
����������
�������

Citation: Wang, L.; Wang, C.; Wang,

H. Improved Scheduling Algorithm

for Synchronous Data Flow Graphs

on a Homogeneous Multi-Core

Systems. Algorithms 2022, 15, 56.

https://doi.org/10.3390/

a15020056

Academic Editor: Marc Sevaux

Received: 10 January 2022

Accepted: 31 January 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Improved Scheduling Algorithm for Synchronous Data Flow
Graphs on a Homogeneous Multi-Core Systems
Lei Wang 1,2,* , Chenguang Wang 1 and Huabing Wang 2

1 Research Institute of Electronic Science and Technology, University of Electronic Science and Technology of
China, Chengdu 611731, China; wangchenguang@std.uestc.edu.cn

2 State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information
System, Luoyang 471000, China; 13849916491@139.com

* Correspondence: wang_lei@uestc.edu.cn

Abstract: In order to accelerate the execution of streaming applications on multi-core systems, this
article studies the scheduling problem of synchronous data flow graphs (SDFG) on homogeneous
multi-core systems. To describe the data flow computation process, we propose the SDAG (Super
DAG) computation model based on the DAG model combined with data-driven thoughts. Further,
we analyze the current common SDFG scheduling algorithms and propose an improved SDFG
scheduling algorithm, LSEFT (level-shortest-first-earliest-finish time). The LSEFT algorithm uses an
inverse traversal algorithm to calculate the priority of tasks in the task-selection phase; the shortest-
job-priority earliest-finish-time policy is used in the processor selection phase to replace the original
long job priority policy. In the experimental part, we designed an SDFG random generator and
generated 958 SDFGs with the help of the random generator as test cases to verify the scheduling
algorithm. The experimental results show that our improved algorithm performs well for different
numbers of processor cores, especially for 8 cores, where the speedup of our improved algorithm
improves by 10.17% on average.

Keywords: homogeneous synchronous data flow graph; computational model; multi-core systems;
scheduling algorithm

1. Introduction

In recent years, parallel computing has been widely popular in areas such as high-
performance computing and deep learning. Streaming programs are one such class of
computational tasks, which are widely popular in areas such as digital signal processing
and multimedia [1]. SDFGs are an abstract representation of streaming applications. Where
vertices represent tasks, directed edges represent dependencies between tasks, and vertices
are also called actors. There is usually a directed loop structure in the SDFG, which needs
to be converted into an HSDFG (Homogeneous SDFG). HSDFG is a special case of SDFG.

The common scheduling algorithm for SDFG is static scheduling [2]. In static schedul-
ing, all information in the computational graph is known at the compilation stage. Static
scheduling algorithms are divided into two main categories based on the scheduling object,
namely, SDFG oriented and HSDFG oriented. SDFG-oriented scheduling algorithms study
how to schedule actors in the original computational graph. HSDFG-oriented scheduling
algorithms study the instances of actors. Instances are the execution units of an actor and
have the same methods and properties as the actor, and different instances of the same
actor process different data. Both SDFG-oriented and HSDFG-oriented algorithms are
algorithms for scheduling SDFG. We use the algorithm in [3] to convert SDFG to HSDFG.
HSDFG can be represented using the DAG model [4]. The study’s object of our algorithm
is HSDFG oriented.

Among the shared storage computational models, the current computational model
commonly used by parallel machines is APRAM [5]. The data flow model has a naturally

Algorithms 2022, 15, 56. https://doi.org/10.3390/a15020056 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15020056
https://doi.org/10.3390/a15020056
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-9072-8446
https://orcid.org/0000-0002-7859-0296
https://doi.org/10.3390/a15020056
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15020056?type=check_update&version=2


Algorithms 2022, 15, 56 2 of 17

parallel representation compared to the APRAM computational model, which uses synchro-
nization barriers to implement delayed waits, and must wait until all threads in a superstep
have finished executing before synchronizing. A large part of the overhead in the APRAM
model is in the delayed wait part, where the completion of the execution of a superstep
depends on the thread with the longest execution time in that superstep. In the data-
flow computing model, most methods of synchronization between tasks use peer-to-peer
communication rather than using coarse-grained methods of synchronization barriers.

