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Abstract: Massively pre-trained transformer models such as BERT have gained great success in
many downstream NLP tasks. However, they are computationally expensive to fine-tune, slow for
inference, and have large storage requirements. So, transfer learning with adapter modules has
been introduced and has become a remarkable solution for those problems. Nevertheless, recent
studies reveal that the parameters in adapters are actually still quite redundant, which could slow
down inference speed when fusing multiple adapters for a specific downstream task, and thus, they
can be further reduced. To address this issue, we propose three novel ways to prune the adapter
modules iteratively based on the prestigious Lottery Ticket Hypothesis. Extensive experiments on the
GLUE datasets show that the pruned adapters can achieve state-of-the-art results, with sizes reduced
significantly while performance remains unchanged, and some pruned adapters even outperform the
ones with the same size that are fine-tuned alone without pruning.

Keywords: pre-trained transformer model; adapter; prune

1. Introduction

Transformer-based pre-trained language models [1] have gained great success in
multiple NLP downstream tasks. These language models are pre-trained on large amounts
of unlabeled text data with self-supervising approaches such as masked language modeling
(e.g., BERT [2], Roberta [3], XLNet [4]). They have achieved state-of-the-art performance for
most language understanding tasks by fine-tuning the models for a given target. However,
these advancements come at a price. Recent studies have shown that the performance
of the model scale with their sizes [5], and the model sizes have grown up to billions of
parameters lately. Therefore, for different target tasks, models need to be fine-tuned entirely,
which is computationally expensive and leads to large storage requirements.

To tackle this issue, adapter [6] has been introduced as an alternative way instead of
fine-tuning the whole model for a downstream task, and it achieves comparable perfor-
mance to full fine-tuning on most NLP tasks. Adapter is a small residual network inserted
in each layer of the transformer. During fine-tuning, only the weights in the adapter are
trained, while parameters of the pre-trained model remain unchanged. This approach can
greatly reduce the total number of parameters needed to be trained for a target task and
thus enable efficient parameter sharing among tasks.

However, adapters are making the model more computationally expensive in another
way. With deeper transformer-based models, more adapters are inserted, and the model
gets deeper. As a result, it decreases the inference speed of the model. Moreover, recent
studies have found that the adapter is capable of extracting knowledge from the target task,
so research attempts have also been made to fuse multiple adapters across multiple tasks
to incorporate knowledge [7], which can further complicate the model and decrease the
inference speed.

Nevertheless, Houlsby et al. [6] have found that not all adapters in the model are
created equal. Removing some of the adapters does not compromise the performance too
much. This leads to the idea that some of the parameters in adapter modules might be
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redundant. So, it is quite possible to reduce the redundancies to streamline the model. The
most recent work following this idea is the AdapterDrop model [8], which firstly tries to
remove adapters from lower transformer layers during training and inferences, resulting in
faster training and inference speed with some performance cost. However, the redundant
parameters inside adapters are not fully analyzed yet.

To address these deficits, in this paper, we systematically propose three novel ways to
prune the adapter modules iteratively without hurting the performance, and even narrow
the performance gap between the fully fine-tuned models and the adapter-based tuned
ones. The contributions are summarized as follows:

• We systematically propose three novel ways for pruning weights, neurons, and adapter
layers, respectively, inspired by the prestigious Lottery Ticket Hypothesis [9], which
states that dense, randomly-initialized, feed-forward networks contain subnetworks
(winning tickets) that can have test accuracy comparable to the original network in a
similar number of iterations when trained in isolation.

• The proposed schemes have been evaluated extensively on the GLUE datasets, where
models are reduced significantly with negligible cost of accuracy.

2. Materials and Methods
2.1. Winning Ticket in Adapters

In order to prune the redundant parameters in the adapters without affecting the
overall performance, we prune the adapters iteratively to find the subnetwork (winning
ticket) that can reach the same accuracy as the original adapter when trained in isolation.
After every pruning iteration, weights are set to the initial values when the first training
iteration starts [9].

We propose three pruning schemes for weights, neurons, and the adapter layer, respec-
tively. Figure 1 shows our adapter architecture and three different strategies of pruning
adapters. Adapters are inserted after every feed-forward layer and self-attention layer
in the transformer, with a skip-connection. Each adapter is a one-layer residual network
with 128 neurons in our settings. Just like dropout, pruning the adapter will not affect the
workflow of the original network.

Multi-headed attention

Feed-forward layer

Adapter

Layer Norm

2x Feed-forward layer

+

Adapter

Layer Norm

+

+

Prune Neuron

Prune Adapter

+

Prune Weight

Figure 1. Three different ways of pruning the adapter module, which is a residual network with
one layer.

