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Abstract: Evolutionary algorithms, such as genetic algorithms have been used in various optimization
problems. In this paper, we propose to apply this algorithm to obtain the layout design/redesign in
order to improve the patient flow in an outpatient clinic. Layout designs are planned considering long-
term requirements whereas the layout keeps modifying as per short-term demands. Over a period of
time, the layout often does not remain efficient. Therefore, there is a need for such a model that helps
in decision making on layout redesigns, and it must also optimize workflow by incorporating the
flow constraints. In this study, we propose to minimize the waiting times by obtaining optimal and
sub-optimal layout designs. A genetic algorithm is implemented to redesign the layouts based on
the changing dynamics of patient demand, clinical pathways and services offered. The workflow
is simulated with current layout and optimized layouts, and the results in terms of waiting time
and cycle time are compared. The study shows that when layout design or redesign incorporate the
workflow and pathways along with associated constraints, improves waiting time and cycle time
of patients in the outpatient clinic. The distance between the departments/locations is translated
to travelling time and overall travel distance/time is minimized by rearranging the allocations of
departments to the location through genetic algorithms.

Keywords: layout optimization; genetic algorithm; waiting times; cycle times; hospital operations

1. Introduction

Evolutionary algorithms (EAs) are used to yield better approximate solutions to
complex problems. Finding exact solutions is often difficult, and sub-optimal solutions
may be proven better. EAs are applied in evacuation planning, disaster management,
decision making, etc. Genetic algorithms (GA) is the most popular among EAs and is
greatly used in optimization problems. It is a search algorithm that is based on natural
selection where the fittest solution would survive. Such algorithms are robust, simple and
powerful. It is observed from literature that these algorithms are extensively used in layout
optimization problems.

Outpatient clinics (OPCs) are systems that require a lot of continuous optimizations.
To improve the OPC’s performance, parameters such as waiting times, cycle times and
resource utilization need to be optimized. For this, OPCs should plan, schedule and control
patients and resources effectively [1–3]. Generally, an OPC is a collection of different service-
providing departments (physical locations) that are put together. The way the rooms are
allocated to the departments (referred as OPC layouts) affects the patient workflows and
also the operations management/workflow management, either positively or negatively. It
is observed from literature and practice that layout optimization is a complex problem and
has been addressed in settings such as facility layouts, chemical plants, nuclear reactors and
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manufacturing plants [4]. When these kinds of layouts are compared with OPC layouts,
OPCs stand apart as there are several constraints (like variability and uncertainty in patient
demand and workflow pathways) involved in the design of OPC layouts.

Outpatient clinics have many processes/services that are interconnected and inter-
related, making an OPC a complex network. The locations of the services are based on
functional structure (organized depending on the type of work and not on the care path-
way or disease) as patients are required to move from one location to another in order to
complete their treatment processes. This travelling of patients increases their waiting time
and the cycle time. Generally, layout designs are strategic decisions that are, or should be,
evaluated every 7–10 years. The layout problem can also be viewed as a capacity planning
problem [5]. Over a period of time, demand increases, its mix changes and offered services
change. With the addition of multiple specialties, the resources get shared between them.
Also, there could be a few changes that are based on short-term requirements. However,
the buildings remain in use even after these changes, and this may result in congestion and
chaos in workflows, eventually leading to compromise in efficiency and experience quality.
There is a relationship between operations management and OPC design [6].

It is at the operational level that the layout influences workflow management and the
quality of healthcare services [7]. Therefore, the OPC layout should be designed carefully
so that it can adapt to the future changes in the workflows. As the layout design is a
strategic decision with a long-term impact, it cannot be very easily adapted to the changing
scenarios because it involves high cost. It is a challenging task to design or redesign the OPC
layout when it is associated with uncertainties about future patient demand and related
technologies. The goal of this study is to redesign a layout of an OPC that is adaptable in
future to the changing patient demand and their mixes and aide in decision making. In this
study, the layout redesigns are obtained with the use of a genetic algorithm, and layouts
obtained are compared based on waiting times.

