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Abstract: Cloud computing is concerned with effective resource utilization and cost optimization. In
the existing system, the cost of resources is much higher. To overcome this problem, a new model
called Classification and Merging Techniques for Reducing Brokerage Cost (CMRBC) is designed for
effective resource utilization and cost optimization in the cloud. CMRBC has two benefits. Firstly, this
is a cost-effective solution to service providers and customers. Secondly, for every job, virtual machine
(VM) creations are avoided to reduce brokerage. The allocation, creation or selection of resources
of VM is carried out by broker. The main objective is to maximize the resource utilization and
minimize brokerage in cloud computing by using Multi-Objective Optimization (MOO). It considered
a multi-attribute approach as it has more than two objectives. Likewise, CMRBC implements efficient
resource allocation to reduce the usage cost of resources. The outcome of the experiment shows that
CMRBC outperforms 60 percent of reduction in brokerage and 10 percent in response time.

Keywords: classification; cloud computing; merging; virtual machine; optimization

1. Introduction

In the early days, for the archival of stored data from personal computers, one had to
have access to the personal computer. Accessing data globally was much more difficult. In
the 1980s, the storage of data was conducted using fixed landline data centers, and these
data centers were expensive to build. To access resources from a fixed landline server, one
had to have access to the grid; this was time-consuming, and in contrast, the cloud is not
restricted to storage alone, but it is also used for computing and networking. In computers
and computer networking, the network has a complicated section and the collection of
computer systems is affected. The cloud in the diagram signifies the fact that details about
the system do not affect one’s objectives, and therefore, they hide in a cloud. Details about
the computer systems delivering the service do not concern the user. Details of how this
happens do not matter, and therefore, the system appears in a cloud. To avoid this, users
started to purchase or install software and data centers of their own; this proved to be costly.
Once a job is done, if resources are not utilized, this means it is underutilized. Therefore, the
usage of resources was not scalable and efficient. Additionally, the cloud is not restricted
to storage alone, but it is also used for computing and networking. To overcome these
problems, the use of resources on rental or lease-based mechanisms lead to the concept
of cloud computing. These facilities have access to resources from any part of the world
remotely, and the location of stored data is not known to the user.
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Cloud computing is an emerging technology used to store and remotely retrieve data.
Hence, users do not have the botheration of investing in infrastructure. This reduces the
cost, time, and energy needed, and its concept is ‘pay per use’. An example of this is
electricity [1].

Public clouds, private clouds, and hybrid clouds are the three types of cloud comput-
ing. Cloud computing provides services such as Infrastructure as a Service (Iaas), Platform
as a Service (Paas), and Software as a Service (Saas). Iaas contains a pool of hardware
resources such as memory, computing power, and storage capacity that are available for
rent/lease. Instances of Iaas are presented by virtual machines (VMs) [2].

Computing can be modeled in two ways. The two-tier model directly communicates
between the client and infrastructure service provider. Direct communication leads to a
reduction in underutilization [3]. The other model is called the three-tier model, which
includes one more tier that acts as a mediator role between the client and the service
provider [4]. The mediator is called a broker. The cloud broker plays a dual role in the
context of cloud computing. When a broker interacts with a provider, it acts as a client and
behaves as a provider when interacting with a customer. This leads to effective resource
utilization, but the broker benefits more, and the cost automatically escalates. To overcome
this problem of cost escalation, a model is designed to reduce brokerage and thereby reduce
the number of VM creations for effective resource utilization, as shown in Figure 1. Multi-
objective optimization is mainly concerned with multiple attributes and two objective
functions. For example, a consumer tends to minimize the cost of car which looks to have
maximum comfort while purchasing a car.

Figure 1. Broker model.

CURA is a Cloud-Managed Model which consists of a VM pool, profiler, and ana-
lyzer of a resource management system and works on jobs with deadlines. The VM pool
manager, in-turn, assesses the current workload by reconfiguring the cluster workload
and accordingly reconfigures the cluster size based on the type of incoming job sizes into
small, medium, large, and extra-large and assesses the availability of VM cluster pools. The
profiler and analyzer provide the requirements of the incoming job. The profiler identifies
the available cluster pool. When smaller jobs arrive and if there is no small cluster pool
available, then the available larger cluster pool divides itself into smaller ones. However, in
the case of extra-large jobs, if there is no larger cluster pool available, then it cannot fit itself
into a smaller cluster pool. This process is known as the reconfiguration of smaller cluster
pools. The division and summation of pools is known as the reconfiguration method, which
leads to the escalation of cost and is time-consuming. However, to overcome this problem,
a CMRBC model is designed. This model refuses to create any type of job pool. Instead
of pooling the type of job, it classifies and merges the job together. This avoids brokerage,
reduces the number of VM creations and high termination costs, and uses on-demand
resources. A summary of the comparison of the existing and proposed model is shown in
Table 1.
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Table 1. Summary of the comparison of existing and proposed model.

Authors Model Time RAM Brokerage BDW

Singh et al. [4] Per job Optimization High High High High

Anastasiadis et al. [5] VM-aware Scheduling Low High High Low

Palanisamy et al. [3] CURA High Low High Low

Proposed Model CMRBC Low Low Low High

The rest of the paper is organized as follows: related work is described in Section 2,
background work is described in Section 3, problem definition is defined in Section 4, the
entire structure of the model is described in Section 5, experimental results are described in
Section 6, and Section 7 concludes the paper.