2.2. Finding Winnning Ticket

We explore to find the winning ticket in adapters by training and pruning them
iteratively. For different pruning targets, we use different schemes to select candidates for
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removal. Since the importance of adapters is different in each layer, we are performing the
pruning globally. We train the transformer model with adapters as f (x; θ0; α) with initial
parameter in adapters θ = θ0∼Dθ and transformer parameter α = α∼Dα. In addition,
f (x; m� θ; α) denotes training the model with a mask m ∈ {0, 1}|θ|. Then, the winning
ticket can be found by the following steps:

1. Randomly initialize adapter parameters in the model f (x; θ0; α).
2. Train the adapters for j iterations, arriving at parameters θj.
3. Prune p% of the parameters in θj, and generate a mask m.
4. Reset the remaining parameters in adapters to θ0, and go back step 2 to train the

model f (x; θ0; α) if it is not a winning ticket yet.

2.3. Pruning Schemes

Here, we systematically propose three pruning strategies for weights, neurons, and
the adapter layer, respectively, which are formalized in the following Algorithms 1–3.

Weight Pruning: We prune a weight solely by its magnitude. At iteration t, we
calculate the absolute value of weights |θt| in all adapters. We save the non-zero value and
its corresponding position in θt in a list R. We sort R in the descending order by the absolute
value. The last p% of R with the lowest magnitude are pruned, and their corresponding
positions in mask and θt are both set to 0. The remaining parameters are set back to the
initial values, and the training restarts without the pruned weights.

Algorithm 1: Identify the importance of weights
Result: a list of tuple containing values of importance and positions in weight

matrix
R is an empty list;
Weights of adapter at iteration t as θt;
for layer l in θt do

for weight a in layer l do
if a is not zero then

Value of importance Impa = |a| ;
Position of weight a in θt = Posa ;
Append tuple (Impa, Posa) to list R ;

end
end
Sort list R with Imp

end

Neuron Pruning: If we need to prune neurons, this can be done by the L2 norm of
their associated weights. An adapter module consists of a down-project weight matrix
and an up-project weight matrix with residual connection. To prune the neuron inside an
adapter, we will simplify the up-project weight matrix because the column in the weight
matrix corresponds to the connection to the neuron. Let θt,l,up be the up-project weight
matrix of the adapter layer l at iteration t and ai,j denote the weight parameters in θt,l,up.
Therefore, the importance of neuron i in the adapter of size N is ∑N

j=0 a2
i,j. Likewise, neurons

are sorted in the descending order by their importance, and the last p% of the neurons are
pruned and their mask is set to 0. Then, the remaining parameters are put back to their
initial values.
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Algorithm 2: Identify the importance of neurons
Result: a list of tuple containing values of importance and positions in weight

matrix
R is an empty list;
The size of adapter is N ;
Weights of adapter at iteration t as θt;
for layer l in θt do

up-project weight matrix lu in layer l ;
for column i in lu do

if ∑N
j=0 ai,j is not zero then

Value of importance Impc = ∑N
j=0 a2

i,j ;

Position of column a in θt = Posc ;
Append tuple (Impc, Posc) to list R ;

end
end
Sort list R with Imp

end

Adapter Pruning: Finally, we can even prune adapters based on their sum of weights
magnitude. Let θt,l be the weights of the adapter at layer l at iteration t and ai,j denote the
parameters in θt,l . The importance of an adapter of size N with input size of H is ∑N,H

i,j |ai,j|.
Adapters are sorted by the sum of weights in the descending order as well, and the p%
smallest adapters in list R are removed from the model. The remaining adapters step back
to their initial weights for the re-training.

Algorithm 3: Identify the importance of adapter layers
Result: a list of tuple containing values of importance and the number of layers
R is an empty list;
The size of adapter is N ;
Input size of adapter is H ;
Weights of adapter at iteration t as θt;
for layer l in θt do

if layer l not pruned then
Value of importance Impl = ∑N,H

i,j=0 |ai,j| ;
Append tuple (Impl , l) to list R ;

end
Sort list R with Imp

end

2.4. Experimental Settings

We use the public BERT-Based uncased model as our base model, and we apply the
similar approach in Devlin et al. [10] to perform a text classification task. In each input
sequence, the first token is a classification token. Then, its embedding is fed into a linear
layer to make a prediction.