This paper is organized as follows: Section 2 presents the background of the study,
Section 3 presents the materials and methods—data collection and analysis, model devel-
opment and validation, and experimental designs followed by the problem formulation.
Section 4 compares the results and discussion of both the algorithms. Section 5 presents
the conclusion.

2. Background

Layout optimization is commonly seen and addressed in manufacturing industries,
VLSI chip designs and chemical plants. Facility layout problems (FLP) relate to allocation
problems with constraints and to solve these, heuristic and meta-heuristic algorithms are
used. The layout optimization has been commonly modelled as a quadratic assignment
problem (QAP) [8,9]. The distance correlations between the facilities and locations are
analyzed and to achieve this, branch and bound techniques are used. The optimization of
the new layout differs from that of the existing layouts. The existing layouts have more
constraints compared to that of the new layouts.

Over a period of time, patient demand increases and also the specialties offered change.
In such scenarios, OPCs should review their layouts for possible changes. Designing opti-
mal layout can easily be implemented in the new OPC, in which the workflow dependencies
and complexities can be addressed during design. As any change in layout results in ad-
ditional costs, simulation is an important tool to identify and analyze the optimal layout.
Simulation aids the study and analysis of different scenarios, also with the purpose cost and
or quality of work and service in altering the layout [10,11]. Efficient and effective planning
during layout design is most important to achieve better performance [12]. Hospital/OPC
buildings were shaped to fit as many patients as possible [13]. Evidence-based practices
are used to cut down the travel time of staff and patients [14]. For example: centralized
nurse stations surrounded by patient rooms will increase the efficiency. The authors in [15]
show the effect of the changes in layout and process improvement on the performance
of emergency room operations. Based on before and after implementation it is observed
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that combining both structure-oriented and process-oriented strategies is beneficial in
maximizing the performance. A parametric model of layout optimization is developed as a
geometric approach that helps in handling the complexities that arise because of predefined
rules and parameters and precedencies [16]. A clinical pathway mining approach was
used in [17] where current pathways were collected. Based on this data, the future clinical
pathways were predicted using a machine learning algorithm. A mathematical model and
expert knowledge were used in hospital layout planning decisions.

It is observed that layout problems are solved using methodologies such as exact
procedure, heuristics and meta heuristics. Currently, meta-heuristics such as simulated
annealing and genetic algorithm are extensively used. These solve large scale facility
layout problems. Other approaches for layout optimization are neural network, fuzzy
logic, ant colony optimization (ACO) and expert systems [9,11,18]. ACO is a combinatorial
algorithm and it is good for discrete problems whereas genetic algorithm is good for
continuous and discrete. Ant agent algorithm has been used in OPC layout optimization.
The authors in [19] have modified the ant agent algorithm to incorporate the sequential
flow constraints associated with the OPC. It provided an optimal layout design (single best
solution) that considered the workflow constraints and improved the waiting time and
cycle time. But, having only one solution to redesign the existing layout makes it difficult
for implementing the changes suggested in the optimal solution. The layout provided
by ant agent algorithm, however, was the best layout that improved the performance of
the OPC, and it is suitable for new-buildings as the changes/modifications can be easily
accommodated. The OPCs that already have constraints cannot adapt this solution/design.
Therefore, for such situations multiple layout redesigns are needed in relation to whichever
layout design suits the OPC that could be used.

Evolutionary algorithms generate multiple solutions, optimal (best) and sub-optimal
solutions (next/close to best, but not best) to the problems using the techniques that are
inspired by natural evolution. These algorithms have often been used in the facility layout
optimization in manufacturing and routing problems [20–26]. The genetic algorithm (GA)
is a search heuristic that depicts the process of natural selection. According to literature,
as GAs do not employ analytical properties of the function to be optimized, they have
attracted the attention of researchers. GA along with adaptive local search is applied to
solve multi-floor hospital layout problems [27]. The study minimized the total movement
distance of patients and maximized total closeness rating scores. It improved both the
parameters by 83.91% (best solution) and 60.16% (best solution).