2. Related Works

Kanu et al. [6] proposed a heuristic scheduling algorithm, Particle Swarm Optimization
(PSO), to reduce the total execution cost of application workflow in cloud computing. The
Group Arrangement calculation chooses ideal hubs in a dynamic cloud condition to design
a bunch to run Map-Reduce programs. The calculation is used for global resource utilization
and gives good performance to the customers.

Kessaci et al. [7] explored the request type made by the user and it checked the syntax
according to the request type; the scheduler decided which system the request was to be
assigned to. Two destinations were considered in the advancement process to limit both
the response time and the cost of the VM occurrences, to fulfill the customers to amplify the
benefit of the intermediary. The approach was tested by utilizing reasonable information
from various Amazon EC2 cases and their pricing histories.

Anastasiadis et al. [5] proposed a new evolutionary algorithm CSA task scheduling
in cloud computing. The CSA algorithm is based on optimizing the brokerage and the
best-fitting virtual machine for the job. Dynamic procedures are used for the dealer to
reserve virtual machines with the target of limiting its service cost. These systems use
dynamic programming and guess the calculations to quickly deal with expansive volumes
of demands and expand the execution of the resources by reducing response time.

Kumar et al. [8] proposed a DLS algorithm to efficiently trace the workload in cloud
computing to meet the requirements of security, time, costs, and executing tasks within
the deadline. In this algorithm, a specialist needs to enroll every one of the data centers
in a registry. The vitality is devoured by assignment handling, utilizing the virtualization
and vitality of IT gear such as switches. The data center chooses a system with the least
vitality utilization for assignment handling. This algorithm considers the vitality control
relationship and the way that vitality utilization can be reduced.

Valentini et al. [9] proposed some heap load balancing systems depending on both
memory and CPU usage, not focused on jobs’ execution times. In this system, tasks
rely upon a cost grid table which adjusts the heap by sending the job to the allotted
virtual machines. Two important requirements that require more consideration for vitality
productivity are reducing cost and maximizing resource utilization and system reliability.

Wang et al. [10] proposed dynamic strategies to exploit both pricing advantages of
long-term occasion reservations and multiplexing additions to limit cost. A down-to-earth
issue confronting cloud clients means limiting their expenses by choosing among various
evaluating alternatives because of their requests. Another cloud financier benefit is that it
holds an extensive pool of occurrences from cloud suppliers and serves clients with value
rebates. The user ideally misuses both estimating advantages of long-term occurrence
reservations and multiplexing picks up.

Tiwari et al. [11] designed an algorithm to find the user’s needs, the best cloud service
provider, and a cloud metaphysics programming algorithm, mainly based on programming
techniques. The cloud computing environment provided a convenient broker execution
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management system to bring good prescription measurement programming techniques
and a load leveling strategy to allocate resources to a number of customers for their
different operations.

Pushpalatha et al. [12] proposed a method for a load balancing scheme to adjust plans
for cloud computing to expand the execution of resources by decreasing migration time
and response time. The new method with stack-adjusting system TSLB calculation used a
compression strategy to increase the usage of resources and to accelerate the procedure.
Assignment Portion and Capacity Dispersion are the two issues that should be considered
while discussing cloud storage accumulation of VMs.

Marshall et al. [13] proposed a cloud infrastructure that the joins on-request designa-
tion of resources with the provision of cycles from sitting out of gear cloud hubs to different
procedures by conveying virtual machines (VMs). For this, the Nimbus was utilized. The
idea of Optimal Resource Allocation utilizes the thought of HTC clients and on-request
clients. A model application that shows the confirmation of the idea was created. The
experimental outcomes were encouraging. It decreased the cost of the applications by effec-
tively using cloud resources and found the virtual cloud assets that must be appropriate
for every one of the applications.

Aral et al. [14] proposed various novel heuristics, compared them with the round-robin
position procedure, and focused on better use of the resources by the cloud environment.
In the meantime, Aral et al. minimized the quantity of Application Migration being used,
which demonstrated that an application heuristic that depends on the difference between
the maximum and minimum usage rates of the resources outperformed another application
situation approach and altogether enhanced the conventional methodologies.

He et al. [15] evaluated a new calculation for enhancing the usage of resources for
cloud suppliers. The multivariate probabilistic model calculation selected reasonable PMs
for VM re-distribution, which were then used to produce a reconfiguration design.

The two heuristics measurements could be utilized as a part of the calculation to
enhance the resources’ use level for cloud suppliers. An example of this is Amazon EC2,
which just gives constrained sorts of VM setups. These groups of VMs are framed by
utilizing K-Means bunching calculation. So, before moving to any data centers, sets of VMs
are made, and later, they move to the closest data center.

Shakkeera et al. [16] proposed an Optimized Load balancing algorithm in an IaaS
virtual cloud environment that limits to use of the virtual cloud resource productively. It
limits the cost of the applications by adequately utilizing cloud resources and distinguishes
the virtual cloud assets that must be reasonable for every one of the applications. The web
application is made with numerous modules. These modules are considered as assignments,
and these undertakings are submitted to the load balancing server.

Devi et al. [17] applied a load balancing mechanism to quantify a few QoS execution
measurements, i.e., normal execution times, cost, CPU usage, throughput, memory usage,
disk space, organize transmission and gathering rate, scheduling success achievement rate,
and asset use rate for the number of virtual machines and improve the accessibility among
resources using load balancing systems. The essential aim of using assets from the cloud is
to minimize the cost and to improve the execution concerning resource usage.

