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Abstract: We optimize the assignment of transporters to several jobs. Each job consists of processing
a large, decomposable volume. A fleet of transporters is given, each of which can only process a
limited volume at a time. After processing its share, a transporter must rest for a short time before
being able to process another part. This time is only dependent on the assigned job, not on the
transporter. Other transporters can take over the processing while a transporter rests. Transporters
assigned to the same job wait for their turn in a queue. A transporter can only be assigned to one
job. Our goal is to simultaneously minimize the maximum job completion time and the number of
assigned transporters by computing the frontier of Pareto optimal solutions. In general, we show that
it is NP-hard in the strong sense to compute even a single point on the Pareto frontier. We provide
exact methods and heuristics to compute the Pareto frontier for the general problem and compare
them computationally.

Keywords: transporter assignment; bi-objective optimization; heuristics; mixed-integer linear pro-
gramming; logistics; heterogeneous fleet

1. Introduction

In many farming or construction processes, transporter resources are used to carry
material to or from the operation site in a cyclic fashion. Examples for such applications are
tractors collecting silage from a forage harvester, dump trucks getting filled with excavated
earth, or cement or asphalt being fed from trucks to construction sites. Transporters are
available on site for a limited amount of processing time, dependent on the loading capacity
of the transporter and the processing speed of the main resource.

After that, they have to unload/reload material in some central hub (e.g., a harvest
silo, asphalt producer, etc.) before returning to the processing site. The time of absence
depends on the distance between the operation site and the hub, but it is the same for all
transporters assigned to the same site. Multiple transporters may be assigned to the same
working site, so that processing can continue even when some transporters are on-road
toward/from the central hub. If no other transporter is available on site, the main work has
to pause until the next transporter arrives back on site. Two transporters may not be used
for on-site processing at the same time.

This kind of transporter setting is referred to by Jensen et al. [1] as capacitated field
operations. Many instances of these types of processes have been studied in the literature
from different angles, with different goals, and for different applications, see [1–8]. Recent
reviews are provided in [9,10]. The important common feature of all these use cases is that
the total volume that needs to be processed on site is usually much larger than the capacity
of a single transporter. Figure 1 illustrates such a process for the example of farming.

Since, usually, this type of problem is NP-hard (not solvable in polynomial time
unless P = NP, see [11]) when viewed as a whole (see [5]), authors turn to mathematical
programming formulations (see [2,5,12]) or (meta-)heuristics (see [4,5]).
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Figure 1. Example of three fields being harvested by forage harvesters and eight transporters of
heterogeneous sizes. Field 1 is assigned an extra transporter due to its large size, making the
avoidance of idle times even more important. Field 3 is assigned an extra transporter because it is far
away from its silage pit, causing assigned transporters to waste a lot of time on the road.

In this paper, instead, we do not consider the problem as a whole but instead in-
vestigate one specific, important sub-problem, namely the assignment of transporters to
operation sites. This problem gives rise to an interesting, new scheduling problem, which,
to the best of our knowledge, has not been studied in the literature before.

1.1. Formal Problem Definition

For the purpose of this study, we assume that each operation site is assigned exactly
one main resource. Otherwise, we split an operation site into multiple neighboring sites,
one for each resource assigned. Furthermore, we assume that the processing speed of the
main resources is fixed. This is reasonable for tactical planning if the tasks conducted at
each site as well as the resources used to do so are similar.

Formally, a set of jobs J = {j1, . . . , jNJ} is given, each representing one operation site
together with a main resource. Furthermore, letR = {r1, . . . , rNR} be the set of transporters.
In normal scheduling terminology, the transporters would be called resources or machines;
however, we stay with the term transporters throughout this paper in order to stay closer
to the terminology in our field of application.

Each job has a certain volume that needs to be processed before the job is complete,
and each transporter has a certain capacity that can be used up before the transporter has to
rest (travel to the central hub). Since we assume the processing speed of the main resources
to be fixed, we can translate all volumes into time values for ease of notation. Thus, each
job j ∈ J has a saturated processing time Csat(j) > 0, which is the total time it needs to be
processed by transporters before it is complete. Similarly, each transporter r ∈ R has a
filling time κ(r) > 0, which is the time it can process a job before it needs to rest. Finally,
we denote by δ(j) > 0 the return time of every transporter assigned to job j. In this paper,
we do not allow a transporter to be assigned to multiple jobs. Figure 2 shows how two
transporters may process the same job.
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Figure 2. Example of two transporters relaying each other to process a job. The job processing stops
while both transporters are in their return time.

We assume all jobs start processing at the same time. The completion time C(j) of a
job j ∈ J is given as the sum of Csat(j) and all idle times happening during the processing
of job j due to no transporter being available. In particular, Csat(j) is the completion time of
job j if job j is never idle (always has a transporter available for processing). Our goal is
to minimize the maximum completion time of any job, which is also called the makespan
C∗ = maxj∈J C(j). A short makespan is desirable, because it ties in directly with several
crucial performance indicators, such as the necessary opening times of the hub, potential
overtime pay for workers, as well as minimizing the time frame in which problems (e.g.,
due to weather) may happen. In addition, a large makespan may indicate unnecessary idle
times for the main resources, which are to be avoided in order to operate cost efficiently.

However, it may not be possible to hire enough transporters to avoid all idle times
(due to transporter availability), or, if it is possible, it may still not be economically desirable
(due to drivers’ wages) in cases where an additional transporter would only decrease the
idle time by a marginal value. Thus, the total number of assigned transporters is another
important measure for the quality of a solution. Therefore, our goal in this paper is to
jointly minimize the makespan of multiple simultaneously operated sites and minimize
the number of used transporters. The problem of assigning transporters to jobs in order to
minimize simultaneously the makespan and the number of assigned transporters is called
the transporter allocation problem or (TAP) for short.

As the two objectives of (TAP) are conflicting, our goal is to find all Pareto optimal
solutions. A feasible solution to (TAP) is Pareto optimal if every other feasible solution
with smaller makespan uses a larger number of transporters, and every other feasible
solution that uses a smaller number of transporters has a larger makespan. The set of
all Pareto optimal solutions is called the Pareto frontier. We refer to [13] for a general
introduction to multicriteria optimization.

In the Appendix A, we prove that given a set R ⊂ R of transporters assigned to some
job j ∈ J , the completion time of j can be estimated by

C(j) = Csat(j)
L(j)

L(j)− I(j)
, (1)

where
L(j) := max

{
∑
r∈R

κ(r), δ(j) + max
r∈R

κ(r)
}

, (2)

and
I(j) := L(j)− ∑

r∈R
κ(r). (3)

The estimate depends on the practical assumption, mentioned above, that jobs are
very large compared to transporter capacities and return times. See Theorem A1 for details.
We also call L(j) the period length and I(j) the idle time per period of job j, according to the
statements of Lemma A2 in the Appendix A. For the remainder of this paper, we do not deal
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with the exact scheduling and sequencing of transporters when processing jobs and instead
only focus on the assignment of transporters to jobs using Equation (1) to estimate the
completion times of the jobs. Therefore, a solution to (TAP) is fully given by an assignment
of transporters to jobs, which are encoded by variables X = (Xr,j) in the following way:

Xr,j =

{
1 if transporter r is assigned to job j
0 otherwise.

For a solution X, we denote by Y j(X) the number of transporters assigned to j under
assignment X:

Y j(X) = ∑
r∈R

Xr,j.

In addition, by Y(X), we denote the total number of transporters assigned by assign-
ment X, i.e.,

Y(X) = ∑
j∈J

Y j(X).

Furthermore, we denote by C∗(X), C(j, X), L(j, X), and I(j, X) the makespan, comple-
tion time of job j ∈ J , its period length, and its idle time per period, under solution X,
respectively. If there is no confusion about the solution referred, we may instead leave out
X as before.

Note that all mathematical notation introduced in this section and throughout the
remainder of the paper is also given again in a concise list in the Abbreviations section at
the end of this paper.

Finally, a solution X saturates a job j ∈ J if job j has no idle time under solution X,
that is if L(j, X) = ∑r∈R Xi,jκ(ri) and I(j, X) = 0. If solution X saturates all jobs j ∈ J ,
then X is called saturating. Recall that in this case, the completion time of every job j is at its
minimum value Csat(j). Note that a saturating solution minimizes both the maximum and
total completion time of all jobs. An instance of problem (TAP) is saturated if there exists at
least one saturating assignment.

The remainder of this paper is structured as follows. To finish Section 1 below, we
briefly summarize our results and contributions. Then, in Section 2, we present a review
of the literature related to our problem. In Section 3, we state and prove some structural
properties of (TAP), in particular that (TAP) is NP-hard. In Section 4, we consider the
special case where transporters are identical. In Section 5, we discuss the restricted problem
of finding saturated solutions, where adding a transporter cannot further decrease any
completion time. Our single objective is to minimize the the number of transporters. In
Section 6, we develop algorithms to compute a Pareto frontier for the general problem,
using results from the saturated problem. We present simulation results in Section 7. Finally,
in Section 8, we conclude our paper.

1.2. Our Results

As mentioned before, to the best of our knowledge, this is the first paper to study the
problem (TAP) as presented here explicitly. We show that computing even a single point
on the Pareto front for an instance of problem (TAP) is, in general, NP-hard in the strong
sense. It remains NP-complete in the strong sense even if all jobs have the same return time
and/or saturated processing time.