In this study, a genetic algorithm has been implemented to obtain the optimal and
sub-optimal layout redesigns. The layout optimization model is developed, and it is solved
using the algorithm. The resulting layout redesigns are analyzed based on the performance
parameters. This is used in decision-making during OPC layout planning.

3. Materials and Methods

This study was conducted in Aravind Eye Hospital (AEH), Madurai, Tamil Nadu,
India. The OPC in AEH gets around 2300 patients per day. As all the patient arrivals are
walk-in, it creates a lot of variability and uncertainty, making the workflow management
complex. The performance parameters, such as waiting times and cycle times get most
affected by varying patient volume and patient arrivals. It is observed in [19] that the
performance parameters depend on the processing times, patient arrival patterns, schedul-
ing rules as well as on the OPC layout. Data about the locations of the departments,
waiting room capacities, distance between the departments and the sequential depen-
dence/precedence constraints within departments were collected. The study developed a
simulation model based on the collected data and validated the model. The OPC layout
design was considered as an optimization problem with flow constraints. The locations
to the departments were optimally assigned by genetic algorithm which is one of the
evolutionary algorithms. This algorithm provided the optimal and sub-optimal layouts.
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The patient workflow was re-simulated with optimal and sub-optimal layouts and the
performance parameters like waiting time and cycle time were compared.

3.1. Data Collection and Analysis

To understand the workflow, interviews were carried out with OPC staff. In addi-
tion, patient and department data were obtained from the inhouse software. To simulate
the OPC workflow that depicts real-time scenario data such as patient demand, arrival
times, patient in-time and patient out-time, resources in-time and out-time, and resource
schedule were collected. The waiting times, cycle times, processing times and utilization
were extracted from the collected data [2]. The Easy-Fit tool was used to determine the
probability distributions of service times and patient arrival times. A bimodal Poisson
distribution [28,29] was used to generate patient arrival times. The workflow in the OPC is
as shown in Figure 1. There are two types of patients, new and review. The new patients
are serviced through registration, vision, preliminary test, refraction, tension, dilatation
and final examination. The processing time differs from patient to patient. Review patients
follow the same clinical pathway, except the initial vision test. A few sequences in the
pathway can be realigned.
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The OPC is situated on the ground floor. The floor layout of the OPC under study has
one location/room for new registration, one for review registration, one for vision, five for
refraction, one for tension and three for preliminary and final examinations. The physical
dimensions of the OPC were collected, and the distances between locations were measured
through the number of human steps (walking) which was later translated to time during
the simulation. The time taken to walk a particular distance varied, and the number of steps
also varied based on the age and height of the patient, respectively. Therefore, average
numbers of steps was considered for simulation. The walking style or the pattern of the
disabled patients was excluded as they contributed less than 1% of the patient volume.

The in-house software provided the information about wait time, patient mix and
service time. Process data of around 20,000 patients were obtained, and 2700 patient data
among them were excluded as the recorded cycle time of these patients was less than 15 min.
Either the patient left the workflow in-between or the patient visited only preliminary
examinations. The remaining 17,300 patient data were used in building the model. The
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service time was considered as variable, and it was derived from the empirical distribution.
Service times were uniformly distributed between the minimum and maximum processing
times from empirical data for each department and were randomly generated. As this
study considers only layout optimization, the scheduling methods used by the OPC were
not modified.

3.2. Problem Formulation for Layout Optimization

OPCs have a greater number of constraints like space, workflow, patient flow, resources
and logistic flows in the existing layouts and optimizing such layouts is difficult. The
objective of this study is to minimize the cycle time by redesigning the existing layout.
Cycle time consists of processing time, waiting time and walking time of the patients. The
walking time is also applicable to staff and doctors. The problem formulation is based on
process flow and dependencies, distance between locations and adjacency between the
locations and is presented in Equation (1).