Wang et al. [18] investigated a novel client infrastructure cloud stage, Spot Cloud,
through extensive estimations. Supplementing a server, Spot Cloud empowers clients to
contribute or pitch their private assets to all in all offer cloud administrations. Even though
the limit, as well as the accessibility of this stage, is not yet equivalent to big business data
centers, Spot Cloud can give extremely adaptable administrations to clients as far as both
execution time and pricing mechanism are concerned. It is neighborly to the clients who
frequently look to run here-and-now customer assignments at minimum expenses.

Kumar et al. [19] introduced an innovative idea that provides on-request administra-
tion and offers a dynamic registering framework and allots resources in an ideal way. The
number of clients requesting assets is expanding nowadays; because of this, it is difficult to
designate cloud assets productively and precisely to the clients that fulfill prerequisites and
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the Service Level Agreement (SLA). Numerous parameters can be specified as the factor
of the issue that should be considered, such as, for example, stack adjusting, framework
throughput, benefit dependability, and benefit–cost.

Mod et al. [20] utilized CloudSim apparatus. CloudSim is an extensible simulation
toolbox that empowers the demonstration and recreation of cloud computing frameworks
and application provisioning conditions. A few specialists from associations are utilizing
CloudSim in their examination of cloud resource provisioning and vitality in the productive
administration of server resources. The convenience of CloudSim was affirmed by a
contextual analysis, including the dynamic provisioning of utilization benefits for different
sorts of resources.

Kumar et al. [21] mentioned the issues with benefits displayed in the current arrange-
ments, including the fact that the cloud supplier may either finish providing resources or
may not be in a position to serve a vast number of solicitations. All clients may not require
on-request designation. The technique is used with a specific end goal to streamline the
resource portion. Numerous applications exist that deal with High-Throughput Figuring
(HTF), where more resources are required to be allotted. It permits quick access to servers
and the effective usage of accessible assets. This reallocation of VMs enhances the execution
of CPU, memory, and system activities by decreasing the heap on data centers.

Aware et al. [22] surveyed cloud computing conditions with different cloud clients to
determine the number of cloud benefits in parallel. So, there must be an arrangement in
which all assets are made accessible to ask the client for effective ways to fulfill their need.
In this overview, an audit of different procedures for dynamic resources allotment in cloud
computing is indicated, including the Straight Planning Technique for Asset Assignment,
Topology Mindful Asset Portion (TARA), and Dynamic Asset Designation for Parallel
Information Handling. Besides restrictions, criticalness and favorable circumstances of
utilizing Asset Designation in cloud computing frameworks are likewise discussed.

Panchal et al. [23] concentrate on administrations incorporating IaaS (Framework as
an Administration), PaaS (Stage as an Administration), SaaS (Programming as an Admin-
istration), and DaaS (Information as an Administration). VM designation enables virtual
machines to be shared productively with accessible data centers, and these distribution
strategies help to assess and upgrade the cloud execution. Distinctive allotment arrange-
ments are accessible, and they have their points of interest and constraints. A new powerful
VM portion arrangement is presented that takes VMs according to client necessity and
shares them in a bunch shape to the accessible data centers.

Tripathy et al. [24] used a convention intended to limit the exchanging time, enhance
the asset usage, and enhance the server execution and throughput. This technique or
convention depends on occupations in the cloud and aims to tackle the downsides in
the current conventions. In this convention, the need for the activity which gives better
execution to the PC is determined, and attempts are made to limit the holding up time
and exchanging time. Efforts have been made to deal with the planning of employment
to determine the disadvantages of existing conventions and improve the proficiency and
throughput of the server.

Patel et al. [25] proposed a scheduling calculation to beat the proper distribution
guide of occupations because of various elements. An orderly survey of different need-
based occupation booking calculations was introduced. These calculations are used from
an alternate point of view; working standards, etc., infer that all the current procedures
essentially center around the need for employment and diminish the benefits to education
time and enhancing execution.

Dhanalakshmi et al. [26] developed the extraction of transaction log files to predict mul-
tiple output (MOP) in a Multi-Sharing System based on resource utilization for higher accu-
racy using the prediction techniques Random Forest and majority voting algorithms. The
goal was to gratify upcoming resource demands and to avoid over- or under-provisioning
of resources. The accuracy results show that the proposed model provides higher accuracy
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in predicting resource utilization for upcoming resource demands, and prediction cost and
time are reduced.

In the work of Dhanalakshmi et al. [27], an algorithm named dynamic computation
of threshold value (DCTV) was proposed, and based on the threshold value, the jobs
were classified in the initial stage, so this classification led to the precise allocation of
resources and with efficient resource utilization. The experimental result showed that
by using dynamic computation of threshold value, the allocation of resource time was
reduced and classification accuracy was improved compared to the manual computation of
threshold value.

In the work of Dhanalakshmi et al. [28], the “Multi Sharing Resources in Hybrid Cloud
(MSRHC)” model was proposed. The proposed model mainly aimed to enable the sharing
of multiple resources by multiple users and provide access control to unused resources.
The experimental results showed that by using the Carry Forward of Unused Resources
(CFUR) and Access Control for Contributed User (ACCU) approach, the results produced
100 percent of resource utilization and fully fledged access to the contributor user alone,
which reduced the cost.

Dhanalakshmi et al. [29] proposed a CMRBC model to minimize brokerage and maxi-
mize resource utilization by using classification and merging techniques. This paper is a
revised and expanded version of a paper entitled ‘Efficient Resource Utilization by Reduc-
ing Broker Cost Using Multi-Objective Optimization’ presented at the 2nd International
Conference on Integrated and Intelligent Computing Communication and Security (IICCS
2018), Bangalore, India, 24–25 January 2018.