In terms of positive results, we show that the minimum number of transporters needed
to saturate a job can be computed in O

(
(NR + NJ) log[NR]

)
time for all jobs. Furthermore,

if all transporters are identical, then the whole Pareto front to solve problem (TAP) can
be computed in O

(
(NR + NJ) log

[
NJ
])

time. In that case, a single point on the Pareto
front can also be computed in O

(
NJ · log[maxj{C(j, 1)}]

)
time, where C(j, 1) denotes the

processing time of a job when exactly one transporter is assigned to it. This time complexity
may in some cases be better as NR is no longer part of the estimate. See also Table 1 for an
overview of our complexity results.
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Table 1. Overview of complexity results for problem (TAP). Note that δ(j) = δ∗ denotes the case
where all return times are identical and κ(r) = κ∗ denotes the case where all transporter capacities
are identical. Finally, C(j, 1) denotes the completion time of job j when exactly one transporter is
assigned to it, in the case where all transporters have identical capacity.

Version Whole Pareto Front Single Pareto Point Reference

General str. NP-hard str. NP-hard Section 3

δ(j) = δ∗ str. NP-hard str. NP-hard Section 3

κ(r) = κ∗ O
(
(NR + NJ) log

[
NJ
])
O
(

NJ · log[maxj{C(j, 1)}]
)

Section 4

In addition to these complexity results for sub-problems and special versions, we
also consider how to solve the general problem. We suggest several approaches using
mathematical programming, heuristics, and combinations of both. We evaluate all sug-
gested algorithms experimentally and discuss their advantages and disadvantages when
compared to each other.

2. Literature Review

In this section, we outline how the transporter allocation problem studied in this
paper ties in with the wider literature. As mentioned before, to the best of our knowledge,
(TAP) has not been studied in this form before. However, there are several optimization
problems that bear a resemblance to (TAP). Below, we focus on the two most closely
related problems, namely divisible load scheduling, which can be seen as a version of
(TAP) where transporters may process the job in parallel rather than in sequence, and
multiple knapsack problems, which relate to (TAP) in the way that for each job, there is
an upper limit of transporter sizes before adding more transporters no longer improves
anything. We compare the problems to (TAP) and explain which, if any, results can be
transferred to our setting.

We will not consider papers discussing capacitated field operations in general again,
as in the beginning of Section 1, since other than providing the wider practical motivation,
they have little relevance for (TAP). Furthermore, note that even though both problems
stem from logistic tasks, (TAP) is not comparable to vehicle routing problems. In ve-
hicle routing problems [14], each transporter is usually assigned several delivery jobs,
while for (TAP), each job is assigned several transporters. Due to this fundamental dif-
ference, even though the problems may look related in practice, they are not close from a
mathematical perspective.

2.1. Divisible Load Scheduling

In divisible load scheduling [15], a processing load needs to be divided onto several
processors, just like the total volume of a job in (TAP) needs to be divided onto several
transporters. The main difference between the two is that in divisible load scheduling, the
processors are assumed to be parallel, such that they are allowed to process different parts of
the main load at the same time. In addition, usually, in divisible load scheduling problems,
only a single load needs to be split across processors, while for (TAP), multiple loads
need to be assigned to transporters. Note that without any further assumptions, splitting
a load over parallel processors is usually easy. Therefore, the literature considers many
additional parameters, such as setup times, communication delays between processors,
and more complex processor networks (e.g., where sub-processors on the first level have
again several second-level sub-processors to which they can divide their sub-task). We
refer to [16] for a review. In comparison, as we show in this paper, (TAP) is much harder,
even without any additional assumptions.

Interestingly, many papers consider bi-criteria versions of divisible load schedul-
ing, where the goal is to minimize the makespan and cost of a schedule simultaneously;
see [17–19]. Here, cost is usually defined as a function of the load assigned to each pro-
cessor, together with a fixed cost to activate each used processor in the first place [19].
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Special versions have been studied without any additional restrictions and where only the
fixed cost for each processor is used [17,19]. Note that this version is very close to (TAP)
with only three differences: first, of course, for the divisible load scheduling problem, the
processors work in parallel, whereas for (TAP), they in sequence; second, in the divisible
load scheduling problem, processors may have different speeds but have no maximum
load, whereas in (TAP), all transporters have the same speed but a maximum capacity
after which they must rest; third, for (TAP), we assume additionally that the fixed cost for
each transporter is the same. This special version of divisible load scheduling is shown
to be NP-hard in the usual sense [17]. We prove later that (TAP) is NP-hard in the strong
sense. Furthermore, note that if in the divisible load scheduling problem the fixed cost of
all processors is the same, then the NP-hardness proof from [17] is no longer valid, while
this assumption holds by definition for (TAP).

Most other results for divisible load scheduling are not comparable to (TAP) either
due to additional restrictions for the divisible load scheduling problem or because of the
difference in sharing load in parallel or sequential. Thus, techniques used to solve divisible
load scheduling problems cannot be easily transferred to (TAP).

2.2. Multiple Knapsack Problems

Even though it is not immediately obvious from a practical point of view, (TAP)
is rather strongly related to multiple knapsack problems. Recall that the knapsack prob-
lem [20] is a popular optimization problem, with the objective to select items with maximum
total value without exceeding a certain capacity. The multiple knapsack problem considers
several knapsacks with potentially different capacities. The objective is to assign items to
knapsacks such that the total items value is maximized without exceeding any knapsack
capacity. In comparison, for (TAP), consider each job as a knapsack with a capacity given
by the total size of transporters needed before all idle times vanish (note that this capacity
is not fixed, as it depends on the largest transporter assigned, cf. Equation (2)). Then, a
good allocation of transporters is one where each “knapsack” is as close to exactly filled
as possible.

Many knapsack-related problems are known to be NP-hard [11]. Most algorithms
for the multiple knapsack problem are either greedy or meta-heuristics such as in [21,22],
polynomial approximation schemes such as in [23,24], or exact methods using mathematical
programming as in [25,26].

For our paper, a special kind of knapsack problem studied in [27] is of particular
interest. In this version, so-called assignment restrictions are given, such that each item
is only allowed to be assigned to as subset of the knapsacks. This is interesting, since in
(TAP), jobs may become ineligible for further transporters once they have reached their
minimum possible completion time. In [27], the authors propose several approximation
algorithms, some with a simple, greedy structure. We will later (cf. Section 5) see that two
of these algorithms can be adjusted to work well as heuristics for (TAP).

3. Structural Results

In this section, we consider the structural properties of (TAP) before turning to
solution methods for the general problem and special cases in the remainder of the paper.
In the first part of this section, we show that (TAP) is NP-hard in the strong sense. In
the second part of this section, we introduce lower bounds on the number of transporters
needed for a job to be saturated, i.e., have no idle time. We also provide an easy algorithm
to compute all such lower bounds for a general instance of (TAP).

3.1. NP-Hardness of (TAP)

Unfortunately, (TAP) is NP-hard in the strong sense, i.e., not solvable in time poly-
nomial in the size of the input, even if the input is encoded in unary encoding, unless
P = NP, cf. [11]. In fact, we prove below that for an instance of (TAP) it is, in general,
strongly NP-hard to compute even a single point on the Pareto frontier. Let (TAPC∗(nr))
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be the decision version of (TAP) with target makespan C∗. That is, given an instance of
(TAP) and a target makespan C∗, the task for (TAPC∗(nr)) is to decide if there exists an
assignment of transporters to jobs such that the makespan is at most C∗, and at most, nr
transporters are used.

Theorem 1. (TAPC∗(nr)) is NP-complete in the strong sense, even if C∗ is chosen as the minimum
possible makespan, i.e., C∗ = maxj{Csat(j)}. Moreover, it remains NP-complete in the strong
sense, even if all jobs have the same return time and/or saturated processing time. Finally, it remains
NP-complete in the strong sense even if it reduces to the decision if a saturating assignment exists,
i.e., with parameters C∗ = Csat(1) = Csat(2) = . . . = Csat(NJ) and nr = NR.

Proof. Reduction from three-partition problem, which is NP-complete in the strong sense [11]:
Given a multiset S of n = 3 ·m positive integers, can S be partitioned into m triplets S1,
S2, . . . , Sm such that the sum of the numbers in each subset is equal?

The subsets S1, S2, . . . , Sm must form a partition of S in the sense that they are disjoint
and they cover S. Let B denote the (desired) sum of each subset Si, or equivalently, let
the total sum of the numbers in S be m · B. The three-partition problem remains strongly
NP-complete when every integer in S is strictly between B

4 and B
2 .

Let (I) be an arbitrary instance of three-partition with S = s1, . . . , s3·m and ∑i si = m · B
and B/4 < si < B/2.

Let M be an arbitrary large positive integer with M > m · B. Let S′ be the multiset
defined by S+K with K being the multiset {M, . . . , M}with |K| = 2 ·m. Hence, |S′| = 5 ·m.
In the following, we refer to the elements from K as the large elements. Define now an
instance of (TAPC∗(nr)) with the set of resources R with filling times κ(ti) = s′i. The job
set J has cardinality m and the return times δ(j) = B + M and saturated processing times
Csat(j) = B + M + M for all jobs j ∈ J := {j1, . . . , jm}. Note that, by construction, all jobs
have the same return time and the same saturated processing time.