The Codelet [6] model is a data flow execution model applied to the von Neumann
model. In this model, each non-preemptive task is the basic unit of scheduling and ex-
ecution and is called a “codelet”. All codelets are connected together to form a codelet
graph. In the codelet graph, each codelet plays the role of a producer and/or a consumer.
Corresponding to the SDFG model, each vertex is also called an actor, which has an input
and output port attribute, and a port has a rate attribute. The port rate indicates the rate
at which the actor produces/consumes data per execution. In the Codelet runtime model,
each codelet has three states. Codelets are called dormant when they are waiting for their
dependencies to be satisfied. When all dependencies are satisfied it is called the executable
state, at which point the codelet is ready to be dispatched. When the codelet is dispatched
to the processor core it is called the ignition state.

Although the DAG model can represent the HSDFG, the DAG model lacks a data-
driven mechanism. To address this challenge, this paper adds a peer-to-peer communica-
tion and data-driven mechanism based on the DAG model, called SDAG (Super DAG), in
which the communication between two instances is implemented through a specific FIFO
(First-In, First-Out) queue.

Further, we analyze the current HSDFG scheduling algorithm, PAPS [3] (Figure 1b).
We propose an improved HSDFG scheduling algorithm, LSEFT (Figure 1c). The PAPS is a
Hu-level [7] based scheduling algorithm, where each instance has a level value (Figure 1a)
top left corner of the vertex). Level value indicates the sum of the execution times of the
instances contained in the longest path from the current instance to the endpoint instance.
However, when an HSDFG has many endpoint instances, an additional instance with
execution time 0 needs to be created to connect these endpoint instances. We have improved
the method of calculating the level by using a reverse traversal algorithm that eliminates
additional instances and calculate the longest path. Furthermore, we experimentally found
that the scheduling policy in the PAPS algorithm does not perform well in some cases,
without incorporating a core selection policy. Therefore, we use the short-job-first policy in
the task-selection phase and the earliest-finish-time policy in the core selection phase.

A1

A2

C1

B1

A4

A3

C2

B2

6

6

6

3

3

3

5

2

(a) An example of HSDFG

A1

A2

B1 A3

A4C1 C2C0

C1

8

B2

Time

(c) Proposed scheduling(LSEFT)

A1 A2 B1 A3 A4

C1 C2C0

C1

9

B2

Time

(b) PAPS scheduling

Figure 1. Scheduling for HSDFG.

When evaluating the SDFG scheduling algorithm, test cases need to be implemented
using specific data flow languages such as SteamIt [8] or COStream [9]. Using these data
flow graph languages specific data flow procedures such as FFT can be implemented.
If only these specific test cases are used, a comprehensive evaluation of the scheduling
algorithm is not possible. This paper, therefore, designs the SDFG random generator, which



Algorithms 2022, 15, 56 3 of 17

can randomly generate SDFGs of a size that meets the actual demand size, as an input
source for evaluating the scheduling algorithm.

In summary, the main contributions of this paper are divided into three components
and are the novelty that this paper aims to highlight.

• Using data-driven thinking, the DAG computational model is extended to propose
the SDAG model, which is applicable to the scheduling of dataflow programs under
the current common processor architecture platforms;

• Improved the currently used SDFG scheduling algorithm to achieve better speedup;
• A new SDFG random generator was designed and used to create an SDFG dataset for

evaluating the scheduling algorithm. The data are stored in matrix format, eliminating
the need to create additional xml parsers and making it easier for researchers to use.

The remaining parts of this paper are organized as follows. Sections 2 and 3 introduce
the SDFG background and related work, respectively. Section 4 introduces the SDAG model
and the LSEFT scheduling algorithm. Section 5 presents the SDFG random generator and
experimental results. Finally, Section 6 concludes this paper.

2. SDFG Background

As shown in Figure 2, an SDFG can be represented by a directed graph. Where the
vertices represent computational tasks, also called actors. The actors have input and output
ports, and the ports have data block processing rates, which are called tokens. The number
of tokens consumed by the input port once the actor is executed is called consumption rate,
similarly, the output port corresponds to production rate. In the synchronous data flow
computational mode [2], the port rate of the actor is determined. The memory where the
tokens are stored is called the data buffer (or called channel) and is implemented as a FIFO
queue, which also specifies the data dependencies between the two actors, with the head of
the queue connecting the actor’s input port and the tail of the queue connecting the actor’s
output port.