3. Problem Definition

Given a set ‘J’ of ‘n’ jobs, where, J = {j1, j2, j3 . . . jn} with different job size, and a set
‘VM’ of ‘m’ virtual machines, where VM = {vm1, vm2, vm3 . . . vmm}, jobs in ‘J’ are classified
into small, medium, large, and extra-large based on the threshold value 50 MB, 100 MB,
150 MB, 200 MB, and above for the job size, respectively. Once classification is complete, it
starts merging smaller jobs based on VM capacity. The profiler gives a set of requirements
‘P’ to execute a job, where P = {Memory, CPU, RAM, Bandwidth, Start time and End time}.
Profiler information is submitted to the broker, and in turn, the broker interacts between the
user and service provider. The broker assigns the tasks to virtual machines by satisfying all
the requirements in ‘P’. The broker is the one who is responsible for creating and destroying
the virtual machines.

The objective of this work is to maximize resource utilization and minimize the
brokerage in cloud computing by using multi-objective optimization.

Assumption: The execution time of every job is assumed to be predicted based on the
derived results of profiling, and virtual machine capacity is assumed to be 200 MB.

4. CMRBC: System Model

The system architecture consists of the following components: users, classifier, merger,
mapper, profiler and analyzer, cloudlet, broker, and data center, as shown in Figure 2.

• Users: There are umpteen users who submit their work in the form of jobs to the cloud
service provider, and in turn, these jobs are sent to the classifier.

• Classifier: The classifier classifies the jobs into small, medium, large or extra-large
based on the threshold value, and classified small jobs are submitted to the merger.

• Merger: The merger segregates the small jobs based on their types. It reads small
jobs in each group one by one and starts finding larger_jobs by merging small jobs
under consideration if larger_jobs’ size is less than or equal to VM capacity. Once the
larger_job’s size reaches VM capacity, it stops merging, and the larger_job is submitted
to the profiler and starts creating a new larger_job for the next small job in the group.

• Profiler and analyzer: The main goal of profiling is to reduce time and error. The
profiler and analyzer analyze the job if it arrives for the first time and provides a set
of the requirements such as Memory, CPU, RAM, Bandwidth, Start-time, and End-time
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to the mapper for the job to be executed, and these requirements are saved against
the job. If the same type of job arrives, its requirements are retrieved and sent to
the mapper.

• Mapper: The mapping process makes sure not to violate the SLA constraints, and it
is a process of mapping jobs with its requirement to cloudlet by interacting with the
local schedulers of each data center after determining the availability of CPU, free time
slots, and the expected number of resources to be utilized.

• Cloudlet: The cloudlet is a mobility-enhanced, small-scale cloud data center that is
located at the edge of the internet. When a larger_job is submitted to a broker by the
mapper, it converts the jobs into tasks with the attributes of job length, type, and time.

• Broker: The broker can act as a negotiator or intermediator between user and service
provider; the allocation of a job is performed by the broker to reduce time and effort
by assigning the task to available resources in a data center based on users’ Quality of
Services (QoS). The broker interacts with different CSPs to provide effective resource
utilization and decides which task should be executed in which virtual machine.
Effective resource assignment strategies and allocation policies are required to satisfy
users’ needs to maximize the profit for cloud service providers and minimize the cost
to cloud users.

• Data Center: In cloud computing, data are not stored on computer hardware nor
local machines, but they must be housed on physical drivers somewhere in a data
center. A data center is a repository that contains servers, physical machines, virtual
machines, and so on, and it can be homogeneous or heterogeneous according to its
equipment designs.

Figure 2. System architecture.

From Table 2, consider a set ‘J’ of ‘n’ jobs, where J = {j1, j2, j3, . . . jn}, and set ‘VM’ of ‘m’
virtual machines in the system, where VM = {vm1, vm2, vm3, . . . vmm}. When the request
arrives from the cloud user, it is considered as a job, and for job sizes less than or equal
to 50, 100, 150, and 200, the jobs are classified as small, medium, large, and extra-large,
respectively. Since the size of the jobs varies, it is difficult to allocate virtual machines
dynamically because the configuration of the virtual machine is the same for all types
of jobs and it consumes the same number of resources, for example, the small job does
not require a higher-configuration virtual machine. For small jobs, the less resources are
required, and for large jobs, more are required. As such, the utilization of resources is not
efficient. Hence, to avoid this, the ‘classification and merging’ method is proposed.

The classification is completed using a classifier. When the classifier receives jobs with
different job sizes, it classifies these jobs as small, medium, large, or extra-large jobs based
on the threshold value, ‘ζ ’. If the job size is less than or equal to 50 MB, then it is a small job;
if the job size is less than or equal to 100 MB, then it is a medium job; if the job size is less
than or equal to 150 MB, then it is a larger job; if the job size is less than or above 200 MB,
then it is an extra-large job.
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Table 2. Notations and definitions.

Notation Definition

N Total Number of Jobs

M The number of VMs in the system

ζ Threshold value

C Cost of the larger job

Cl The overall cost of the larger job

R Resources per jobs

Pj Profiled jobs

Ψ Size function

Bc Broker cost

Ru Resource utilization

After classification, the set of small jobs are considered as smaller_Jobs which contains
‘n’ number of small jobs and it is denoted in Equation (1):

smaller jobs = ji |sizeof (ji) ≤ 50 (1)

The set of medium jobs lies between 50 to 100 and it is defined as

medium Jobs = ji |sizeof (ji) > 50 and ≤100 (2)

The set of large jobs lies between 100 to 150 and it is defined as

large Jobs = ji |sizeof (ji) > 100 and ≤150 (3)

The set of extra-large jobs lies between 150 to 200 and it is defined as

extra-large Jobs = ji |sizeof (ji) ≤ 200 (4)

The set of Smaller_Jobs is given to a merger as input for merging the job, and the merger
size is based on the VM capacity.

The jobs in the smaller jobs set are merged until the VM capacity is full, and they
become one larger job, and the process repeats. Once the VM capacity is full, it stops
merging and repeats the process. The jobs in the set of larger jobs are assigned to one VM.

The order of the Small_jobs is defined as: |Smaller_Jobs| = ns, where ns is an element
present in Smaller_Jobs.

The total size of the jobs in the set Smaller_Jobs is given by Equation (5):

Ψ(Smaller_Jobs [1]) + Ψ(Smaller_Jobs [2]) + . . . Ψ(Smaller_Jobs[k]) ≤ Ψ (VM) (5)

where 1 ≤ K ≤ ns and ‘Ψ’ is a size function.
The jobs in the set Smaller_Jobs are merged until the VM capacity is full, and they

become one larger_job, and the process repeats. Once the VM capacity is full, it stops
merging and repeats the process. The jobs in the set of larger_jobs are assigned to one VM.

larger_job[i] = {j1 . . . jk | € size of j1 . . . jk size (Ψ)}
larger_job[I] = {(j1 . . . jk) € Smaller_Job/Medium _Jobs/Larger_Jobs/Ex-large_Jobs | size(j1 . . . jk) ≤ size(VMI)}

(6)

The output of merger is a set of (larger_jobs) and it is given as an input to the profiler;
the profiler analyzes the larger_jobs one by one and determines how many resources are
required to execute each job in larger_job. The one larger_job contains a set of jobs, i.e., {j1,
j2 . . . jk}; the profiler takes one larger_job and analyzes it one by one and provides the
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requirements to execute each job for the first time arrival. If the same type of job arrives for
the second time, the profiling is not completed and it is directly submitted to the broker.
Now, the broker decides to create virtual machines for the set of larger_job based on the job
size and timestamp. This is shown in Algorithms 1 and 2:

(
Xij
)
=

{
0, i f VM is not created f or jobij
1, i f VM is created f or jobij

(7)

where i = ith larger_job, j = jth job in ith larger_job.
Where xij is equal to 1, then a virtual machine is created; if xij equal to 0, then a VM is

not created. The broker cost calculation is the important phase of this model. Brokerage is
directly proportional to the number of virtual machines created. The time taken to create
and destroy a VM degrades the resource utilization. The cost of each larger job when a VM
is created is given by:

Cost = xij × Cost of jobj (8)

where jij = jth job in ith larger job. After obtaining the cost of one larger job, the overall cost
of resources is calculates, defined as

Cl = Σ k
i = 1larger _job_i (9)

The number of merged larger jobs reduces the number of virtual machines created
which impacts the brokerage and reduces the overall cost. Once the cost of larger jobs is
derived, then we need to calculate the broker cost and number of resources, utilized as

Bc = K × c

where Bc is broker cost, c is a constant brokerage cost of the creation of one VM, and K is
the number of virtual machines created.

OverallexecutionCost = Bc + Overallcostofresources (10)

The number of virtual machine creations are reduced by using our algorithm (n
− K), the brokerage is reduced by (n − K) ∗ c/100, and the overall execution cost is
reduced by (n − K). The CMRBC model utilizes 100% of resource utilization by creating
one larger job which contains a set of jobs, but a virtual machine is only created for
larger jobs; so, by doing this we can reduce 60% of brokerage and 60% of the overall
execution cost. With CMRBC, the resource utilization is 100% higher than without CMRBC.
A multi-objective problem is the optimization of resources, and the goal is to optimize
two objective functions simultaneously, such as minimizing broker cost and maximizing
resource utilization. Optimization is a linear programming technique subject to equality
and inequality constrains. Every linear problem corresponds to another linear program
problem called its dual. The original problem is called the primal. To solve Equations (9)
and (10) with two objective functions simultaneously, the Multi-Objective Optimization
technique is applied as

Minimize_ overall_execution(Cl): Σi
120 ci xij Subjectto Σlength·larger jobi jij ≤ Ψ(V Mi) (11)

where i = 1 to K and j = 1 to the length of a larger job. Thus, the objective of the proposed
system to minimize the brokerage and maximize the resource utilization is achieved. The
detailed algorithm for CMRBC is shown in Algorithm 3. Every job in the algorithm is
initially classified as a job with smaller job sizes based on threshold value. Then, using these
jobs, it merges and profiles the merge jobs and gives the requirement for each job execution.
For every service requested by the user, the broker assigns the jobs to the service provider
for the execution of the job. Then, the service provider returns the job to the broker.
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Algorithm 1: Algorithm for Classification

1: procedure T(o) Classify jobs based on the job size
2: Input: job: Array of structure of jobs, n: Number of jobs
3: Output: smaller jobs: set of smaller jobs,
4: medium jobs: set of medium jobs,
5: large jobs: set of large jobs,
6: extra-large jobs: set of extra-large jobs
7: Begin
8: i = 0; small jobs = [ ], medium jobs = [ ],large jobs = [ ], extra-large jobs = [ ],
9: For (i = 1 to n) do
10: If (job[i].size ≤ 50)
11: small jobs U = job[i];
12: Else if(job[i].size between (50 and 100)
13: medium jobs U = job[i];
14: Else if(job[i].size between (100 and 150)
15: large jobs U = job[i];
16: Else if(job[i].size between (150 and 200)
17: extra-large jobs U = job[i];
18: End if
19: End for
20: end procedure