We need to prove the following:

(I) has a solution⇔ (TAPB+M+M(5 ·m)) has answer yes.

⇒: Given a solution S1, . . . , Sm (i.e., a set of triplets with the desired properties) to the
three-partition instance (I), we can easily construct a solution to (TAP) by first assigning
the transporters with the filling times corresponding to Si to the job ji. Then, each job is
additionally assigned to two of the transporters of size M. Since by definition ∑s∈Si

s = B,
the return time of B + M is covered exactly by the four smallest elements, meaning each
job is saturated and no idle time occurs. By definition of the saturated processing times,
this means the makespan of the constructed solution is exactly B + M + M.

⇐: Let Xr,j be a solution to (TAP) with makespan B + M + M and 5 · m resources
used. By definition of our instance, all m jobs must be saturated in order to reach makespan
B + M + M. Therefore, each job must have assigned transporters with an accumulated
filling time of at least B + M when ignoring the largest transporter. Since M by definition
cannot be reached by using items of S, the largest and second largest transporter assigned
to each job must each have filling time M. This uses up all 2m transporters with filling
time M, and no job can have three transporters with filling time M assigned. Hence, the
large items of size M are distributed equally to the jobs, leaving the items from S to cover
the remaining return times of B for each job. Ignoring the large items, a solution for the
three-partition instance (I) remains.

Note that the same arguments hold if the saturated processing time of each job is
instead given by k · (B + M + M) for some 0 < k ∈ N. So, the same proof also works in a
more practical instance, where jobs are very large compared to transporter capacities and
return times.

Note also that nearly the same reduction can be made from a usual partition problem
(cf. [11]) instead of three-partition. In that case only two jobs would be constructed and
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four transporters of size M would be needed. Then, using the same arguments as above,
it can be shown that a solution to the partition instance exists if and only if a solution to
(TAPC∗(nr)) with C∗ = B + M + M exists, where B is the target value of the partition
instance. This shows that problem (TAP) would remain NP-hard (in the usual sense) even
if there are only two jobs.

3.2. Saturating Transporter Sets

Given a set of transporters R and a job j, recall that a set of transporters R ⊂ R
saturates job j if

∑
r∈R

κ(r) ≥ δ(j) + max
r∈R

κ(j).

Any (cardinality) smallest subset of R that can saturate job j is called a saturating
transporter set for j. The common cardinality of all saturating transporter sets for job j is
called the saturating transporter cardinality, which is denoted by N∗R(j). If no saturating
transporter set exists, that is, if evenR itself cannot saturate job j, then we define N∗R(j) = ∞.
Note that, by definition, the N∗R(j) transporters in R with biggest filling times are a
saturating transporter set for job j, if one exists.

The saturating transporter cardinality of every job is a lower bound of the number
of assigned transporters to this job in any saturating assignment. Our algorithms use this
concept to compute assignments.

Lemma 1. The time complexity to compute the saturating transporter cardinality of all jobs is:

O
(
(NR + NJ) · log[NR]

)
.

Proof. We sort the transporters by decreasing the filling time in O(NR · log[NR]). Then,
we remove the biggest transporter, which will be the transporter whose return time has to
be covered.

For a single job, we can build a saturating transporter set by adding to the biggest
transporter as many transporters as necessary from a sorted list such that their filling time
exceeds the job’s return time. Since this set contains the biggest transporters, there cannot
be any smaller transporter set saturating the job.

We can improve this process to compute the saturating transporter cardinality for
every job. We first compute the cumulative filling times of the transporters inO(NR). Then,
for each, we find the minimum cumulative filling time bigger than the return time, using a
binary search in O(log[NR]) time. Hence, for all jobs, it takes O(NJ · log[NR]).

Thus, the total complexity is O
(
(NR + NJ) · log[NR]

)
.

4. The Homogeneous Transporter Allocation Problem

In this section, we consider the special case of (TAP) in which all transporters have
the same filling time κ. We call instances of (TAP) that fulfill this condition homogeneous.
Note that in this case, the saturating transporter cardinality N∗R(j) of job j can be computed
in O(1) by the equation:

N∗R(j) :=
⌈

δ(j)
κ

⌉
+ 1. (4)

That means that the saturating transporter cardinality of all jobs can be computed in
O(NJ) instead of O

(
(NR + NJ) · log[NR]

)
as in the general case.

By definition, if we assign Y j(X) = ∑r Xr,j ≥ N∗R(j) transporters to a job j, then
the job j is saturated and its completion time is Csat(j). Otherwise, every period takes
duration δ(j) + κ while the effective completion time is only Y j · κ, and the job j is idle for
the remaining δ(j) + κ −Y j · κ time units per period.
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Then, the job completion time is:

C(j, X) =

{
Csat(j) ·

(
δ(j) + κ

)
/
(
κ ·Y j(X)

)
if Y j < N∗R(j),

Csat(j) if Y j ≥ N∗R(j)
. (5)

In what follows, we show that for a homogeneous instance of (TAP), the full frontier
of Pareto optimal solutions can be computed in O

(
(NR + NJ) · log[NJ ]

)
time.

Consider algorithm (HOM), which computes the Pareto frontier in the following steps:

1. The first Pareto solution is achieved by assigning one transporter to every job;
2. Add one more transporter to any job with maximum completion time according to

Equation (5);
3. If step 2 decreased the makespan, then the new solution is a Pareto solution;
4. If any job with maximum completion time is saturated, or if all transporters are used,

stop; otherwise, return to step 2.

The following theorem shows that algorithm (HOM) computes the frontier of Pareto
optimal solutions in full.

Theorem 2. If every transporter has the same filling time, Algorithm (HOM) computes a Pareto
solution to (TAP) at every step in which the makespan decreases. Moreover, each Pareto solution is
found by algorithm (HOM).

Proof. We prove, equivalently, that at the k-th step (including the step where the first
solution is computed), Algorithm (HOM) computes a solution of minimum makespan
amongst all solutions in which exactly NJ + k− 1 transporters are used. That means that if
the makespan decreases in the k-th step, the achieved solution is Pareto optimal, since any
fewer number of used transporters can only achieve a strictly larger makespan. In addition,
since all possible numbers of used transporters are tested once, no Pareto optimal solution
is missed.

It remains to be shown that indeed, the solution computed in the k-th step has a
minimum makespan amongst all solutions in which exactly NJ + k− 1 transporters are used.
Suppose that at the k-th step, the assignment is not minimizing the makespan over every
solution using k transporters. Let (Y j1 , . . . Y jNJ

) be the number of transporters assigned

to the jobs at this step. Consider an optimal assignment of k transporters (Y∗j1 , . . . Y∗jNJ
),

minimizing the makespan. Pick the first iteration where the algorithm assigns a transporter
to a job ji such that the number Y∗ji of the optimal solution is being exceeded. By definition,
the completion time of the optimal solution is greater or equal to the completion time of ji
when using Y∗ji transporters. However, by construction, at this point in time, the algorithm
assignment is such that the completion time of every job is smaller than or equal to this
duration. This contradicts the assumption that the maximum completion time with Y∗ is
strictly lower than with X, hence that Y∗ is optimal.

Additionally, Algorithm (HOM) has the runtime as claimed above.

Theorem 3. Algorithm (HOM) runs in time O
(
(NR + NJ) · log[NJ ]

)
.

Proof. We first compute the partial assignment of one transporter per job in O(NJ). Then,
for at most NR iterations, we adjust the longest job and reorder the sorted list. Computing
the completion time of a job takes O(1) time by Equation (5). If we store job completion
times in a heap data structure in O(NJ · log[NJ ]), then every iteration is performed in
O(log[NJ ]). Thus, the total time complexity is O((NR + NJ) · log[NJ ]).

Together, Theorems 2 and 3 prove our initial proposition.
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Corollary 1. For a homogeneous instance of (TAP), the full frontier of Pareto optimal solutions
can be computed in O((NR + NJ) · log[NJ ]) time.

Note that in the homogeneous (TAP), the set of transporters can be encoded in log[NR]
space by simply encoding the number of transporters (all transporters are of the same
type). Thus, technically, a runtime ofO

(
(NR + NJ) · log[NJ ]

)
is not polynomial in the input

length. On the other hand, for a generic instance, a Pareto frontier has O(NR) points, so it
cannot be put out in less than O(NR) steps. In scheduling, this is usually referred to as a
high-multiplicity problem, see [28].

One way to resolve this issue is to show that any single Pareto point can be computed
in polynomial time (with an algorithm that is at most logarithmic in NR). For our algorithm,
note that any single iteration of step 2 runs in O(log[NJ ]) time and that a new Pareto point
is found at least every NJ such iterations (after each job is assigned one more transporter).
Thus, our algorithm moves from one Pareto point to the next in polynomial time. Still, in
order to compute a particular point, using at most m transporters, with Algorithm (HOM),
we need O

(
(m + NJ) · log[NJ ]

)
steps, which is not polynomial when m = O(NR).