Min ∑N
i=1 ∑M

j=1 CTi,jDi,jNi,jXi,j (1)

where Ci,j is the cycle time that constitutes waiting time, processing time and travel
time/walking distance; Di,j is the distance matrix between the locations (here the dis-
tance is represented in number of footsteps); Ni,j is the neighborhood matrix of locations;
Xi,j = 1; M is the number of departments; N is the number of locations; M ≤ N.

Genetic algorithm is used to solve the facility redesign problems. Later, the resultant
layouts, the optimal and suboptimal layouts are compared in order to find the appropri-
ate layout.

3.3. Genetic Algorithm

First, we explain the basics of the genetic algorithm. GA starts with an initial set of
random solutions for the problem under consideration. This set of solutions is known
as the population. The individuals of the population are called chromosomes, and its
representation is called encoding. The chromosomes of the population are evaluated
according to a pre-defined fitness function. The chromosomes evolve through successive
iterations called ’generations’. During each generation, through merging and modifying
chromosomes of a given population, a new population is created. Merging chromosomes is
known as ‘crossover’, while modifying an existing one is known as ‘mutation’. Crossover
is the process in which the chromosomes are combined in a random fashion to produce a
pair of new chromosomes (offspring). A mutation operator is used to expose unexpected
changes in the values of genes. The selection of chromosomes to crossover and mutate is
based on their fitness function. At each generation, a new population is created by applying
the crossover and mutation operators. The process is repeated until a specific stopping
criterion is reached [30]. The steps of genetic algorithm implemented to the OPC layout
optimization is presented below:

1. Encoding: An encoding scheme maps feasible solutions of the problem to the strings [31].
Encoding should be such that the minor changes in the chromosomes (individuals)
translate into minor changes in corresponding solution. In this layout optimization
permutation encoding is used to represent the department order. First row indicates
the room numbers and the second row indicates the departments like registration,
vision, refraction etc. Together, it is called chromosome, as the entries are referred as
genes and we use integers 1, 2, . . . , 12 (to avoid confusion they are referred as locations
L1, L2, . . . , L12 in explanation) for departments D1—D12. New registration—D1,
Review Registration—D2, Vision—D3, Refraction—D4, D5, D6, D7, D8, Tension—D9
and Preliminary test and final examination—D10, D11, D12. This is implemented as a
vector and is shown in Figure 2.

2. Initial population generation: The initial population is selected between 1.5 to 2 times the
number of genes. As the number of genes is n =12, we use population size = 2 × 12 = 24.
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3. Selection: Five individual parents (design) are generated randomly. A fitness function
is calculated, and its value with associated parent is stored. The individual is arranged
in descending order of fitness value. The first two individuals are selected as parents
to apply cross over operator to generate offsprings.

4. Fitness function: The cycle time of the patient in the OPC also depends on the travel
time between locations. Thus, the fitness function depends on the distance between
the locations. When distance gets converted to the time, it contributes to the cycle time.
In this study, optimization function is the same as fitness function, and it minimizes
the cycle time. But we measure the Fitness value as the ratio of waiting time to the
cycle time. The population is evaluated with this fitness function and the best two
chromosomes are selected. These form parent1 and parent2.

5. Crossover and mutation: The first two rooms are at the entrance of the building,
and they are currently allocated to new registration and review registration. These
are left untouched. Room numbers remain same; only department numbers are
exchanged. A sample vector shown in Figure 2 is repeated in Figure 3a for explaining
algorithmic steps. First, the parent genes (3–12) are shuffled, and then single point
swapped crossover is applied to get the offspring (Figure 3b). The colored part shows
the change in the genes or department numbers. Crossover rates between 0.3 to 0.6
were used. We use swap mutation for next generation and the objective function
is evaluated again. The swap mutation is shown in Figure 3c. Mutation rate was
0.08(1/n = 1/12). When the number of generations got completed, the algorithm
was stopped.
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A database of all the solutions and its fitness values were maintained. Although
evolutionary algorithms find the best solution, sub-optimal solutions were also stored
because the sub-optimal layouts are based on the existing constraints.

3.4. Model Development

Microsoft’s .NET (dotnet) Framework was used for simulation of OPC workflow
and genetic algorithm. The model developed is combination of GA module and OPC
simulation module as shown in Figure 4. The GA is implemented using parameters, such
as population, parent/chromosome selection, fitness function, number of genes/rooms
and locations, distance matrix and crossover and mutation. The offspring generated are the
layout redesigns and are stored in database. These redesigns are used by OPC simulation
module. This module has parameters, such as patient demand and arrival times, precedence
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constraints, clinical pathways, processing times and distance matrix. The resulting walking
distance in terms of steps and, waiting times and cycle times for that particular layout
redesign is stored in the database. Further, the fitness function is calculated. A hundred
generations are considered.
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The simulation model was run with the empirical data, and the performance measures,
namely waiting times and cycle times were collected. The travel distance was measured
in terms of steps and then converted to time. This time was added to cycle time of the
departments. Cycle time is sum of processing time, waiting time and travel time. The
results of the simulation model were compared with the empirical data of the OPC for
validation as shown in Table 1 and there was no statistical difference between the two. The
clinical pathways, number of departments and locations are considered as variables. So,
they can be added or deleted from the simulation model. This is for future changes in the
OPC services offered. Also, the precedence constraints are not fixed but can be varied in
simulation model.

Table 1. Simulation model validation in terms of waiting time and cycle time.

Empirical Data Simulation Results p-Value

Mean SD Mean SD

Waiting time in minutes 59.5 43.92 58.2 40.15 0.4
Cycle time in minutes 113.26 44.2 115.32 39.6 0.29

SD: Standard Deviation.

3.5. Experimental Design

The layout redesigns were obtained using a genetic algorithm. The seed in random
variate was varied to generate different arrival times for the same mean patient arrivals [2].
The same randomizer input was used for simulation with the different layout design.
For each layout redesign (offspring), the OPC simulation was run for three different
patient demands: one with current patient demand, a second with 20% more than current
patient demand and a third with 40% more than current patient demand. For statistical
comparisons, ANOVA tests were performed with p < 0.05.

4. Results and Discussion

This study is a simulation study, and the genetic algorithm used was aimed to find the
optimal as well as sub-optimal layouts. Depending on the fitness function, different layout
redesigns are considered, and for these layout redesigns, the patient demand is varied
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and the performance parameters are calculated. The number of solutions provided by the
algorithms differ (See Table 2).

Table 2. Distances travelled in the layouts obtained by genetic algorithm.

Algorithm Number of Solutions/Layouts Distance (in Steps) According to
the Solutions

Genetic Algorithm 12 305, 211, 251, 260, 296, 228,
237, 235, 677, 675, 1101,1099

The layout redesigns/solutions obtained are as shown in Figure 5 as per the walk-
ing steps. Lesser the number of steps in the layout, more is the flexibility required to
accommodate the changes in the OPC.
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The performance or the efficiency of the OPC depends on processing times, waiting
times, cycle times, throughput, resource utilization and operational costs. The waiting
times and the cycle times also depend on the resource utilization (in this research, it is the
space utilization). The current layout with existing pathways and patient demand was
evaluated. The current layout requires patients to walk for 295 steps to complete their care
and the current patient demand is 2300 patients/day. The approximate layout is depicted
(not to the scale) in Figure 6.

All the layout redesigns obtained from GA were evaluated for the current scenario.
The waiting times and cycle times for different layouts were recorded by varying patient
demand by +20% and +40% of the current demand. The solutions and their performance
parameters are as shown in Table 3.



Algorithms 2022, 15, 85 9 of 12

Algorithms 2022, 14, x FOR PEER REVIEW 10 of 13 
 

times and the cycle times also depend on the resource utilization (in this research, it is the 
space utilization). The current layout with existing pathways and patient demand was 
evaluated. The current layout requires patients to walk for 295 steps to complete their care 
and the current patient demand is 2300 patients/day. The approximate layout is depicted 
(not to the scale) in Figure 6.  

 
Figure 6. Layout of the OPC showing locations and assigned departments. 

All the layout redesigns obtained from GA were evaluated for the current scenario. 
The waiting times and cycle times for different layouts were recorded by varying patient 
demand by +20% and +40% of the current demand. The solutions and their performance 
parameters are as shown in Table 3.  

Table 3. Comparison of waiting time and cycle times with increase in demand for different layout 
redesigns. 

Layout Rede-
sign Number 

No. of 
Steps 

Waiting Time in Minutes Cycle Time in Minutes 
Current De-
mand (2300 

Patients/Day) 

20% Increase 
(2760 Pa-

tients/Day) 

40% Increase 
(3220 Pa-

tients/Day) 

Current De-
mand (2300 

Patients/Day) 

20% Increase 
(2760 Pa-

tients/Day) 

40% Increase 
(3220 Pa-

tients/Day) 
1 211 37.9 40.2 46.2 90.9 91.2 95.2 
2 228 44.0 46.7 50.2 91 92.7 95.2 
3 235 45.4 46.9 51.9 95.4 101.9 100.9 
4 237 45.4 49.4 52 99.4 95.4 104 
5 251 48.0 52.0 57.5 97 93 111.5 
6 260 50.8 53.2 57.9 94.8 108.2 98.9 
7 296 58.2 63.3 69.5 102.2 116.3 115.5 
8 305 60.0 65.4 72.5 107 112.4 117.5 
9 675 66.8 71.2 79.8 106.8 114.2 119.8 

10 677 66.8 71.2 79.8 118.8 111.2 131.8 
11 1099 76.4 84.5 89.1 125.4 133.5 140.1 
12 1101 76.4 84.5 89 131.4 125.5 140 

The GA provided 12 solutions and all the redesigns were used in simulating the wait-
ing times and cycle times for different patient demand. It is observed that out of twelve 
solutions/layout redesigns, six layouts have a greater number of walking steps compared 
to the existing one (295 steps), and this will ultimately result in more travel time. It is 
observed that the other solutions have a smaller number of walking steps, and also the 
changes required while implementing the redesigns is less. There is a tradeoff between 

Figure 6. Layout of the OPC showing locations and assigned departments.

Table 3. Comparison of waiting time and cycle times with increase in demand for different layout
redesigns.

Layout
Redesign
Number

No. of
Steps

Waiting Time in Minutes Cycle Time in Minutes

Current Demand
(2300 Patients/Day)

20% Increase (2760
Patients/Day)

40% Increase (3220
Patients/Day)

Current Demand
(2300 Patients/Day)

20% Increase (2760
Patients/Day)

40% Increase (3220
Patients/Day)

1 211 37.9 40.2 46.2 90.9 91.2 95.2

2 228 44.0 46.7 50.2 91 92.7 95.2

3 235 45.4 46.9 51.9 95.4 101.9 100.9

4 237 45.4 49.4 52 99.4 95.4 104

5 251 48.0 52.0 57.5 97 93 111.5

6 260 50.8 53.2 57.9 94.8 108.2 98.9

7 296 58.2 63.3 69.5 102.2 116.3 115.5

8 305 60.0 65.4 72.5 107 112.4 117.5

9 675 66.8 71.2 79.8 106.8 114.2 119.8

10 677 66.8 71.2 79.8 118.8 111.2 131.8

11 1099 76.4 84.5 89.1 125.4 133.5 140.1

12 1101 76.4 84.5 89 131.4 125.5 140

The GA provided 12 solutions and all the redesigns were used in simulating the
waiting times and cycle times for different patient demand. It is observed that out of twelve
solutions/layout redesigns, six layouts have a greater number of walking steps compared
to the existing one (295 steps), and this will ultimately result in more travel time. It is
observed that the other solutions have a smaller number of walking steps, and also the
changes required while implementing the redesigns is less. There is a tradeoff between the
number of walking steps and the flexibility of the OPC to change the layout accordingly.
The waiting time and the cycle times for the OPC layout with minimum distance layouts
are compared with the same parameters in the existing layout in Table 4. The ANOVA test
(p < 0.05) was used for statistical significance analysis.