Algorithm 2: Algorithm Merging Jobs

1: procedure T(o) merge small jobs, medium jobs, large jobs, extra-large jobs.
2: Algorithm: Mergering jobs (Small, Medium, Large, Extra-large job)
3: Input: C Classified Jobs (small jobs, medium jobs, large jobs, extra-large jobs).
4: Output: Set of K (larger jobs)
5: Step 1: Consider a job ji K extra-large jobs, if ji is equal to 200 (VM capacity) then add to large job(K) set and increment K

else consider some smaller jobs to best fit in larger job bin packing method and increment K.
6: Step 2: Consider each job large jobs(ji) one by one, if size of ji is less than 200 then consider some smaller jobs and medium

jobs and large jobs to best fit in larger jobs using bin packing method and add to larger job(K) and increment K.
7: Step 3: Consider medium jobs(ji) one by one, if size of ji is less than 200 then consider some smaller jobs and medium jobs and

large jobs to best fit in larger jobs using bin packing method and increment K and add to larger job(K).
8: Step 4: Consider smaller jobs(ji) one by one, if size of ji is less than 200 then consider some smaller jobs and medium jobs

and large jobs consider remaining jobs in this set to best fit in larger jobs using bin packing method and add to larger job (K)
and increment (K)

9: Step 5: larger jobs [1] . . . larger jobs[K] contains subset of jobs such that their sum is less than or equal to 200.
10: end procedure

Algorithm 3: Algorithm for CMRBC Model

1: procedure: (T)o Reduce the brokerage and reducing the VM creation
2: Algorithm: CMRBC (job, n)
3: Input: job: Array of structure of jobs (Twitter Data Set) n: Total No. of Jobs
4: Output: Bc: Broker cost
5: Cl: Overall execution job
6: Begin
7: //ClassifyingJobs(small jobs, medium jobs, large jobs, extra large jobs).
8: Classifier (jobs, n)
9: //Finding set of larger jobs [1] . . . larger jobs[k] contains subset of jobs
10: //such that their sum is less than or equal to 200.
11: Merging job ()
12: cost=0, x [ ] [ ] is a binary matrix of size k x n and initialised to 0
13: for (i=1 to K) do
14: for (j=1; j = large jobs[i]. length) do
15: if jobi large Jobs[i]
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Example: Figure 3 shows the complete structure of the classification and merging
process. It considers 10 jobs submitted by the user to a classifier as {j1, j2, j3, j4, j5, j6, j7, j8, j9,
j10}, as shown in Figure 3a. The classifier results in classifying the job as small, medium, large,
or extra-large based on threshold value ‘p’, where ‘p’ is set to 50 MB job size, as shown in
Figure 3b. Results of the classifier are given as input to the merger, and it first segregates
the jobs based on job type, as shown in Figure 3c. Then, it starts merging one by one until it
becomes one larger_job, as shown in Figure 3d. Each larger_job is profiled and analyzed to
obtain a set of requirements such as CPU Cycles usage, Memory, Bandwidth, Start-time,
and End-time and is submitted to a mapper. The mapper interacts with the local scheduler
and gives information such as CPU, free time slots, and the expected amount of resources
to be utilized. Then, all larger_jobs along with their information are given to the cloudlet,
and the cloudlet converts jobs into tasks, as shown in Figure 3e; these tasks are submitted
to the broker to be assigned to virtual machines with all the requirements for execution, as
shown in Figure 3f.

From Equation (9), we can expand it, as shown below:

Bc = a1 × 1 + a2 × 2 + a3 × 3 + a4 × 4

= 1 × T1 + 0 × T2 + 0 × T3 + 0 × T4 . . . ≤ 0.50

= 0 × T1 + 1 × T2 + 0 × T3 + 0 × T4 . . . ≤ 0.75

= 0 × T1 + 0 × T2 + 1 × T3 + 0 × T4 . . . ≤ 0.90

Bc = 0 × T1 + 0 × T2 + 0 × T3 + 1 × T4 . . . ≤ 0.120

The cost of the jobs is considered from Amazon Web Services EC2 (AWS), the total
number of jobs are 10, and for each VM, the cost in AWS is 0.50, 0.75, 0.90, and 0.120 (USD)
based on the size of the job being small, medium, large, and extra-large, respectively, as
shown in Figure 3g. The cost for each VM creation is USD 0.10 in AWS. As based on the
classified and merging results shown in Figure 3f, only four VMs are created, so the cost
is only calculated for the number of VMs created. This optimizes the brokerage cost for
VM creation. The CMRBC model reduced the brokerage cost to 60% of the actual price
for a lesser number of VM creations. The total overall cost is USD 0.335 to execute 10 jobs,
USD 0.40 is the cost of the creation of VMs for four larger_jobs instead of USD 0.100 for
10 jobs, and resource utilization is maximized to 80%.

Total Cost = 0.335 $ + 0.40 $ = 0.375 $

Time Complexity:
For every job, the CMRBC algorithm is applied and executed by using the classifier

and merger function to obtain one larger_job. The time taken for the execution is determined
as follows.

Let n be the number of Smaller_Jobs present in the larger_job. Let t be the time taken
to compute the brokerage and v the time taken to create and destroy the VM. The time
complexity function for computing brokerage and the time taken for the creation and
destruction of the VM for n jobs is given by the expression T(n) = n × t × v. Therefore, the
time complexity is of the order O(n).
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Figure 3. (a) Jobs assigned by users, (b) classifier output, (c) segregating jobs, (d) merger output,
(e) cloudlet output, (f) task assignment to virtual machines, (g) cost of each type of task.