Instead, one can compute for a given makespan exactly the number of transporters
needed to be assigned to each job via Equation (5) and then check if the total number
of transporters does not exceed the given upper bound. For any given makespan, this
check can be run in O(NJ) time, running one computation for each job. Then, via binary
search using this computation at each step, one obtains a polynomial algorithm to compute
a particular point on the Pareto frontier. To be precise, the obtained algorithm runs in
O
(

NJ · log[maxj{C(j, 1)}]
)
, where C(j, 1) denotes the processing time of a job when exactly

one transporter is assigned to it.
However, our primary goal is to compute the Pareto frontier as a whole, for which

Algorithm (HOM) is better suited than iteratively using the suggested binary search algo-
rithm, which would take O

(
NR · NJ · log[maxj{C(j, 1)}]

)
time.

5. The Saturated Transporter Allocation Problem

In this section, we consider a simplification of (TAP), which we call the saturated
transporter allocation problem (STAP). The objective of (STAP) is to compute an optimal
saturating assignment, that is with a minimum number of transporters and where jobs are
never idle. If the transporter fleet is too small to allow such an assignment, then (STAP)
is infeasible.

Note that this simplification removes the bi-criteria nature of the problem, as the only
objective is to assign as few transporters as possible, under the constraint of saturating
every job. In addition, note that the solution to problem (STAP) is not necessarily a point
on the Pareto frontier of (TAP). Indeed, from a solution of (STAP), it may be possible
to remove some transporters from shorter jobs without increasing the makespan of the
solution (but leaving shorter jobs unsaturated as a consequence). Finally, note that (STAP)
is NP-hard in the strong sense, by Theorem 1, where we showed that computing a point on
the Pareto frontier is strongly NP-hard, even if it reduces to finding a saturating assignment.

We first provide two mixed integer programs to solve (STAP): one for the general
case and one optimized for the case were the transporter fleet consists of several types
of similar transporters, which is more prevalent in practical settings. Then, we introduce
several greedy heuristics, which we will later extend also to the solution of general (TAP).
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5.1. General MIP Formulation

The following mixed integer program (SMIP) describes the saturated problem (STAP),
depending on the assignment Xr,j, the transporter filling times κ(r), and the return times δ(j):

(SMIP) :

min
X

∑
r∈R

∑
j∈J

Xr,j (6)

s.t. ∑
j∈J

Xr,j ≤ 1, ∀r ∈ R (7)

∑
r′∈R

[
Xr′ ,j · κ(r′)

]
− Xr,j · κ(r) ≥ δ(j), ∀r ∈ R, ∀j ∈ J (8)

Xr,j ∈ {0, 1}, ∀r ∈ R, ∀j ∈ J . (9)

Equation (8) represents the saturation constraints: the return time of each assigned
transporter is covered by the total filling time of the remaining assigned transporters, hence
preventing any idle time. Recall that, actually, it is sufficient to test this for the transporter
with maximum capacity, leading to

∑
r∈R

[
Xr,j · κ(r)

]
−max

t∈R
Xr,j · κ(r) ≥ δ(j), ∀j ∈ J .

However, since this is not a valid constraint for a MIP, Equation (8) is used instead.

5.2. Aggregated MIP Formulation

In the mentioned real-life applications, it is rarely the case that transporter sizes vary
arbitrarily. Rather, some small number of different models or variants exist that come with
different capacities. In that case, it is reasonable to exploit this by grouping transporters
with the same filling time. In the following, we identify each filling time with a transporter
model and rewrite (SMIP) after grouping the transporters by their model.

Suppose that the set of transporter models is denoted byM, and for each m ∈ M,
there are M(m) many transporters of model m. Furthermore, assume the filling time of
transporter model m is denoted by κ(m). Introduce variables Ym,j, denoting the number of
transporters of model m assigned to job j. Additionally, the binary variable Xm,j is equal to
1 if and only if at least one transporter of model m is assigned to job j.

We denote by N+ the set of natural numbers, including 0. Then, the aggregated mixed
integer program (SMIPg) is as follows:

(SMIPg) :

min
X,Y

∑
m∈M

∑
j∈J

Ym,j (10)

s.t. ∑
j∈J

Ym,j ≤ M(m), ∀m ∈ M (11)

Xm,j ≤ Ym,j, ∀m ∈ M, ∀j ∈ J (12)

Ym,j ≤ M(m) · Xm,j, ∀m ∈ M, ∀j ∈ J (13)

∑
m′∈M

[
Ym′ ,j · κ(m′)

]
− Xm,j · κ(m) ≥ δ(j), ∀m ∈ M, ∀j ∈ J (14)

Xm,j ∈ {0, 1}, ∀m ∈ M, ∀j ∈ J (15)

Ym,j ∈ N+, ∀m ∈ M, ∀j ∈ J . (16)

Note that the variables Xm,j are only used in the constraints from Equations (14). Since
these constraints are more restrictive when Xm,j = 1, the solver will by default set Xm,j to 0.
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Therefore, we do not need to fix an upper bound for variables Xm,j = 1. Hence, we could
omit Equation (12), but we leave it for the sake of clarity.

This new program (SMIPg) has 2 ·NM ·NJ variables and NM + 3 ·NM ·NJ constraints,
whereas (SMIP) has NR · NJ variables and NR + NR · NJ . Therefore, the size of the new
program (SMIPg) is smaller than the size of (SMIP) as soon as there are at least three
transporters per model.

After solving (SMIPg), we still need to arbitrarily assign the transporters of each
model to the jobs, which can be done in O(NR + NJ) time.

5.3. Greedy Algorithms

In this section, we develop three greedy algorithms for (STAP), which are inspired by
algorithms used for the multiple knapsack problem.

In order to illustrate the connection between (STAP) and multiple knapsack problems,
below, we use the wording of knapsack instances to formulate the goal of (STAP). When
solving a multiple knapsack problem, the goal is to pack items with given weight and
value in knapsacks to maximize the total packed value without exceeding the weight
capacity of any knapsack. Using the same wording, when solving the saturated transporter
allocation problem, the goal is to pack items with given weight and constant value of 1
in knapsacks to minimize the total packed value while ensuring the following minimum
capacity conditions: in every knapsack, the total packed item weights excluding the biggest
one exceeds a minimum total weight.

In [27], the authors propose, among others, two heuristics to solve the multiple
knapsack problem under additional assignment restrictions. Their first greedy heuristic
consists of taking the items in non-increasing order and assigning them to the first eligible
knapsack. Their second algorithm takes knapsacks in an arbitrary order and successively
solves single knapsack problems using the still unassigned items.

Following these ideas, our first algorithm assigns transporters to the jobs one job after
the other, whereas the second and third algorithms assign transporters one by one to the
best suited job. These heuristics are later also extended to the general version of (TAP)
in Section 6 and are computationally evaluated along with other algorithms and MIPs in
Section 7.

5.3.1. Greedy Algorithm by Job

Our first greedy algorithm (SGJ) iterates through the jobs in order of non-increasing
return times. It assigns exactly as many transporters as needed to one job at a time so that
the job is saturated. If at any time during the algorithm the current job cannot be saturated,
the algorithm fails.

We assume that transporters are indexed in order of non-increasing filling times. We
start with transporter setR′ := R. We iteratively assign to a job a saturating transporter
set with respect to the current set R′ and update R′ thereafter by deleting the assigned
transporters. Since the ideal transporter sets of different jobs may overlap, it cannot be
guaranteed that every job j will be assigned to N∗R(j) transporters.

At any iteration, for a current job j, we first compute the minimum number of trans-
porters N∗R′(j) needed to saturate j using the current remaining set of transporters R′.
Recall that by Theorem 3.2, this can be done efficiently. Then, we enumerate all subsets of
R′ of size N∗R′(j) and assign one to j such that j is saturated. If there are multiple subsets
ofR′ of size N∗R′(j) which saturate j, then as a tie breaker, we choose the set that uses the
smallest maximum indexed transporter, which is not used by all other sets. If there is still a
tie, we repeat the above rule with only the still tied sets until only one candidate set is left.

For example, suppose that the current transporter set is R′ = {r1, r2, r3, r4, r5}, and
that our current job is j with N∗R′(j) = 3. Suppose there are four subsets ofR′ of size 3 that
saturate job j, namely {r1, r2, r3}, {r1, r2, r4}, {r1, r2, r5}, and {r1, r3, r4}. Recall that trans-
porters are numbered in order of non-increasing filling times. All sets use transporter r1.
After removing r1, the transporter with maximum filling time in the first three candidates
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is r2, while the transporter with maximum filling time in the fourth candidate is r3. We pick
the fourth candidate, since r3 has a smaller or equal filling time compared to r2.

If in the above example, {r1, r3, r5} would have been a candidate as well, then in
a second round of tie breaking, our algorithm would only consider sets {r1, r3, r4} and
{r1, r3, r5}. After removing common transporters, only r4 remains in the first set, while
only r5 remains in the second, leading to us choosing the later set {r1, r3, r5}.

Note that the runtime of algorithm (SGJ) is exponential in the number of transporters,
since we enumerate over a set of subsets of the transporter set. However, since all subsets
have the same cardinality and this cardinality is usually relatively small, in practice, (SGJ)
still has a reasonable runtime, as is shown in the computational experiments in Section 7.

5.3.2. Greedy Algorithms by Transporter

Algorithms (SGRc) and (SGRi) assign transporters one by one in order of non-
increasing filling times.

Given currently assigned transporters, Algorithm (SGRc) assigns the next transporter
to the non-saturated job with maximum completion time, whereas Algorithm (SGRi)
assigns it to the non-saturated job with maximum idle time per period.