We set the adapter size to 128 because engineering practices [11] suggest that overpa-
rameterized networks are easier to train. We use Adam optimizer to train the model and
perform a small hyperparameter search using TPE algorithm [12] on the adapter training
without pruning. We sweep learning rates in {1 × 10−4, 5 × 10−4, 1 × 10−3} and the
number of epochs in {3, 4, 5}. We have made 30 trials with Bayesian optimization and
select the best run setting for the pruning experiments. The learning rate of the model
is linearly warming up in the first epoch of training and then gradually decreases. We
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train the models on an NVIDIA Tesla P100 GPU with a batch size of 32. During iterative
pruning, we use an early-stopping strategy with patience of three to speed up training. The
particular early-stopping criterion we use is the iteration with minimum validation loss
during training.

We extensively evaluate the three proposed pruning schemes on GLUE datasets [13],
which contain nine sentence or sentence-pair language understanding tasks (We omit
WNLI because it is not evaluated in BERT [2]). We treat MNLImm and MNLIm separately
and conduct transfer learning from the pre-trained BERT-Base model, which has 12 layers
and a total of 110M parameters. Finally, we report the test results through the submission
website l (https://gluebenchmark.com (accessed on 20 January 2022)).

3. Results

In this section, we present the results of our proposed pruning schemes extensively
evaluated on the prestigious GLUE datasets [13].

3.1. Comparisons of Pruning Strategies

We insert adapters of size 128 into each layer of transformers in the BERT-Based model.
Depending on the text classification task, we put a task-specific classifier at the end of the
model. Only the parameters in the adapters and task-specific classifier are fine-tuned, and
the rest of the parameters in the model are untouched.

We iteratively prune the parameters in the adapter by 20% per iteration. We perform
15 iterations for weight pruning and neuron pruning and 11 iterations for layer pruning,
since there will be less than one adapter left after the 11th iteration.

The results of the GLUE test sets are presented in Table 1. For each pruning strategy,
we select the best result in all iterations of pruning. The best model (the winning ticket
found) is chosen by the metric of the corresponding task and evaluated using the GLUE
testing server. From the test results, we can see a 0.2 percentage performance gap between
the original adapter model and the fully fine-tuned one. Our pruning schemes help us
spot the pruned adapters that outperforms the original ones, implying that the winning
ticket has been found successfully. Particularly, models after pruning even outperform the
fine-tuned ones in datasets CoLA, QQP, QNLI, MNLImm, and RTE, and particularly CoLA,
which has been improved by more than 1%.

Table 1. Test results on GLUE test sets using the GLUE server. CoLA is evaluated using Matthew’s
correlation. STS-B is evaluated using Spearman’s correlation coefficient. MRPC and QQP are
evaluated using F1 score. The rest of the tasks are evaluated by accuracy. For three pruning schemes,
the best model on the validation set is tested.

CoLA SST-2 MRPC STSB QQP MNLI m/mm QNLI RTE AVG

Full 52.10 93.50 88.90 85.80 71.20 84.60 83.40 90.50 66.40 79.60
Adapter 51.70 93.10 88.50 85.60 71.50 83.40 83.20 90.50 67.30 79.42

Weight 54.00 92.80 88.10 84.60 71.80 84.30 83.60 91.10 65.80 79.57
Neuron 52.10 93.00 88.50 84.60 71.90 83.80 83.30 90.60 68.40 79.58

layer 49.50 92.60 88.00 83.50 71.50 84.10 83.10 90.80 70.60 79.30

In general, models pruned with weights and neurons can outperform the adapter
model of size 128 on average and have almost the same performance as the fully fine-tuned
ones, as shown in Figure 2. It indicates that the pruning strategies can enable us to identify
a better subnetwork of adapters and thus boost the model’s performance.

https://gluebenchmark.com
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Figure 2. Comparisons of average performance of different models on GLUE test sets.

3.2. Iterative Pruning and Winning Ticket

Then, we investigate the performance of different pruning strategies during the it-
erations with the validation set of the GLUE dataset as Figure 3 shows. The baselines of
the adapter model with a size of 128 are denoted as straight lines with task names and
scores marked on them in the figure. Let p denote the percentage of weights remaining.
We discovered that in most cases, pruning weights and pruning neurons are better than
pruning the adapter layers, especially when p ≤ 40%. Meanwhile, pruning weights and
neurons are more stable in their performance than pruning the adapter layers; this indicates
that pruning adapter layers have a higher risk of removing the essential parameters and
thus leads to a performance drop in an early stage of pruning.
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Figure 3. Performance of three different pruning schemes on GLUE validation sets at every pruning
iteration. Horizontal line represents the performance of adapters before pruning starts. Each type of
marker denotes a pruning scheme.