A

B

C

c

d

e

f g

1

2 3

i

Figure 2. An example of SDFG.

Assume that the precursor actor is A, the successor actor is B, B depends only on A,
and both A and B have only one port. Minimum execution period indicates that all actors
in the SDFG are executed at least once. In a minimum execution period, the number of
executions of A is qA, the number of executions of B is qB, the production rate of port A is
s(A), the consumption rate of port B is r(B), the balancing equation of Equation (1) can
be constructed.

qAs(A) = qBr(B) (1)

where s(A) and r(B) are known and s(A), r(B) ∈ N+, then an infinite number of solutions
(qA, qB) can be solved. With the minimum execution period, we take the minimum positive
integer solution as the number of executions for actor A and actor B. In SDFG, each of the
two actors with data dependencies constructs a balancing equation, and we represent the
solution obtained for each actor in SDFG by a solution vector q = (q1, q2, q3, . . .). If there
is no solution, or if a positive integer solution cannot exist, the SDFG is said not to satisfy
the consistency condition and cannot be scheduled for execution. Otherwise, we take the
minimum positive integer solution as the number of times each actor has to be executed at
its minimum period, which is referred to as the unit period in the following.



Algorithms 2022, 15, 56 4 of 17

We represent an SDFG using the tuple (V, E), where V = α1, α2, . . . , αn denotes the set
containing n actors, αi, i = 1 . . . n denotes actor i, E = e1, e2, . . . , ek ⊆ V ×V denotes the set
containing k directed edges, and ei, i = 1, . . . , k denotes the i-th directed edge. Use src(ei)
to denote the production rate of directed edge ei arc-tailed actors and des(ei) to denote the
consumption rate of directed edge ei arc-headed actors. The SDFG is represented using a
topological matrix similar to the correlation matrix [3], where the rows represent directed
edges and the columns represent actors, generating a k× n matrix with k directed edges
and n actors. The topological matrix element (i, j) is given the value rule as in Equation (2).

(i, j) =


src(ei), if the actor of arc tail of ei is αj
−des(ei), if the actor of arc head of ei is αj
0, other

(2)

Thus, the topological matrix Γ for the example in Figure 1 can be obtained as (3):

Γ =

 c −e 0
d 0 − f
0 i −g

 (3)

With the help of the topological matrix Γ, we use Equation (4) to solve for the vector q.

Γq = 0 (4)

The sufficient condition for the existence of a minimum positive integer solution
to Equation (4) is rank(Γ) = n − 1, where n is the number of actors in the SDFG. The
corresponding number of instances of actors is created based on the q vector, and these
instances are then constructed as an HSDFG.

At the beginning of the execution of an instance, the tokens in the cache queue are
consumed, and at the end of the execution of the instance, the resulting tokens are stored in
the cache queue. Therefore the state of the cache queue needs to be updated throughout
the lifetime of the instance, with the update formula as in Equation (5).

b(n + 1) = b(n) + Γv(n) (5)

where vector b denotes the cache queue and b(n + 1) denotes the state of the cache queue
at the n + 1 moment. v(n) denotes the actor at moment n. If the actor is αi, then the i-th
position of v(n) is 1 and the remaining positions are 0.

Construction of the HSDFG Algorithm

In an SDFG, there is a directed cyclic structure, such as Figure 3a, where there is a
directed cyclic ring in the directed graph. To avoid deadlocks, a cache of data, denoted
“1D”, is placed on the directed edge between actor B and actor C. Similarly, 2 caches of data,
denoted “2D”, are placed between actor C and actor A. In order to break this ring structure
and to more naturally represent the parallelism between instances, we transform the SDFG
into an HSDFG, i.e., a DAG, which in turn transforms the object of our study into a vertex
in the DAG, without taking into account some of the properties of the SDFG.