If every transporter has been assigned but the solution is still not saturated, these
algorithms do not find any saturating solution. However, as opposed to algorithm (SGJ),
the found solution is still feasible for the unsaturated problem as long as the number of
transporters is at least as large as the number of jobs, i.e., if the instance itself is feasible.
Indeed, both algorithms (SGRc) and (SGRi) assign the first NJ transporters to different jobs.

Recall that by Equation (1):

C(j, X) := Csat(j) · L(j, X)

L(j, X)− I(j, X)
,

and by Equation (2):

L(j, X) := max
{

∑
r∈R

Xr,j · κ(r), δ(j) + max
r∈R

[
Xr,j · κ(r)

]}
.

Therefore, at every step of Algorithms (SGRc) and (SGRi), we only need to save the
current values of the total and of the maximum assigned transporter capacities in order to
decide where to assign the next transporter. We deduce from Equation (2) whether a job is
saturated or not.

Theorem 4. Algorithms (SGRc) and (SGRi) run in O(NR · log[NR]).

Proof. In both algorithms, we first sort the transporters by decreasing filling time in
O(NR · log[NR]). Then, the two algorithms use a different strategy to select the best job to
which the next transporter is assigned. For Algorithm (SGRi), the best job maximizes the
idle time per period. For Algorithm (SGRc), the best job maximizes the completion time.

In either case, we sort the jobs in O(NJ · log[NJ ]) using e.g., a heap map. Then, the
algorithm extracts the best job in O(log[NJ ]) time, update its value along with its total
and its maximum transporter filling times in O(1) time, and re-insert it into the heap in
O(log[NJ ]).

Since our problem requires NJ ≤ NR, the time complexity of the algorithm is O(NR ·
log[NR]).

6. The General Transporter Allocation Problem

In this section, we consider the general transporter allocation problem (TAP), where we
allow jobs to have idle time.

In the first part of this section, we show how to exactly compute the frontier of Pareto
optimal solutions for an instance of (TAP). In order to do this, we first consider how to
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minimize the makespan for a given set of transporters. Then, the Pareto frontier can be
computed by iteratively increasing the number of transporters we are allowed to assign.

Then, in the second part of this section, we introduce heuristics to approximate the
Pareto frontier instead.

All algorithms developed in this section are evaluated in Section 7.

6.1. Computing the Pareto Frontier Exactly

Now, we consider the problem of finding a solution of minimum makespan for a given
instance of (TAP). Note that if only a subset of the given transporter set of size k should be
used instead, it is the same as computing the minimum makespan for a new instance of
(TAP) using only the k transporters with largest filling time. Observe also that a solution
of minimum makespan does not necessarily use every transporter, as short jobs do not
require to be saturated.

We first introduce a mixed integer quadratic program for which it is easy to see that it
indeed finds a solution with minimum makespan for a feasible instance of (TAP). Then,
we show how the quadratic program can be solved by instead iteratively solving a mixed
integer linear program.

6.1.1. A Mixed Integer Quadratic Program

We denote by R+ the set of real positive numbers, including 0. The following mixed
integer non-linear program computes a solution to (TAP) minimizing the makespan, using
the return time δ(j), the saturated job processing time Csat(j), the period length Lj, and the
idle time per period I j. Note that L and I in this case are used as variables, instead of the
predefined values L(j, X) and I(j, X), as introduced in Section 1.

(QTAP) :

min
X,C∗ ,L,I

C∗ (17)

s.t. ∑
j∈J

Xr,j ≤ 1, ∀r ∈ R (18)

∑
r∈R

Xr,j ≥ 1, ∀j ∈ J (19)

C∗ ≥ Csat(j) ·
Lj

Lj − I j
∀j ∈ j (20)

Lj = I j + ∑
r∈R

Xr,j · κ(r) ∀j ∈ J (21)

Lj ≥ Xr,j · κ(r) + δ(j) ∀j ∈ J , ∀r ∈ R (22)

Xr,j ∈ {0, 1}, ∀j ∈ J , ∀r ∈ R (23)

Lj, I j ∈ R+, ∀j ∈ J (24)

Note that because of the terms
Lj

Lj−I j
in Equation (20), the above program is indeed not

linear. Namely, we get a quadratic program by multiplying both sides of the equation by
Lj − I j. In the next subsection, we will propose an alternative algorithm to solve (TAP)
with the means of a slightly modified linear formulation.

Equation (19) ensures that Lj − I j > 0 (i.e., the idle time is finite); hence, Equation (20)
does not induce a division by zero. Equation (20) computes the job completion time.

Equations (21) and (22) model the period length along with the idle time per period.
For a given assignment X, the value of Lj − I j is fixed by Equation (21). Since we minimize
the makespan, the program will tend to minimize Lj by Equation (20) while keeping it above
δ(j) + max

{
κ(r) : Xr,j = 1} by Equation (22). However, in this mathematical program,

Lj and I j do not exactly model the period length and idle time per period, as defined in
Equations (2) and (3). Indeed, a solution to (QTAP) may contain additional, unnecessary
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idle times for some jobs, and thus, the period length of those jobs may be artificially
increased as long as the resulting completion time stays shorter than the completion time
of the longest job. This problem could be fixed, though, by minimizing, for example, the
average completion time as an additional objective.

6.1.2. Solving the Mixed Integer Quadratic Program

Instead of directly computing the optimal completion time of C∗, we iteratively look
for a solution with a given completion time. We denote the maximum saturated job
processing time by:

Csat
max := max

j
{Csat(j)}. (25)

The makespan C∗ of any solution to (TAP) takes at least this duration:

C∗ ≥ Csat
max. (26)

We define the rate of idle time per period ρ(j, C) as the rate of idle time to have at every
period for job j so that its completion time is C:

ρ(j, C) := 1− Csat(j)
C

< 1. (27)

Hence, we fix the idle time per period as:

I j = ρ(j, C) · Lj. (28)

The following mixed integer program (ρMIP) minimizes the number of assigned trans-
porters under the same constraints as in the above mathematical program after replacing
the idle time variables and the job completion time variables:

(ρMIP) :

min
X

∑
r∈R

∑
j∈J

Xr,j (29)

s.t. ∑
j∈J

Xr,j ≤ 1, ∀r ∈ R (30)

∑r′
[
X j,r′ · κ(r′)

]
1− ρ(j, C)

− Xr,j · κ(r) ≥ δ(j) ∀j ∈ J , ∀r ∈ R (31)

Xr,j ∈ {0, 1}, ∀j ∈ J , ∀r ∈ R. (32)

Since ρ(j, C) < 1, it follows that I j < Lj and hence Equation (19) is not needed anymore.
Equation (31) is the combination of Equations (21) and (22) from the previous mathematical
program along with the idle time per period formula of Equation (28). Note that it differs
from the saturation condition of Equation (8) only by the factor 1/

(
1− ρ(j, C)

)
.

Lemma 2. For any solution of (ρMIP), the completion time of every job is C∗.

Proof. Consider a solution X of (ρMIP). For every job j, the idle time per period is:

I j = ρ(j, C) · Lj

= (1− Csat(j)
C∗

) · Lj

= Lj − Lj ·
Csat(j)

C∗
.
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Using Equation (1), the job completion time C(j) is then:

C(j) = Csat(j) ·
Lj

Lj − I j

= Csat(j) · Lj ·
C∗

Lj · Csat(j)

= C∗.

Now, we show that for a given target makespan C∗, a solution to (ρMIP) is a solution
to (TAP), i.e., an element of the Pareto frontier. Furthermore, ignoring artificial idle times, a
solution to (TAP) can be found by solving (ρMIP) with an appropriate target makespan C∗.

Theorem 5. For a given target makespan C∗, any solution of (ρMIP) is a solution of (TAP) with
makespan at most C∗. Conversely, any solution of (TAP) with makespan C∗ can be transformed
into a solution of (ρMIP) with target makespan C∗.

Proof. Algorithm (ρMIP) has been constructed from (QTAP) by fixing the variables I
and L for a given target makespan C∗. Therefore, any solution to (ρMIP) is a solution to
(QTAP) and therefore to (TAP). Moreover, by definition of (ρMIP), the makespan of the
any solution is at most C∗.

On the other hand, given a solution X of (TAP), we can increase the completion time
of every job up to the makespan C∗. After adding such artificial idle times, note that the
new solution X′ fulfills Equation (28) for all jobs. Therefore, it is also a solution of (ρMIP)
with target makespan C∗.

Theorem 5 implies that in order to find a solution minimizing the makespan C∗min for
(QTAP) and therefore (TAP), we can instead run (ρMIP) for different values of C∗ using
a binary search. The following lemma limits the search interval for C∗min.

Lemma 3. The minimum makespan C∗min is between Csat
max and the minimum makespan of any

solution to the homogeneous transporter fleet problem where every transporter has filling time
minr{κ(r)}.

Proof. By definition, the completion time of a job j ∈ J cannot be smaller than its saturated
processing time Csat(j). On the other hand, given an assignment for the homogeneous
transporter fleet problem, then increasing the values for κ(j) while keeping the assignment
the same does not increase the completion time of any job.

Hence, we can use a binary search between these values to approximate an optimal
solution. The following Lemma is straightforward.