Table 4. Comparison of wait time and cycle time in existing layout and optimized layout.

With Existing Layout Best Layout with GA

Wait time in minutes 59.5 37.9
Cycle time in minutes 113.26 97.2

The results show that the physical layout of the outpatient clinic has impact on the
workflow management: patient flow, waiting time and cycle time. The waiting time has
reduced by 36.3.28% (21.6 min) and the cycle time has reduced by 14.17% (16.06 min) The
staff scheduling and the patient scheduling was retained as per current scenario. The
optimal solution obtained resulted in reduction in walking distance from 295 to 211.
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From literature, the Ant algorithm in [19] provided the single best optimal solution for
the layout with the objective of minimizing the walking distances. The proposed model
in [19] provided one best solution. The optimized layout obtained from that algorithm is
suitable for new OPC buildings as these buildings can adapt easily, whereas for existing
OPCs there are multiple constraints. Having only one optimal layout and changing the
existing layout to optimize workflow is challenging and difficult. In such situations, OPCs
need sub-optimal solutions/layout redesigns. The changes suggested as per sub-optimal
solutions can be adapted in the existing layout and also optimize the workflow. There
are various solution layouts which reduce the walking distances compared to the existing
layout and require few changes/modifications in the layout. The layout redesign that has a
greater number of walking steps/distance requires less alteration to the layout, and with a
smaller number of steps, requires more alteration to the existing layout. This is because
the farther locations are reallocated to the same departments as before and this does not
require any alteration. Only if the locations are allotted with different departments does
OPC require a greater number of alterations. With this size of layout problem, the execution
time for genetic algorithm is 34 s. With the increase in number of locations, the search
space becomes wider and the execution time will increase. The complexity depends on
mutations, crossovers, population size and number of generations for GA.

Unlike other facility layouts, OPCs/hospitals have a lot of variabilities and uncertain-
ties in services offered. The OPC may add or stop providing certain services. The long-term
requirements are considered for 1–5 years. But the short-term requirements are considered
for 3–6 months. The OPC building lasts for a long time, so their reuse is necessary. For
this, the OPCs should be flexible to restructure or design its layout based on operations
management. With time, the dynamics in OPCs keep changing. At times, implementing
the optimal solution will not be possible because of cost and other constraints. This study
helps in hospital layout planning and aids in decision-making. The decisions about layouts
need to be made based on system-status/real-time need of the OPC. The cost associated
with making the changes in the existing layout by moving equipment is not incorporated in
this model. Also, the change is services offered and change in pathway is not implemented.
Waiting hall capacity also needs to be incorporated with increase in patient demand. With
increase in demand, the number of departments will also increase. The OPC can have
demand based resource allocation that minimizes patient waiting time [1]. To optimize in
this way, OPCs should be flexible to adapt accordingly to the changes.

5. Conclusions

Generally, the current OPC layout design does not suffice to the future requirements
and changes. To improve the performance parameters like waiting time and cycle time,
the layout needs to be redesigned based on the changing dynamics of the OPC. This study
proposed the use of the genetic algorithm to identify the optimal and sub-optimal layout
redesigns based on precedence constraints and walking distance. The implementation
of these redesigns depends on the flexibility of the OPCs to adapt to the changes with
less hazzles. The results show that meta heuristic algorithms are suited for OPC layout
optimization in which the performance parameters like waiting times and cycle times are
improved. The model helps the OPCs in strategic decision-making by changing inputs like
clinical pathways, patient demand, additional departments and also locations. This model
can further be extended to any type of hospital layouts, and the solutions can be chosen
depending on the practical feasibility analysis.
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