In all datasets, there is a substantial amount of validation accuracy improvements over
the standard adapter model when p ≥ 40%, particularly in the CoLA and RTE datasets.

For weight pruning and neuron pruning, a winning ticket can be found when p is
around 21% and 26%. For adapter layer pruning, the winning ticket can not been spotted
since the overall structure of the network has been altered too much, but there is no
significant performance drop until p is around 40%. Finally, we test the pruned models in
the validation set with the GLUE test set, whose results is shown in Table 2.

We also see that the average performance for all tasks in GLUE of the winning ticket
model is a bit lower than the original adapter model. However, if we only consider the
datasets with sizes more than 10 K, as shown in Figure 4, we found that the winning ticket
produced by weight pruning and neuron pruning has the same or even better performance
than the original adapter model, which implies that the pruning strategy works better
on larger datasets, since a dataset of larger size has a larger validation set, and a larger
validation set will better guide the pruning to identify the best fit winning ticket.
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Table 2. Winning ticket of different pruning schemes in test results on GLUE test sets using GLUE
server and the percentage of parameters trained. Average results on all GLUE datasets and average
results on large datasets in GLUE (SST-2, QQP, MNLI, MNLImm, QNLI). Training time of all task in
GLUE, with Full fine-tune (4 h) as base.

Param/Task AVG (Total/Large) Training Time

Full fine-tune 100% 79.60 84.64 1.00×
Adapter 128 4.15% 79.42 84.34 1.07×
Adapter 27 0.92% 79.20 84.06 1.05×

Prune Weight (21%) 0.87% 79.22 84.42 1.07×
Prune Neuron (26%) 1.08% 79.22 84.34 1.05×
Prune Layer (37.5%) 1.56% 79.14 84.00 1.03×

Full fine-tune Adapter128 Adapter27 Weight(21%) Neuron(26%) Layer(37.5%)
83.8

84.0

84.2

84.4

84.6

84.8

Pe
rfo

rm
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ce

Figure 4. Winning ticket of different pruning schemes on GLUE test, with average results on large
datasets in GLUE (SST-2, QQP, MNLI, MNLImm, QNLI)

Moreover, we further test an adapter model with size 27, which is approximately the
number of parameters in an adapter of size 128 with 21% left. It is surprise to see that the
winning ticket by weight pruning outperforms the adapter of size 27, indicating that the
pruned adapter model can be better than the one that is only fine-tuned.

4. Discussion

Most neural networks are overparameterized and carry a lot of redundancies. There-
fore, distillation [14,15] and pruning [16,17] are introduced to streamline the model while
perserving accuracy. There are several research directions on training small or sparse
networks, pruning before training [18], pruning after training [16], and pruning during
training [19].

Adapters have achieved great results in multi-task [7] , cross-lingual transfer learn-
ing [20], and infusing knowledge [21]. It indicates that adapters are capable of extracting
useful features from tasks. They are applied to fuse knowledge learned from different tasks
for a target one. However, adapters are still far from being concise, and fusing multiple
adapters may cause inference inefficiency. To tackle this problem, Rücklé et al. [8] have
firstly introduced a way to remove adapters from lower transformer layers.

Recently, the Lottery Ticket Hypothesis has been the most influential theory for prun-
ing, where Frankle and Carbin [9] discover that a dense neural network contains subnet-
works (winning ticket) that can have the same performance as the original network when
trained isolated. They further show that not only the structure of the pruned networks can
affect the performance but also the initial weights of these networks. It is also revealed
that using a certain pruning strategy, a subnetwork can be found that learns faster than the
original one and reaches higher test accuracy. Our proposed approaches are motivated by
this theory and aim to identify the winning ticket with a systematical pruning strategies for
different levels.
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5. Conclusions

In this paper, we have proposed three novel ways of pruning redundant parameters in
adapters, inspired by the prestigious Lottery Ticket Hypothesis. We prune adapters on three
different levels: weights, neurons, and adapter layers. Adapters are pruned iteratively and
when every iteration starts, weights are re-winded to initial values. Finally, the proposed
schemes have been extensively evaluated on the GLUE datasets, successfully identifying
the subnetworks (winning ticket) in adapters and achieving state-of-the art results. We can
prune adapters to 21% of their original size without causing a performance drop, and in
some datasets, the pruned adapters can even outperform the original ones.

However, the pruning strategies in this paper are still time-consuming. It takes a
tremendous amount of computation to explore and find the most compact adapter model.
So, future work will be focusing on how to search the winning ticket of the adapter modules
more efficiently.
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