Algorithms 2022, 15, 56 5 of 17

A1

A2

C1

B1

A4

A3

C2

B2

(a) An example of SDFG (c) HSDFG J=2(b) HSDFG J=1

A1

A2

C1

B1
A C

B

1 2D 2

1

2 1

1
1D

Figure 3. HSDFG is constructed by SDFG.

Dataflow programs are periodic programs, so in converting to HSDFG we can consider
the HSDFG constructed by all instances under a unit period, and we can also consider
instances under multiple periods. We denote this variable by J. If J = 1, it denotes the
HSDFG constructed by all instances under the unit period, as in Figure 3b. If J = 2, it
denotes the HSDFG constructed for all instances under two periods, as in Figure 3c.

To describe the construction of the HSDFG algorithm, we first define some notation. j
values, a repeat execution vector p, a random sequence of actors node_r, a set of predecessor
actors for each actor, and a topology matrix Γ. b(0) then denotes the state of the cache
queue at the initial moment. jp denotes the scheduling count vector for all actors, where
j_pα denotes the scheduling count for the actor α. countt denotes the vector of instantiation
counts for all actors, where count_tα denotes the number of instantiations of the actor α. A
detailed description is shown in Algorithm 1.

Algorithm 1: Constructing the HSDFG
Input: SDFG
Output: HSDFG

1: j_p = J ∗ p, countt = O, O is zero vector.
2: Iterate over the actor α in the sequence node_r
3: IF count_tα == j_pα, then perform Step 2, else perform Step 4.
4: Calculate b + Γvα to judge whether the actor α can be executed. If not,

perform Step 2. If so, count_tα ← count_tα + 1, and create the count_tα-th
instance ins_α. Then add to the instance sequence apg_ins.

5: Check whether the precursor set of the actor α has elements. If not, perform
Step 9. Else perform Step 6.

6: Iterate through the precursor actor set of the actor α to obtain the precursor
actor η and the connected directed edge a.

7: Calculate d value, using d =
⌈
−jΓaα−b(0)a

Γaη

⌉
. If d < 0, then d = 0. Establish a

precursor relationship between the first d instances of actor η and instance ins_α.
8: Update b← b + Γvα. If the current traversal is not complete, perform Step 2;

else, preform Step 9.
9: For all actors, if count_t == j_p, then algorithm is terminated. Else perform

Step 2 and start a new round of traversal.

3. Related Work

In this section, we introduce the work associated with the three contributions to
this paper.

The study of the synchronous data flow computational model [2] is based on the
data flow architecture [10], not the von Neumann architecture. In a data flow architecture,
instructions are executed in a data-driven order, not according to a program counter.
However, there is no commercially available data flow architecture computer, so the parallel



Algorithms 2022, 15, 56 6 of 17

computational model based on the data flow computational model is based on a non-von
Neumann architecture. The Wave Front Array (WFA) [11] computational model introduces
the principle of data flow computing in an array of processors. This computational model
is only applicable to a specific VLSI array. Furthermore, the WFA computational model
does not use SDFG as an abstract representation of the application and loses this natural
parallel representation structure.

The DAG computational model [12] is an architecture-independent computational
model, particularly suitable for numerical computation, which expresses the internal paral-
lelism of a program application by assigning processors to individual vertices according to
a certain scheduling policy. Each vertex performs the operations specified by that vertex.
Although HSDFG is based on the DAG model, the way in which tasks communicate with
each other is missing from the DAG.

Static task scheduling methods can be divided into two main groups, heuristic-based
strategies and guided random search-based ones. The heuristic-based strategies can be
further divided into three groups: list scheduling strategies, clustering strategies and task
replication strategies.

The list scheduling strategy first calculates the priority of a task based on a given
task graph and then maintains a scheduling list based on the priority. The list scheduling
algorithm is divided into two main phases: (1) the task-selection phase, which selects the
ready task with the highest priority, and (2) the processor selection phase, which selects a
suitable processor such that the objective function is minimized. MOELS algorithm was
proposed in [13] and four list scheduling algorithms were extended in [14]. Both [13,14]
study workflow scheduling methods, and although both SDFG and workflow can be
represented using the DAG model, SDFG needs to consider its periodicity. Ref. [15]
improves the list scheduling algorithm considering load balancing and proposes the LS-
IPLB algorithm. In our experiments, we also compared load balancing strategies and
showed that the results did not perform as well as the EFT strategy.

A clustering scheduling strategy maps the grouped tasks into an infinite number of
computational units. In the steps of the clustering algorithm, each step of the clustering
is an arbitrary task that may not be the ready task, so it is necessary to go back in each
group to select the ready task for scheduling, where there is [16] formalized the scheduling
problem as an integer planning clustering problem with grouped clustering scheduling [17].
Scheduling algorithms based on replication strategies are also task computational resources
are unbounded and replication-based strategies use redundant tasks to reduce communi-
cation overhead [18,19]. Furthermore, the cluster scheduling strategy and the replication
strategy have higher complexity compared to the list scheduling algorithm.

Guided random search techniques use random choices to guide themselves through a
problem space, which is not a random search method [20]. These techniques combine the
knowledge gained from previous search results with some random features to generate
new search results. Refs. [21,22] use guided random search techniques to accomplish task
scheduling, but they typically have much higher scheduling times than heuristic-based
methods.

Scheduling methods for SDFG on multi-core systems are classified into static schedul-
ing [23,24] and self-time scheduling [25–29]. The self-time scheduling method studies
SDFG, which completes scheduling based on actor readiness and completion times, and
is a scheduling strategy with many real-time requirements. Ref. [25] proposes an offline
heuristic strategy for speeding up algorithm scheduling rather than optimizing scheduling
quality. Ref. [26] is oriented towards a specific DSP multiprocessor architecture. Scheduling
with other real-time tasks interfering is considered in [27], where the scheduling algorithm
proposed in [27] relies on special cases. Ref. [28] considers multi-mode multi-processor
scheduling techniques that can schedule all SDFGs in all modes simultaneously. Ref. [29] is
targeted at specific embedded stream processing applications using a symbolic approach
for SDFG analysis. DAG-based scheduling is a type of static scheduling method. PAPS [3]
and DONF [4] are methods for scheduling SDFG on a multi-core systems based on the



Algorithms 2022, 15, 56 7 of 17

DAG model. The PAPS method uses a Hu-level [7] based approach in the task-selection
phase to calculate the level values of individual vertices. Priority is given to the vertex with
the larger level value for scheduling. However, no core selection policy is specified with
PAPS. The DONF method only calculates the priority of tasks that are locally in the ready
state during the task-selection phase. The DONF method ignores the global information of
the computed graph and also specifies the handling strategy when tasks of equal priority
conflict with the number of processors. The DONF method studies single DAG, whereas
HSDFG is transformed from SDFG and multiple DAG will exist.

SDF3 [30] studies the SDFG random generator, which generates SDFGs that satisfy
consistency requirements for the evaluation of scheduling policies. However, the SDFG
model save file of this generator is in xml format, and a corresponding xml parser is
required to be used as the input source of the scheduling algorithm. We have designed the
SDFG random generator without the use of an xml parser.

4. SDAG Model and HSDFG Scheduling
4.1. SDAG Computational Model

We have added a communication method and a data-driven mechanism to the DAG
model, i.e., SDAG, which not only has the architecture-independent advantages of DAG, but
also the data-driven advantages of the data flow computational model. In this subsection,
we focus on the communication approach and the data-driven mechanism.

There are two actors A and B, and an SDFG consisting of a directed edge, as shown in
Figure 3a. The production rate of port A is s(A) = 1, and the consumption rate of port B
is r(B) = 2. According to the balancing Equation (1), at the minimum period, A needs to
execute 2 times to satisfy the data demand of B. A needs to create 2 instances (A1 and A2)
and B needs to create only 1 instance (B1) to construct the HSDFG as shown in Figure 4b.

1 2

(a) (b)

A B

A1

A2

B1

Figure 4. (a) SDFG, (b) HSDFG converted form (a).

In SDAG, each directed edge in the SDFG corresponds to a FIFO queue of finite capac-
ity. We assume that there are two instances of α1 and α2, and a directed edge connecting
these two instances. The predecessor instance is α1, and the successor instance is α2, and
the directed edge is a FIFO queue with a shared memory area. