1).
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3.2. Prediction Strategy

The PredHarv model makes predictions from information provided by the user. The
model does not require any basic configuration by the user. The user’s role is extremely
restricted but of paramount importance in the prediction result, since the network responds
to the context being fed. They are considering that the information fed at the beginning of
the period has a longer prediction horizon due to the size of the window. With it, there is a
higher level of uncertainty of the future scenario. There is no rigidity regarding the number
of predictions. Only the first is considered mandatory. The PredHarv model was designed
to allow flexibility and other predictions to be made at any time within the period between
full bloom and the start of harvest. These predictions allow the estimate to be adjusted
as the input data are updated with information on days that have already occurred and a
smaller future window. Figure 3 illustrates the process of updating the prediction as new
data inputs are fed. In Figure 3, new entries are fed by the user represented by x, and the
predictions are represents by y. As the predictions are made, there is a tendency to converge
toward a common point, which is represented in the figure by the convergence area.

Convergence area

y1 yi y2y3x1 x2 x3 xi

FEBOCT DEC JANNOVSEP

Inputs Predictions

Figure 3. Timeline of the prediction process.

Figure 4 presents the processing flow of the PredHarv model in the training steps
in Figure 4a and prediction in Figure 4b. In the training step in Figure 4a after data
collection, the missing data are analyzed. A common problem when working with time
series involving real scenarios is the occurrence of missing data. Ideally, these series would
be complete. However, in real scenarios, this situation is quite rare. Several problems
can cause the loss of important information, such as occasional interruptions of automatic
stations and malfunction of measuring instruments. To get around this problem, statistical
techniques involve replacing missing data with value estimates. One strategy is to impute
the missing values, that is, to infer them from the known part of the data. These techniques
aim to complete the dataset, making it possible to work with all the data under study. We
use the SimpleImputer class from the Scikit-learn library that works with the mean, the
median, and the most frequent attributes. The default value of the SimpleImputer class
will work with the average. This technique proved to be efficient in filling the gaps; the
method applied in imputation preserves the structure, and it was observed that it does not
compromise with the characteristics of the original series. In the data transformation and
normalization module, operations were performed to ensure that the data are all in the
same format and the same order of magnitude. Data transformation is a practice to prevent
the algorithm from being biased toward variables with a higher order of magnitude, and
normalization aims to place the variables within the range between 0 and 1.

We use the MinMaxScaler class from the Scikit-learn library. In the feature selection
module, the input attributes of the model were selected. Details on feature selection can
be seen in Section 3.3.3. In the Fit parameters module, the main parameters used in the
configuration of the LSTM network were established. These parameters are described
in Section 3.3.1. Then, in the training module, network training is carried out. If the
training results are not considered satisfactory, as evaluated from the training residues of
the training and test series, the values of the hyperparameters are adjusted, and the model
is retrained. If considered satisfactory, the model is trained to perform the predictions. In
the prediction step in Figure 4b, in the Input data module, the user informs the values of
the input attributes that are used to perform the prediction. Then, these input data are
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submitted to the trained model that performs the prediction. In the next step, the user
analyzes the prediction result. This step can be repeated as many times as the user deems
necessary. The input data can be updated at each repetition, and consequently, this change
will reflect the prediction value.

End

Start

Data collect

Missing
data?

Missing data 
imputation

Pre-processing

Yes

No

Train the
network

Analyse the
results

Feature
selection

End

Start

Calculate
the

prediction

Input data

Satisfactory
results?

Update 
input 
data

Yes

No

Analyse the
results

Satisfactory
results?

Yes

No

Fit hiper-
parameters

(a) (b)

Figure 4. Processing flow. (a) Training step. (b) Prediction step.

In this work, we use a conventional pipeline of the variant of RNN called the LSTM,
which was first introduced by Hochreiter and Schmidhuber [31]. LSTM networks were
designed to avoid long-term dependency, work very well on a wide variety of problems,
and are widely used today. The central idea behind the LSTM architecture is a continuously
updated memory. It consists of an elementary unit called a memory cell and gates. Through
the gates, the network acquires the ability to remove or add information to the state of the
cell. These gates are the forget gate, input gate, and output gate. The forget gate decides
which information will be kept and which will be discarded from previous states. The
input gate decides what information is to be updated, and the output port is based on the
current state of the cell and decides what information is to be produced.

The neural network structure uses a Keras sequential model, providing a series
structure where the output of one layer serves as the input for the next. In the implementation
of the LSTM network, we used an LSTM layer with 200 neurons. The input_shape parameter
was defined according to the dimension of the input layer: that is, the number of columns of
features selected in the dataset and the number of lags. The activation function used in this
layer was Rectified Linear Unit (ReLU). Then, another layer of the Dense type was included,
with 1024 neurons, with activation function Rectified Linear Unit (ReLU). Finally, a Dense
layer with one neuron and Linear Activation function is used to return a single continuous
value. In the stage of compiling the model, the Adaptive Moment Estimation (Adam)
function was used in the optimizer parameter. This function defines how the weights of
the neural network are updated. The loss parameter was defined as Mean Absolute Error
(MAE). The training of the network in this stage was carried out with 300 epochs.
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3.3. Evaluation Methodology
3.3.1. Prototype

We implemented a model prototype using the Python programming language, version
3.8, using the open-source tool Jupyter Notebook and the Keras library. The Keras library
(available at: https://keras.io/ accessed on 17 February 2022) is an open-source neural
network library written in Python that is capable of running on TensorFlow (available at:
https://www.tensorflow.org/accessed on 13 February 2022), which is also an open-source
library for numerical computing and machine learning made available by the Google Brain
team. We use real data from an agricultural institution to train and test the model. We
performed tests with real data of the data portion that the model does not know, that is,
a portion of data that was not presented to the model during the training phase of the
network. These data are used to evaluate the behavior of predictions in relation to real data.

3.3.2. Dataset

The datasets used in this work are composed of data collected in apple orchards
of agricultural institutions located in southern Brazil. Weather data come from weather
stations located near the orchards. Dataset1 (DS1) comes from the municipality of Caçador
located in western Santa Catarina (26°49′2.884′ ′ S, 50°59′45.044′′ W) with an altitude of
960 m comprising the period from 2000 to 2018. Dataset2 (DS2) comes from the municipality
of Vacaria located in the northeast region of Rio Grande do Sul (29°32′30′′ S, 50°54′54′′ W)
with an altitude of 962 m covering the period from 2016 to 2020.

The meteorological data were organized in a CSV file. A small excerpt is presented in
Table 2. These data were used as input to the implementation. The phenological stages data
consist of visual observations of the plant. In order to contribute to the reproducibility of
the results of this article, the data set is available in a publicly available repository (available:
https://github.com/tboechel/dataset/ accessed on 17 February 2022).

Table 2. Input data used in the implementation.

Date Tmin Tmax Tmed Tmin_acc Tmed_acc DD CDD

22 October 2006 12.0 25.0 18.5 12.0 18.5 15.5 15.5
23 October 2006 13.0 23.8 18.4 25.0 36.9 15.4 30.9
24 October 2006 12.5 25.0 18.7 37.5 55.6 15.8 46.7
25 October 2006 14.0 25.6 19.8 51.5 75.4 16.8 63.5
26 October 2006 13.0 29.0 21.0 64.5 96.4 18.0 81.5

3.3.3. Input Variables

We selected the variables considered empirically eligible to serve as input to the model.
The following variables were selected: daily minimum temperature (tmin), maximum
daily temperature (tmax), daily average temperature (tmed), amplitude (amplit), average
daily minimum temperature (mtmin), average of the maximum daily temperature (mtmax),
average temperature of the period (mtmed), degree-day (DD), and cumulative degree days
(CDD). Figure 5 shows a boxplot diagram with the variables used.

Thermal accumulation, in the form of the sum of degree-days (DDs), is an index used
to establish a relationship between the amount of heat the plant needs for its development
and the average daily temperature. According to [1], the physiological process and the
functions of the plant occur under thermal limits in its environmental development. To
complete all the physiological sub-periods of the life cycle, some cultures require an
accumulation of a certain amount of heat. This accumulation is usually expressed by the
DD index and represents the thermal sum above the minimum base temperature (Tbase).

https://keras.io/
https://www.tensorflow.org/
https://github.com/tboechel/dataset/
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Figure 5. DS1 input variables boxplot.

The concept of DD admits that there is a base temperature and that below such limit,
the growth and development of the plant are interrupted or extremely reduced. In addition,
a linear relationship between temperature and plant development is assumed since there
are no limitations on other factors [32]. The DD heat unit index can be calculated using
Equation (1), where Tmaxi and Tmini are the maximum and minimum daily temperature,
and Tbase is the base temperature. All temperatures are measures in degrees Celsius (◦C).
Based on the DD value, the thermal accumulation of a given period called the cumulative
degree-day CDD could be calculated using Equation (2). The base temperature was
determined by the method indicated by Arnold [33], which uses the smallest standard
deviation. Different values attributed to the base temperature can be found in the literature.
We carry out tests with temperatures of 2 ◦C, 4 ◦C, and 10 ◦C. The best result was obtained
with a temperature of 2 ◦C with a coefficient of variation of 10.46, being 6.6% lower than
the results obtained with 10 ◦C and 1.9% lower than the results obtained with 4 ◦C.

DDi =
Tmaxi + Tmini

2
− Tbase (1)

CDD =
n

∑
i=1

DDi (2)

We investigate the importance of variables to serve as input to the model. We used
Pearson’s correlation coefficient to assess the degree of relationship between pairs of
variables to assess the relevance of each variable alone as predictors of period length.
This coefficient is a measure of dependence between two quantitative variables, and the
correlation analysis shows how much one variable is somehow related to the other. Figure 6
graphically shows the correlation heatmap of the initially selected resources.
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The variable with the highest degree of correlation with the duration variable alone
was the CDD variable. We fit a simple linear regression model using the variable CDD as a
function of period length. The results showed a strong positive correlation. The coefficient
of determination R2 indicated that 83.8% of the variability in period length (number of days)
could be explained by the thermal accumulation CDD. Next, we observe the influence of
the inclusion of other variables in the model. A multivariate linear regression model was
adjusted considering the length of the period but with the inclusion of other variables. The
variables that had the best response were CDD, minimum temperature Tmin, and average
temperature Tavg. The coefficient of determination R2 indicated that 98% of the variability
in period length could be explained by combining the variables CDD, Tmin, and Tavg. We
considered the correlation analysis, but we performed tests to assess the importance of
attributes as predictors, intending to observe whether or not it contributes to improving
the model’s accuracy. The best results were obtained with the combination of six variables
(see Figure 5), the others having been discarded.
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Figure 6. Feature correlation heatmap.

3.3.4. Evaluation Scenarios

To evaluate the PredHarv model, tests were performed in four evaluation scenarios.
The use of these scenarios aims to perform a performance estimate and provide information
about the operation of the model and how it can be improved. The evaluation of the model
was carried out considering the following scenarios:

• Scenario 1: The first evaluation scenario is defined using the validation methodology
called K-fold cross-validation (CV). CV is a basic form of cross-validation to assess a
model’s generalizability from a dataset [34]. The CV divides the systematic measures
of data into k groups and performs a cross-validation that produces a more robust
evaluation set than just the model once. Figure 7 illustrates how the method works.
For each sample, performance is evaluated according to the metrics described in
Section 3.3.5.

• Scenario 2: In the second evaluation scenario, we run tests with real data from dataset1
and dataset2. We use samples from the datasets to analyze the actual values against
the predicted values returned by the model. The samples were selected according to
the validation scheme used in the evaluation scenario 1. The datasets were divided
into subsets with part of the data for training and another for testing, respecting
the temporal order of the data. For each sample, the RMSE and MAE metrics were
calculated.
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Figure 7. K-fold cross-validation with k = 5.

• Scenario 3: In the third evaluation scenario, we use synthetic data. Variations were
made in some time windows in certain periods, with an increase or decrease in the
values of the temperature variables. The objective is to visualize the behavior of the
method with guided changes in the input data.

• Scenario 4: In the fourth evaluation scenario, we conducted tests with other ML
algorithms applied to the problem. This evaluation scenario focuses on the selection of
the best supervised ML algorithm and its hyperparameters tuning. We use Automated
Machine Learning (AutoML) methods to select the best models from a set of models
and optimize their hyperparameters. In order to produce a just comparison between the
models, the assessments were divided into categories: General ML (GML) algorithms
selection and Deep Leaning (DL). In the GML category, we use Auto-Sklearn (available
at: https://www.automl.org/automl/auto-sklearn/ accessed on 13 February 2022),
which is an AutoML library built on top of the Scikit-Learn ML framework. The choice
of algorithms and hyperparameters implemented by Auto-Sklearn takes advantage
of recent advances in Bayesian optimization, meta-learning, and Ensemble Learning
[35]. We use Auto-SkLearn version 0.14.4. In the DL category, we use Auto-Keras
(available at: https://autokeras.com/ accessed on 13 February 2022), which is a
Python library based on the Keras module and that is focused on an automatic DL
Neural Architecture Search (NAS) [36]. The search is performed by using a Bayesian
optimization, with the tool automatically tuning the number of dense layers, units,
type of activation functions used, dropout values, and other DL hyperparameters. In
this work, we adopt Auto-Keras version 1.0.18. Each tool is meansured in terms of
its predictive performance using K-fold cross-validation with k = 10. The best model
result of each AutoML tool is presented.

3.3.5. Evaluation Metrics

We use the metrics Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
to measure and evaluate the methods’ accuracy. Both are described in Equations (3) and (4).
Here, Y represents the real observations dataset, while Ŷ is the prediction value. These
indicators are based on operations to quantify the difference between the actual values
observed and the values predicted by the method.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2 (3)

MAE =
1
n

n

∑
i=1

∣∣∣∣∣yi − ŷi
yi

∣∣∣∣∣ (4)

https://www.automl.org/automl/auto-sklearn/
https://autokeras.com/
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4. Results

We performed tests with the implemented prototype of the PredHarv model in order
to observe its functioning. We use real data from two agricultural institutions and synthetic
data. The results for each scenario are presented below:

• Results of the First Evaluation Scenario:
Table 3 shows the results of the implementation of the first evaluation scenario. The
data used come from the DS1 dataset. The objective of implementing this evaluation
scenario was to quantify how well this model behaves when making predictions
on never-before-seen data and to observe the generalization capacity of the model
in different subsets. In the K-fold cross-validation approach used, the dataset was
divided 10 into training and test subsets. The RMSE metric values remain at the mean
of 0.90 with a standard deviation of 0.17, and the MAE metric values remain at the
mean of 0.80 with a standard deviation of 0.15. It was observed in the results obtained
in this scenario that the model has a good generalization capacity. No evidence of
overfitting and underfitting occurs.

Table 3. Results of the metrics with K-fold cross-validation method.

Subset RMSE MAE

1 0.99 0.93
2 0.96 0.77
3 1.13 1.01
4 0.71 0.66
5 0.73 0.67

Average 0.90 0.80
Standard deviation 0.17 0.15

• Results of the Second Evaluation Scenario:
Table 4 shows the results of the tests in the second evaluation scenario, which were
obtained with the DS1 dataset. Table 5 shows the results of the tests in the second
evaluation scenario, which were obtained with the DS2 dataset. The Real column
shows the duration of observed data from samples in the actual dataset. These values
refer to the duration of the period in days referring to the sample. The Predict column
shows the data predicted by the PredHarv model. These values in the Predict column
and the RMSE and MAE metrics are calculated after ten runs of each sample. In
Table 4, the RMSE metric varied between 0.35 and 2.37 and MAE varied between
0.34 and 1.97 for the selected samples. In Table 5, it is observed that the results are
very close, presenting RMSE metrics between 0.41 and 1.32 and MAE between 0.33
and 1.08.

Table 4. Prediction results with the second evaluation scenario—dataset DS1.

Sample Real Predict RMSE MAE

1 104 104.3 0.35 0.34
2 108 108.5 0.99 0.94
3 110 108.7 2.37 1.97
4 115 114.3 1.02 0.89
5 122 121.2 1.32 1.08

Average 1.41 1.23
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Table 5. Prediction results with the second evaluation scenario—dataset DS2.

Sample Real Predict RMSE MAE

1 128 127.4 0.45 0.43
2 124 123.3 0.50 0.39
3 135 135.8 0.41 0.33
4 132 132.7 1.32 1.08
5 134 133.3 1.31 1.02

Average 0.79 0.65

• Results of the Third Evaluation Scenario:
In this scenario, synthetic data with temperature variations were used in specific
periods. Figure 8 shows the dynamics of the predictions obtained with the PredHarv
model. The initial prediction was made on 8 October, which is the date that marks
the beginning of the period of full flowering. Based on the data fed, the estimated
duration was 121 days. The blue line, in Figure 8, identifies the predicted value in the
initial stage. Subsequently, new predictions were made, which are called adjustment
predictions. The first adjustment prediction was made on 8 November, 31 days after
the beginning of the period. A period of two weeks was simulated, between the dates
of 20 October and 2 November, with temperatures 20% higher than initially predicted.
The second adjustment prediction was made on 20 November, 43 days after the
beginning of the period. Within this period, temperatures between 12 November and
17 November were simulated 10% below those initial predicted. The third adjustment
prediction was made on 30 December, 83 days after the beginning of the period.
Between 1 January and 19 January, temperatures were simulated 10% below those
initially predicted. In the fourth and last adjustment prediction, carried out on 20
January, 107 days after the beginning of the period, temperatures were simulated
20% below those initially predicted. As can be seen in Figure 8, the red line shows
the duration of the period corresponding to the date on which the prediction was
made. These values vary, and it can be seen that the model responds to the stimulus
of changes in the input data, adjusting the prediction as the data are being introduced.
Variations in temperature in specific periods result in a more significant accumulation
of heat, shortening the duration of the period. At other times, less accumulation
occurs, increasing the duration as expected. It was observed in the tests with this
scenario that the answers obtained corroborate the initial hypothesis that the apple
harvest date can be estimated through ML methods using a multivariate approach
based on historical data of phenology and climatic parameters related to temperature.
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Figure 8. Dynamics of the predictions obtained with the PredHarv model.
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• Results of the Fourth Evaluation Scenario:
In the fourth evaluation scenario, we used AutoML methods to select the best algorithm
and tune its hyperparameters applied to the DS1 dataset. We use samples according
to the K-fold cross-validation scheme, with k = 10, as described in Section 3.3.4. We
divided the solutions into two categories. In the GML category, we use Auto-Sklearn.
The best result in the ranking of the models tested by AutoSklearn was with Multiple
Linear Regression (MR). Table 6 presents the results obtained from the model.

Table 6. Best results using AutoSklearn with MR.

Sample RMSE MAE

1 3.68 3.47
2 1.54 1.16
3 1.23 0.95
4 3.92 3.41
5 2.56 2.16

Average 2.58 2.23
Standard deviation 1.21 1.19

In the DP category, we use AutoKeras. The library is focused on automatic searching
of DL neural architecture (NAS), automatically adjusting the number of dense layers,
units, activation functions used, dropout values, and other DL hyperparameters. This
task is often called architecture research, and it is often called neural architecture
research. The MLP neural network structure returned by Autokeras is composed
of a sequential model composed of a Dense layer with 128 neurons and ReLU
activation function. Then, there is another layer of Dense type with 1024 neurons
and ReLU activation function. In the output step, there is a Dense layer with only
one neuron, and 134 parameters were tested. The network training was performed
with 300 epochs. Table 7 presents the results of the metrics obtained from samples
submitted to the model.

Table 7. Best results using AutoKeras with MLP.

Sample RMSE MAE

1 4.13 3.78
2 2.94 3.31
3 1.97 1.69
4 4.46 3.67
5 1.96 1.55

Average 3.09 2.80
Standard deviation 1.17 1.09

5. Discussion

In the results obtained with the MR method (Table 6), the RMSE metric obtained an
average value of 2.58 in the selected samples, and the metric of the MLP method (Table 7)
obtained an average value of the RMSE metric of 3.09. Comparing these results, the MR
method had a better result with a difference of 0.51. However, it was observed that the
standard deviation measure, which is a measure of dispersion around the mean, shows
that the results obtained with MLP are more uniform. The values obtained with PredHarv
(Table 3) in the RMSE metric are 0.90 with a standard deviation of 0.17 for the selected
samples. These values are lower than those obtained with the MR and MLP method. The
difference between the results obtained with PredHarv is 2.19 lower compared to MLP,
and it is 1.68 lower than with MR. The standard deviation measurement of the PredHarv
method also shows uniformity in the results obtained.



Algorithms 2022, 15, 95 15 of 18

Auto-sklearn and Autokeras are fully automatic AutoML methods. They are black
box models, and their internal structure is unknown, being limited to measures of input
and output relationships. However, these methods search a vast space of models and build
complex sets of high precision, building models based on the data, which collaborates with
the purpose for which they were submitted in this work. Investigations of other methods
that can be applied to the problem demonstrate that the choice of the LSTM method is
adequate to the nature of the problem. The ML method used exploits the potential of LSTM
networks, which are a special type of RNN to deal with problems involving time series.
PredHarv model predictions are made from the phenological stage of full bloom. These
time series are a set of observations ordered in time, and they have a temporal dependence
between the observations. Recurrent networks applied to this type of problem have the
ability to capture part of the information implicit in the series, reflecting the impact of a
sequence of environmental stimuli on plant development.

Linear models that use the sum of degree-days have been used to estimate the duration
of phenological periods of apple trees and other crops [37]. These models, when adjusted to
estimate phenological sub-periods of apple trees, present results with a lower variability in
the accumulation of degree-days for most phenological stages between seasons, compared
to the number of days, responding better to the thermal sum than to the chronological time
(calendar days). According to [38], linear models have the obvious defect that the capability
of the model is limited to a linear function, and therefore, the model may not explain
the interaction between any two input variables. The PredHarv model uses thermal sum
models as a baseline, but it uses a multivariate approach. We use the thermal sum relating
the accumulation of degree-days to the duration of the period and other temperature-related
variables in order to estimate the chronological time. The inclusion of other variables, with
the multivariate strategy associated with the use of an ML method as proposed in this
work, significantly improves the response, as can be seen in the comparative graphs of
predictions with the PredHarv model and the linear model, in Figures 9 and 10, managing
to better explain the occurrence of the phenomenon.

The results observed in the experiments carried out confirm the basic hypotheses that
guided the development of this work: that the apple harvest date can be estimated through
ML methods using a multivariate approach based on historical data of phenology and
climatic parameters related to temperature, and also that multivariate models based on
thermal summation can improve the accuracy of predictions in days, better explaining the
relationship between temperature variables and the amount of heat needed for the plant to
complete its cycle.

Figure 9. PredHarv model and linear model prediction results—DS1 dataset.
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Figure 10. PredHarv model and linear model prediction results—DS2 dataset.

6. Conclusions

This work proposed a new approach to predict the harvest date in apple trees.
The computational model PredHarv uses a multivariable approach, using historical and
meteorological data with a strategy that uses RNN. The proposed evaluation scenarios
and the comparative tests between the models show that the PredHarv model is a useful
alternative that is capable of improving the accuracy of the prediction results. This work
contributes to fruit growing, enabling anticipating information about the harvest date,
generating financial savings for the fruit grower, avoiding unnecessary costs, and improving
planning and productivity. The PredHarv model contributes with a methodology that
makes the predictive capacity and applicability more effective, enabling the prospecting of
future scenarios.

A prototype of the PredHarv model was developed and submitted to evaluation
scenarios. The results were evaluated according to the RMSE and MAE metrics. In the tests
of the first PredHarv evaluation scenario, it demonstrated a generalization capacity when
submitted to new data. In the second scenario, PredHarv showed results very close to the
real values in tests with real data. In the third scenario, when submitted to synthetic data,
the results showed that the PredHarv model showed a positive response to the stimuli
caused by the changes made to the input data, adjusting the prediction as the data are being
introduced. We performed tests with other supervised learning methods, and the average
of the RMSE metric results obtained with LSTM was superior to the results obtained with
other algorithms.
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