Lemma 4. Consider ε > 0, C1 and C2 ∈ [C1, C1 + ε] such that (ρMIP) has a solution for
C∗ = C2 and no solution for C∗ = C1. Then, the solution for C∗ = C2 has a maximum job
completion time at most ε away from the optimal solution of (TAP). Moreover, it minimizes the
number of transporters used among the solutions with a makespan of C2.

We denote by (BS) the above described binary search algorithm framework, which
requires an inner algorithm to solve (ρMIP). Note that we can aggregate (ρMIP) by a
transporter model similarly to (SMIPg).

6.1.3. Pareto Frontier

Now, instead of computing a single solution, we compute the Pareto frontier of
a (TAP) instance. By construction, the assignment computed by Algorithm (BS) has
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minimum makespan C∗min and uses as few transporters as possible. The Pareto frontier of
the assignments is as depicted in Figure 3.

The transporter count in a Pareto optimal solution is as least equal to the number of
jobs and at most equal to the transporter count computed by Algorithm (BS).

Our main algorithm (BS.MIPg) in this paper computes, for each transporter count,
a solution with the minimum makespan using this number of transporters. This can be
done with one binary search (BS) per transporter count. At every iteration, we solve
an aggregated version of (ρMIP) using an MIP solver. Note that when computing a
Pareto solution for a given count of every transporter, we choose the transporters with the
biggest capacity.

Figure 3. Minimum number of transporters in an assignment with a given makespan. A feasible
solution needs at least one transporter per job. The solution minimizing the makespan does not
necessarily require all NR transporters.

6.2. Heuristics to Compute the Pareto Frontier

Now, we introduce several different heuristic algorithms to approximate the Pareto
frontier of a (TAP) instance.

First, we use simple extensions of the heuristics for the saturated problem to com-
pute the Pareto frontier directly. Then, we show how to achieve alternative heuristics by
combining the heuristics for the saturated problem directly with ideas from the first part
to approximate solutions of minimum makespan for the general (TAP), given a fixed set
of transporters. Then, as in the first part, an approximation of the Pareto frontier can be
gained by iteratively increasing the number of transporters we are allowed to assign.

6.2.1. Extensions of the Saturated Algorithms

Now, we extend the saturated greedy algorithms (SGJ), (SGRi), and (SGRc) to com-
pute a Pareto frontier for (TAP). Note that every solution of the Pareto frontier must assign
at least one transporter to each job, as otherwise, the makespan is infinite.

It is straightforward to extend the greedy algorithms by transporter (SGRi) and (SGRc)
to compute a Pareto frontier, since every iteration already provides a partial assignment
using one more transporter. At every iteration, we generate a completed assignment by
temporarily providing one transporter to each job that had not received any transporter
yet. If we do not have enough transporters to complete the assignment, the algorithm stops
and returns the computed Pareto frontier. We denote by (GRi) and (GRc) the extension of
the greedy heuristics to the general case.

For the greedy algorithm by job (SGJ), there is no simple way of creating a Pareto frontier.
Our extension (GJ) of algorithm (SGJ) iteratively runs with different transporter counts,
always choosing the ones with biggest capacity. For a fixed transporter count, when assign-
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ing transporters to a job, (GJ) must restrict the maximum number of transporters assigned
to this job such that the next jobs can still receive at least one transporter. Since Algorithm
(GJ) allows jobs to not be saturated, it becomes more important to order the jobs in a mean-
ingful sequence before assigning the transporters. We sort the jobs by decreasing values of
completion time they would have if they were only assigned the smallest transporter. If we
denote by κmin the minimum transporter filling time, by Equation (1), that means jobs are
sorted by non-increasing value of Csat(j) · δ(j)+κmin

κmin
, depending on the job return time δ(j).

In our simulations, we will only consider jobs with the same saturated processing time. In
this case, our job order is equivalent to ordering the jobs by decreasing return times.

6.2.2. Binary Search Heuristics

In the following, we develop new heuristics by replacing the resolution of program
(ρMIP) with greedy heuristics in the binary search framework from (BS.MIPg).

The program (ρMIP) consists of minimizing the number of used transporters for
a fixed makespan. Hence, Algorithm (BS.MIPg) computes a solution, minimizing the
number of used transporters for different makespan values. This is exactly what Algorithm
(GRc) does. Therefore, combining this algorithm with a binary search will not yield any
better result.

On the other hand, Algorithms (SGJ) and (GRi) focus on the idle time per period.
The former looks for a combination of transporters saturating a job, while the latter aims
at minimizing the maximum idle time per period. In the following, we slightly modify
program (ρMIP) to look like an instance to (STAP) and use our greedy algorithms.

The program (ρMIP) only differs from a saturated transporter allocation program by
the factor 1/

(
1− ρ(j, C)

)
in Equation (31). Namely, for every job j:

1
1− ρ(j, C)

·∑
r

[
Xr,j · κ(r)

]
−max

r

[
Xr,j · κ(r)

]
≥ δ(j).

We rewrite Equations (31) as:

∑
r

[
Xr,j · κ(r)

]
−
[
1− ρ(j, C)

]
·max

r

[
Xr,j · κ(r)

]
≥
[
1− ρ(j, C)

]
· δ(j)

∑
r

[
Xr,j · κ(r)

]
−max

r

[
Xr,j · κ(r)

]
≥
[
1− ρ(j, C)

]
· δ(j)

− ρ(j, C) ·max
r

[
Xr,j · κ(r)

]
.

Since the maximum capacity assigned to a job is bounded by the maximum capacity
over all transporters κmax, the following constraint is more restrictive:

∑
r

[
Xr,j · κ(r)

]
−max

r

[
Xr,j · κ(r)

]
≥
[
1− ρ(j, C)

]
· δ(j)− ρ(j, C) · κmax. (33)

This more restrictive constraint corresponds to a modified instance of (STAP), with a
return time of

[
1− ρ(j, C)

]
· δ(j)− ρ(j, C) · κmax instead of δ(j) for job j. We call (rMIP) the

mixed integer program obtained by replacing Equation (31) with Equations (33), modeling
a saturated transporter assignment problem.

We can use this modified framework with any of our greedy heuristics to approximate
the Pareto frontier. We denote by (BS.GJ) and (BS.GRi) the binary search-based heuristics
using Algorithms (SGJ) and (SGRi) respectively to solve (rMIP).

7. Experiments

In this section, we provide two series of experiments. Firstly, we analyze the computa-
tion time and the efficiency of the saturated algorithms, which are the core of our algorithms.
Afterward, we take a look at the Pareto frontiers computed for the general problem.
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7.1. Simulation Environment

The simulations are done on a ThinkPad T490s with a processor Intel Core i7-8665U
with 1.90GHz. Algorithms are implemented under Windows 10 in C#, and we use the
open-source library Google-OR-Tools to solve mixed integer programs.

For the sake of simplicity, we restrict our simulations to a limited case study. We eval-
uate the performance of the algorithms on 100 feasible instances with a limited transporter
fleet, using the following scenarios:

• 4 jobs, 20 transporters;
• 5 jobs, 25 transporters;
• 6 jobs, 30 transporters;
• 7 jobs, 35 transporters.

We randomly generate 100 problem instances for each scenario. The number of jobs,
number of transporters, as well as the job return times and the transporter filling times
are all integers following an uniform distribution. The return time of every job is between
5 and 15, and the filling time of every transporter is between 1 and 5. Therefore, every
job will need on average 1 + d 5+15

1+5 e = 5 transporters. Every job has the same saturated
processing time of 180.

We are interested in three criteria:

1. The average computation time of the algorithm.
2. The number of infeasible instances, where the algorithm did not find an assignment.
3. The number of assigned transporters. Whenever the model is infeasible, we set the

number of assigned transporters equal to the total number of transporters. Thus, we
choose for this criterion to not penalize infeasible instances compared to a feasible
assignment effectively using every transporter at our disposal.

Each of these criteria is sought to be minimized: a good performing algorithm must
have low values for these criteria. Note that for saturated algorithms, the completion time
of every job is fixed; hence, it does not need to be evaluated.

7.2. Performance of the Saturated Algorithms

We consider the following saturating algorithms:

• Algorithm (SGJ), assigning transporters to jobs one by one.
• Algorithms (SGRi) and (SGRc), iteratively assigning transporters to the job with

maximum idle time per period and maximum completion time, respectively.
• Algorithm (SMIPg), the mixed integer program grouping transporters with equal

filling time.

We excluded the simple mixed integer program (SMIP), as it turned out that it is
already too slow for our problem instances (see Figure 4).

Figure 4. Average running time of Algorithm (SMIP) over five randomly generated instances, in
seconds. We set up the solver with a one hour time-out limit, such that an instance takes a maximum
of 3600 s duration.
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Figure 5 presents the running times of the algorithms. Algorithm (SMIPg) is reason-
ably fast for our small problem instances of up to 10 jobs. All greedy heuristics always
run in a few milliseconds. We remind here that the complexity of Algorithm (SGJ) is
exponential in the saturating transporter cardinality, which should not exceed six in our
test sets.

Figure 5. Distribution of running times of the algorithms, in seconds. The distributions are shown as
box plots. The dot shows the average value and the line the median. The box (if it exists) shows the
25% to 75% quantile. If there is no box, then the values in those quantiles coincide with the average.
Outliers are shown as diamonds.

Figures 6 and 7 show for every algorithm the total number of infeasible instances and
the average number of used transporters, respectively. Since our test sets only contain
feasible instances, the optimal algorithm (SMIPg) has no infeasible instance. Among
the greedy heuristics, the heuristic by job (SGJ) performs better than the heuristics by
transporters. This is an intuitive result in saturated scenarios, as (SGJ) looks for the tightest
assignment for every job, whereas Algorithms (SGRi) and (SGRc) assign transporters on
the fly, without ensuring that the transporters assigned to a same job fit well together.
Algorithm (SGRc), which minimizes the completion time at every step, performs slightly
worse than Algorithm (SGRi), which minimizes the idle time at every step, for a similar
reason: since the objective is to remove the idle time, it is more beneficial to focus on the
idle time than the completion time, as the latter also depends on the superfluous total size
of the job.

Figure 6. Share of the 100 instances where the respective algorithms do return a feasible, saturated solution.
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Figure 7. Distribution of assigned transporters (using the same boxplot settings as in Figure 5).
Whenever an instance is infeasible, this number is set to the total number of transporters.

We conclude that when looking for a saturated solution, a good recommendation is to
use the greedy heuristic by jobs (SGJ).

7.3. Performance of the General Algorithms

We now evaluate the Pareto frontier generated by the following algorithms:

• The three greedy algorithms (GJ), (GRi), and (GRc) generalizing their saturated
counterparts (SGJ), (SGRi), and (SGRc).

• The binary search algorithm (BS.MIPg) solving an aggregated version of (ρMIP) by
grouping transporters with equal filling time.

• The binary search heuristics (BS.GJ) and (BS.GRi), which are iteratively called re-
spectively (SGJ) and (SGRi) to solve the saturated mixed integer program (rMIP)
with altered job return times.

Figure 8 shows the computed Pareto frontiers for our first simulation scenario, using
f our jobs and 20 transporters. Contrary to the saturated case, Algorithm (GJ) performs
poorly for limited transporter fleets, as it over-invests transporters for the first jobs while
letting future jobs have a single transporter. Since the last job typically gets assigned the
smallest transporter in the fleet, adding an even smaller transporter to the fleet will further
increase its completion time, hence potentially increasing the makespan of the assignment.
In other words, Algorithm (GJ) may generate a worse, dominated solution while using
a bigger transporter fleet. In order to create a non-increasing Pareto frontier, we set the
makespan with N available transporters as the minimum makespan over every instance
using at most N transporters.

Algorithm (GRi) is less efficient than Algorithm (GRc) for a similar reason: since we
want to minimize the maximum job completion time, we should assign more transporters
to jobs with the highest residual completion time instead of the job with the highest residual
idle time.

However, the binary search-based heuristics generally perform very well when com-
pared to the nearly optimal algorithm (BS.MIPg), with the exception of (BS.GJ) when
using less than 10 transporters. This shows that virtually increasing the return times of the
small jobs (with short saturated processing time) is a good way to balance the transporter
fleet between the jobs and ensure a short makespan. Note that the Pareto frontiers gener-
ated by the binary search heuristics only start at eight transporters, because each job needs
at least two transporters to be saturated.
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Figure 8. Median Pareto frontier over 100 instances with 95% confidence intervals. Algorithm
(BS.MIPg) computes Pareto optimal solutions, whereas the other algorithms have no optimality
guarantee. By design, Algorithms (BS.GJ) and (BS.GRi) cannot compute any solution using less
than eight transporters.

Finally, Table 2 shows that the binary search-based heuristics are extremely fast, despite
being 10 to 100 times slower than their greedy counterpart.

Table 2. Average running times to compute the Pareto frontiers over 100 instances, in seconds.

Algorithm (BS.MIPg) (GJ) (GRi) (GRc) (BS.GJ) (BS.GRi)

Runtimes [s] 33 0.00075 0.00011 0.00015 0.013 0.010

We conclude that to solve an instance of the transporter assignment problem, an
efficient method consists of iteratively increasing the return time of the jobs until the
problem has a saturated solution. Then, the computed saturated solution is a good solution
to the initial assignment problem. An advantage of this method is that the saturated
problem instances do not have to be solved to optimality, and most decent algorithms
should induce a good solution to the transporter assignment problem.

8. Conclusions

The objective of the transporter allocation problem is to assign transporters to jobs
to jointly minimize the makespan of the jobs and the number of assigned transporters.
Crucially, transporters have a limited capacity, and usually, multiple transporters are
assigned to a single job. After processing a share of the job load, a transporter must wait
for a given time before it can process the job again. In particular, the goal is to compute the
frontier of Pareto optimal solutions.

To the best of our knowledge, this is the first study on the assignment of an heteroge-
neous transporter fleet where transporters are regarded as a dynamic resource impacting
the completion times and not as a fixed requirement.

We show that in general, it is NP-hard in the strong sense to compute even a single
point on the Pareto frontier. In particular, it is NP-complete to decide whether a solution
exists where every job has the same minimum completion time. Furthermore, the problem
remains NP-hard in the usual sense, even if there are only two jobs.

On the other hand, when every transporter is identical, the whole Pareto frontier can
be computed in a runtime polynomial in the number of jobs and transporters.

We provide several exact algorithms and heuristics to compute the minimum number
of transporters needed such that all jobs are contracted to their minimum completion time.
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Then, we use these results to compute Pareto frontiers for general (TAP) instances, both
exactly and heuristically. Computational experiments show that our heuristics compute
quickly decent approximations of the optimal solution, where the mixed integer program
is already slow.

The results presented in this paper are part of a wider, practical study, in which we
used a multi-level approach to solve applied problems in farming logistics together with
an industrial partner. Assigning transporters to jobs was one of several levels of decision
making in this regard, and our algorithms (adjusted for some additional practical needs)
have proven to be useful also in early applied experiments.

In this paper, we assumed that every team of transporters only completes a single
job. However, depending on the job sizes, there are also a variety of practical applications,
where transporters are grouped into teams to fulfill several jobs per day in a sequence.
Removing this limitation in a future study would significantly increase the number of use
cases to which our results can be applied. Note that moving from one job to another may
induce location-dependent traveling times, which we did not need to take into account in
this paper. Even though we expect a single move from one job (or from the hub) to the
next job to only have a minor impact on the solution, it will be important to find the best
time to switch a transporter from one job to the next. Another challenge would be how
to decide which jobs should be served by the same transporter team and which should
receive a different team. Such a clustering, if not mandated by practical circumstances such
as large travel times between the jobs, would be an additional degree of freedom, which
can have a large impact on the optimality of a solution.

As a further area of extension, note that in our model, it is implicitly assumed that all
teams of transporters are disjointed (since each transporter can only be assigned to one
job). This is common practice to simplify the planning task, but it can lead to less efficient
solutions. In some applications, such as [2,4], transporters are allowed to alternate between
different jobs, optimizing the usage of each machine and hence providing better solutions.
Allowing this for our problem would add an additional layer of difficulty. In particular,
period lengths would no longer be constant but would differ, depending on when some
transporters may serve another job. The scheduling decision, when to switch transporters
to another job, would be much more impactful, and the scheduling of transporters to
process each job would most likely have to be dealt with explicitly in that case.
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Abbreviations
The following abbreviations are used in this manuscript:

(TAP) Transporter Assignment Problem
(TAPC∗ (nr)) Decision version of the Transporter Assignment Problem
(STAP) Saturated Transporter Assignment Problem
O Complexity order of the algorithm
(HOM) Our algorithm for (TAP) with homogeneous transporters

(SGRi)
Heuristic for (STAP), greedily assigning a transporter to the job with maximum
idle time per period

(SGRc)
Heuristic for (STAP), greedily assigning a transporter to the job with maximum
makespan

(SGJ) Heuristic for (STAP), greedily generating an saturating assignment to each job
(GRi) Extension of (SGRi) to compute a Pareto frontier for (TAP)
(GRc) Extension of (SGRc) to compute a Pareto frontier for (TAP)
(GJ) Extension of (SGJ) to compute a Pareto frontier for (TAP)
MIP Mixed Integer Program
(SMIP) MIP formulation of (STAP)
(SMIPg) MIP formulation of (STAP) aggregating transporters by model
(ρMIP) MIP formulation of (TAP) with fixed job idle rates Ij
(rMIP) MIP formulation of (TAP) with fixed job idle rates and altered job return times
(BS) Algorithm framework to compute a solution of (TAP) with minimum makespan
(BS.MIPg) Exact algorithm for (TAP), using framework (BS) and an MIP solver for (ρMIP)

(BS.GRi)
Heuristic for (TAP), using framework (BS) and (SGRi) to generate a solution
for (rMIP)

(BS.GJ)
Heuristic for (TAP), using framework (BS) and (SGJ) to generate a solution
for (rMIP)

J Set of jobs
R Set of transporters
M Set of transporter models
NJ Number of jobs
NR Number of transporters
NM Number of transporter models
M(m) Number of transporters with model m
j Job variable
r Transporter variable
m Transporter model variable
κ(r) Filling time of transporter r
δ(j) Return time of job j
N∗R(j) Saturating transporter cardinality for job j
Xr,j Boolean value of “transporter r is assigned to Job j”
Y j Number of transporters assigned to Job j
Ym,r Number of “transporters with model m assigned to Job j”
Xm,r Boolean value of “At least one transporter with model m is assigned to Job j”
C(j, X) Completion time of job j given assignment X
C∗(X) Makespan given assignment X = maximum job completion time
C∗min Minimum makespan over all feasible solutions
Csat(j) Saturated processing time of job j
Csat

max Makespan in a saturated solution = maximum saturated job processing time
I(j) Idle time per period for job j
ρ(j, C) idle rate per period for job j to have completion time C
L(j) Period length for job j

Appendix A. Proof of the Completion Time Estimate Given by Equation (1)

In this appendix, we show that the completion time estimate as given in Section 1,
Equations (1)–(3) is accurate. To be precise, our goal is to show the following theorem.
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Theorem A1. Given a set R ⊂ R of transporters assigned to some job j ∈ J , it holds that∣∣∣∣Cmin(j)− Csat(j)
L(j)

L(j)− I(j)

∣∣∣∣ ≤ 2δ(j)

where Cmin(j) is the minimum completion time reachable when processing job j with the set of
transporters R, and L(j) and I(j) are given by Equations (2) and (3), respectively.

Since in our practical applications, usually Csat(j) and therefore also C(j) is much
larger than the return time δ(j), Theorem A1 implies that the error incurred by using
Equation (1) to estimate the completion times of jobs is negligible.

For the remainder of this appendix, we use notations R, j, Cmin(j), Lj, and I(j) as
defined in Theorem A1. Furthermore, we continue to denote by C(j) the estimated com-
pletion time of job j as given by Equation (1). Finally, let the resources in R be given as
r1, r2, . . . , rk, as numbered by the non-increasing order of filling times.

We first proof the following Lemma.

Lemma A1. If
L(j) = ∑

r∈R
κ(r),

then, the transporters in R saturate job j, i.e., Cmin(j) = Csat(j).

Proof. Note that if L(j) = ∑r∈R κ(r), then ∑r∈R κ(r) ≥ δ(j)+ κ(r1), by definition of L(j). In
particular, for any subset R′ ⊂ R with exactly k− 1 elements, it holds that ∑r∈R′ κ(r) ≥ δ(j).
This means that using the transporters in R in a cyclic fashion, a transporter always returns
before all other transporters finish their processing of job j. Thus, job j can be processed
without idle times and the transporters in R saturate job j.

Consider next the schedule in which transporters in R are used in a cyclic fashion, in
order of their numbering, that is, they use each transporter once, in order of the transporter
numbering, then restart with transporter r1 and continue, again in order of the transporter
numbering and so on, until job j is fully finished. Denote this schedule by Scyc and its
completion time by Ccyc.

Lemma A2.

1. In schedule Scyc, the time between the starts of two uses of transporter r1 is exactly L(j).
2. In schedule Scyc, between any two uses of transporter r1, job j is idle for exactly I(j) time.

Furthermore, all idle time, if any, appears immediately before the second use of r1.
3. It holds that

Ccyc =

(⌈
Csat(j)

L(j)− I(j)

⌉
− 1
)

L(j) +
(
(Csat(j)− 1) mod (L(j)− I(j))

)
+ 1.

Proof. Proof of 1: By Lemma A1, if L(j) = ∑r∈R κ(r), then job j is saturated and clearly
the time between the starts of two uses of a transporter r is given as the sum of filling times
of all transporters, which is exactly L(j). On the other hand, δ(j) + κ(r) is a lower bound
for the time between the starts of two uses of any transporter, since between two starts,
the transporter needs to finish its processing and then its whole return time. Since from
L(j) = δ(j) + κ(r1), it follows that δ(j) ≥ ∑k

i=2 κ(ri), this means by the time r1 returns, no
other transporter is processing job j so it can start immediately, leading again to a time of
L(j) between any two starts of uses of r1.
Proof of 2: Since, by definition, I(j) = 0 if and only if L(j) = ∑r∈R κ(r) and by Lemma A1
this means job j is saturated, in that case, the statement holds. Suppose I(j) > 0 and
L(j) = δ(j) + κ(r1) > ∑r∈R κ(r). In that case, since during time L(j), each transporter
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processes job j exactly once, by construction of schedule Scyc, the total time spent idle is
given as

δ(j) + κ(r1)− ∑
r∈R

κ(r) = I(j),

by definition. Finally, note that due to the ordering of jobs in Scyc, the time between the start
of a use of any transporter r and the next time r is needed is given by L(j) ≥ δ(j) + κ(r), so
any transporter other than r1 always arrives back at site before it is needed again. Therefore,
any idle time can only happen before a use of transporter r1.
Proof of 3: During any time L(j), exactly L(j)− I(j) time is spent processing in schedule

Scyc, by Statement 1 and 2 of this Lemma. Thus, after
(⌈

Csat(j)
L(j)−I(j)

⌉
− 1
)

L(j) time,

(⌈
Csat(j)

L(j)− I(j)

⌉
− 1
)
(L(j)− I(j))

of job j has been processed. It remains an amount of either exactly L(j)− I(j) if L(j)− I(j)
divides Csat(j) or

(
Csat(j) mod (L(j)− I(j))

)
< L(j)− I(j) = ∑r∈R κ(r), otherwise, which

combined yields a remaining amount of(
(Csat(j)− 1) mod (L(j)− I(j))

)
+ 1.

Finally, note that the remaining amount can be processed immediately and without

interruption, since after time
(⌈

Csat(j)
L(j)−I(j)

⌉
− 1
)

L(j), transporter r1 is ready to process, and
by the second statement of this lemma, no further idle time happens before all the remaining
amount is processed.

Obviously, it holds that Cmin(j) ≤ Ccyc. Furthermore, note that

Ccyc − C(j)

=

(⌈
Csat(j)

L(j)− I(j)

⌉
− 1
)

L(j) +
(
(Csat(j)− 1) mod (L(j)− I(j))

)
+ 1

− Csat(j)
L(j)

L(j)− I(j)

=
(
(Csat(j)− 1) mod (L(j)− I(j))

)
+ 1

− L(j)
(
(Csat(j)− 1) mod (L(j)− I(j))

)
+ 1

L(j)− I(j)

≤ 0,

where the last inequality is due to L(j) > I(j) ≥ 0. Therefore, it is proven that Cmin(j)−
C(j) ≤ 0 ≤ 2δ(j).

We are left to prove that C(j)− Cmin(j) ≤ 2δ(j). First, we show the following lemma,
extending the statement of Lemma A2 (2).

Lemma A3. In any schedule using transporters in R to process job j, between two uses of trans-
porter r1, idle time of at least I(j) happens.

Proof. If I(j) = 0, there is nothing to prove. So assume I(j) > 0 and L(j) = δ(j) + κ(r1) >

∑r∈R κ(r). In the proof of Lemma A2, it was shown that if every other transporter is used
exactly once between two uses of r1, then between the two uses of r1, the idle time of exactly
I(j) is reached. Using fewer transporters in between does obviously not reduce idle time.
On the other hand, using any other transporter r∗ twice without using r1 in between leads
to an idle time between the two uses of r∗ of at least

δ(j)− ∑
r∈R,r 6=r1,r 6=r∗

κ(r) > I(j), (A1)
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which means the idle time between the two uses of r1 would also be larger, which finishes
the proof.

Using Lemma A3 and Equation (A1), we can prove the following lemma.

Lemma A4. For any schedule using transporters in R to process job j, let transporter r∗ be a
transporter with the most uses and let r∗ be used exactly ` times. Then, job j is idle for at least

(`− 2)I(j)

time.

Proof. If r1 is used ` times, by Lemma A3, job j is idle for at least (` − 1)I(j), and the
statement is proven. So, assume transporter r1 is used `1 < ` times. By Lemma A3,
between any two uses of transporter r1, idle time of at least I(j) appears. However, by
Equation (A1), between any two uses of job r∗ where r1 is not used in between, idle time of
at least

I∗ = δ(j)− ∑
r∈R,r 6=r1,r 6=r∗

κ(r) > I(j)

appears. Thus, the total idle time of job j is at least

(`1 − 1)I(j) + (`− 1− `1)I∗ ≥ (`− 2)I(j)

time units long.

Note that using schedule Scyc, each transporter can be used ` times, causing idle time
of at most (`− 1)I(j). Thus, by Lemma A4, we have

Ccyc − Cmin(j) ≤ I(j) ≤ δ(j). (A2)

Furthermore,

C(j)− Ccyc

= L(j)
(
(Csat(j)− 1) mod (L(j)− I(j))

)
+ 1

L(j)− I(j)

−
(
(Csat(j)− 1) mod (L(j)− I(j))

)
+ 1

=
L(j)− L(j) + I(j)

L(j)− I(j)
([
(Csat(j)− 1) mod (L(j)− I(j))

]
+ 1
)

≤ I(j) ≤ δ(j).

Therefore, and due to Equation A2, we have C(j)− Cmin(j) ≤ 2δ(j), which finishes
the proof of Theorem A1. Note that in the case where the transporters in R saturate job j
and I(j) = 0, then the above and Equation A2 even imply that C(j) = Cmin(j). In addition,
note that we actually showed that C(j) − Cmin(j) ≤ 2I(j) ≤ 2δ(j), and thus the worst
case estimate as given in Theorem A1 can only happen when only a single transporter is
assigned to a job (which is the only time when I(j) = δ(j)).
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