Model Evaluation Based on the Scenario

In this subsection, we discuss a model with an example by considering 500 jobs,
500 virtual machines, and 200 data centers in four different scenarios to evaluate the efficacy
of the proposed model and compare the utilization of resources with virtual machines.
The configuration of a VM involves CPU cycles (HZ), Memory (MB), and Bandwidth (BPS or
MBPS) (CPU executes one or more instruction per clock cycle).

Scenario 1: The number of jobs is more than virtual machines.

If the job arrival rate is higher than the virtual machine creation rate, the utilization
of resources leads to the scarcity of virtual machines. As a result, the execution of jobs is
delayed, and the error rate is increased. For example, for 500 jobs and 200 VMs, merging
takes place with some type of job to reduce the number of VMs. When there are fewer VMs,
the time required to execute each job is more, which eventually leads to starvations.
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Scenario 2: The rate of the arrival of the same type of job is lower than the number of virtual machines.

If the same type of job does not arrive with the expected timestamp, then each job
needs to be executed on a single virtual machine. This leads to expensive brokerage, and it
is very time consuming to create and destroy virtual machines, meaning charges are high.
For example, if there are 100 jobs and 100 VMs, if no jobs arrive as small jobs out of 100 jobs,
one job is assigned to one virtual machine, which leads to higher costs.

Scenario 3: There are fewer jobs than virtual machines.

If the number of small jobs is less than the number of VMs, then VMs remain idle,
waiting for jobs. This leads to the underutilization of resources. Then, merging those small
jobs still reduces the creation of VMs. For example, if there are 10 small jobs and there are
50 VM, and out of 50 VMs, only 10 are utilized, and 40 VMs remain idle.

Scenario 4: When we merge the number of jobs into one job, if any job in the merged jobs fails to
be executed due to some reason, the remaining merged jobs cannot be executed. This leads to the
incomplete execution of jobs and also affects the other jobs. For example, J1 and J5 are merged, and
if J1 is not executed due to some problem, then J5 cannot be executed, even though it is possible to
execute it.

5. Experimental Results

The experiment was run on a cloud simulator tool, version 3.03, and the configuration
of the computer was as follows: CPU (64-bit, Intel Pentium(R) i7 CPU 2.9 GHz) with 16 GB
RAM and 2 TB hard disk and Net beans 8.1 editors, coded in java language and Intel Core i7
processor environment, with a 100 GB Memory. The CMRBC algorithm implemented both
the scheduling of the instant VM allocation and the classification and merging techniques
using a Twitter data set, the size of which was 10 GB, with four jobs types: small, medium,
large, and extra-large. The size of the job was predefined as small being 50MB, medium
being MB, large being 150 MB, and a size greater than 150 was considered an extra-large
job. The arrival of a job was based on the Poisson distribution, as shown in Table 3.

Table 3. Example of the classification and merging technique workload of 12 jobs.

12 Jobs Job Size Classification VM
Number

Arrival
Time Deadline Execution

Time

1 10 Small VM1 0 150 110

2 50 Small VM1 0 150 110

3 200 Extra-large VM4 0 250 249

4 100 Medium VM3 120 260 252

5 35 Small VM1 122 160 158

6 40 Small VM2 138 172 172

7 150 Large VM5 140 150 149

8 75 Medium VM3 160 175 175

9 15 Small VM1 170 152 110

10 50 Small VM1 177 280 110

11 50 Small VM1 182 190 110

12 25 Small VM2 190 200 199

The experimental results of a workload for 12 jobs using classification and merging
techniques are shown in Table 3, and the internal structure of job allocation to virtual
machines is shown in Figure 4. The arrival time and deadline of jobs was given previously,
as shown in Table 3. The goal of this model was to classify jobs based on the size of them
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using threshold values and merging the jobs based on the virtual machine capacity. The
table shows which classified and merged jobs fit which VM type. The arrival time and
deadline time were given as soon as the job is submitted to the classifier. The classification
and merging of jobs were only completed for smaller jobs. Jobs 1, 2, 5, 6, 9, 10, 11 were
classified as small because the size of each job was less or equal to 50 MB, Job3 was extra-
large, where the job size was 200 MB, job4,8 were medium, where is the sizes were less
than or equal to 100 MB, and job7 and job3 were large and were broken down into three
small jobs and assigned toVM4. The obtained results are shown in Table 3.

Figure 4. Internal structure of job allocation to virtual machines.

Here, the cost of the broker represents the number of virtual machines that create
a job. The CMRBC model enables a reduction in cost for 500 servers because the broker
does not necessarily create a VM for every job that is submitted. After all, jobs are already
classified and merged to reduce the workload of the broker and to avoid brokerage by
creating virtual machines per job.

6. Performance Evaluation

The performance of CMRBC is evaluated based on parameters such as the number of
servers, resource cost, response time, and resource utilization.

• Several servers: Servers are super-computers that are equipped with programs or
hardware of specified configuration which meet certain prerequisites to enable the
server to offer services to the computers on its network. Methods that require a
relatively lower number of VMs to successfully meet the service quality requirements
are not cost-effective. The capital cost is high if a greater number of VMs are used.
To overcome this, Table 4 demonstrates the minimum number of servers required to
execute the job in the CMRBC model compared to the previously used model, which
utilizes a classification and merging technique.

• Response Time: Response time is the total amount of time it takes to respond to a
request for service, and it is a sum of service time and waiting time. Systems that have
higher response times give poor service quality. Table 4 and Figure 5 demonstrate that
the time required to execute a job is less in CMRBC compared to CURA.

• Resource Cost: Resource cost is worked out based on the number of tasks and the
number of VMs. In the CURA model, for every 10 tasks, an equal number of VMs are
required, and for the CMRBC model, for the same number of tasks, half of the number
of VMs are required, i.e., 5 VMs for 10 tasks are required, as shown in Figure 5 and
Table 4.
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• Effective Utilization: Here, the effect of distinctive and decided-upon distributions of
the deadline for the execution of CMRBC for various values is considered. It was found
that both Poisson and uniform distribution require a comparatively fewer number
of servers through exponential distribution. This requires 30 percent more servers,
as there are more jobs with shorter deadlines in the exponential distribution. Table 4
shows the comparison results of the CURA and CMRBC models with parameters of
cost, time, brokerage, RAM speed, and bandwidth.

Table 4. Results of CURA and CMRBC models.

Model Cost Time Broker RAM Speed BDW Server

CURA 1588 946 10,564 256 500 1 GB
CMRBC 1042 855 8555 174 300 2 GB

Figure 5. Number of servers required in CURA and CMRBC model.

Considering the cost execution of various classification and merging methodologies,
as shown in Figure 4, when requests fluctuate from clients without stable requests, this
bends the cost contrast between the online calculations and Heuristic methods. In CMRBC,
it is more noticeable when clients have stable requests, but it is difficult to precisely assess
their future requests.

1. Number of Jobs Versus Number of servers

The experiments evaluated the performance of the techniques for various job sizes
based on the quantum of data input. Small jobs process 50 MB of text data, medium
jobs process 100 MB, and large and extra-large jobs process 150 and more than 200 GB,
respectively. In addition, small, medium, and large jobs have a mean deadline of 50 s, and
extra-large jobs have a mean deadline of 180 s, as it takes a bit more running time. It is seen
that the performance, in terms of the number of servers required for processing a job under
CMRBC, is much lower than the CURA model, as shown in Figure 5.

Improvements were made at a 1:4 ratio for the smaller jobs. A sincere attempt was
made to prove that smaller jobs can be executed with minimum time consumption. Hence,
it was proved that the CMRBC model requires significantly fewer resources even with peak
work-load utilization, as the CURA model demands more resources. The CMRBC model
consumes fewer resources, and the output would be at a much more optimal speed, with
less consumption of time, and without any hindrance whatsoever. Further, this model will
not create virtual machines (thereby reducing their usage) for every small job, because
classification and merging techniques are used.
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2. Number of Servers Versus Broker Cost

The comparison between the CURA and CMRBC models is shown in Figure 6. The
x-axis represents the number of servers, and the y-axis represents broker cost.

Figure 6. Broker cost comparison between CURA and CMRBC models.

In CURA, to execute each job, one virtual machine is created. The user has to bear the
cost for both the creation and termination of the VM, and thus, the cost is on the higher
side, and so is the brokerage. In the CMRBC model, for every four jobs, one VM is created,
which would automatically reduce the cost of their creation and termination. Hence, the
creation ratio is 4, which is towards the cost of VMs. In CURA, four VMs have to be created,
ultimately making users pay higher costs. However, in CMRBC, only a one-time cost is
levied on the user, thereby reducing the cost to be borne, which amounts to a 4:1 ratio
between CURA and CMRBC.

3. Number of Jobs Versus Resource Cost

In Figure 7, the cost and number of jobs are dealt with. The x-axis represents jobs, and
the y-axis represents resource costs. Here, it is shown how the cost would be reduced by
three-fourths. Figure 7 indicates the overall cost involved in executing a bunch of jobs. The
CURA model shows a 65% higher cost than the actual cost incurred by a user under the
CMRBC model. This is because of the usage of a lower number of VMs.

Figure 7. Estimation of cost in CURA and CMRBC models.
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4. Number of Jobs Versus Response Time

In Figure 8, emphasis is laid upon the time consumed for completing jobs, and response
time is taken into account. The x-axis represents the number of jobs, and the y-axis
represents response time.

Figure 8. Time required to execute small jobs in CURA and CMRBC models.

A comparison between the CURA model and the CMRBC model is shown. The time
consumed for the creation of VMs in the CURA model is double when compared to the
CMRBC model. This is due to the creation of fewer VMs. This also automatically reduces
the time taken.

7. Conclusions

The proposed mechanism, the CMRBC model, was designed to reduce cloud bro-
kerage cost and the overall resource cost using a classification and merging algorithm to
optimize the resource cost to satisfy the clients and avoiding either underutilization or
overutilization. This provided the efficient utilization of resources to the service provider.
It was evaluated using a Poisson distribution in terms of the arrival of jobs for VM requests.
The classification setting was completed using threshold values. The experiment was
conducted considering the request of 1000 jobs and the request of VMs for four types of
instances: small, medium, large, and extra-large. The creation of VMs for each job was
avoided. This would automatically reduce brokerage due to the allocation, creation, or
selection of VM resources. The CMRBC model was designed to overcome this problem.
The results emerged show that the CMRBC model helps to minimize brokerage and max-
imize effective resource utilization in the above algorithm, to give good results, and to
cater to the satisfaction of the clients. The proposed model optimizes two parameters of
response, i.e., time and cost, by using multi-objective optimization. By deploying a broker
approach, CMRBC does not consider large jobs and extra-large jobs to make resource
utilization effective.
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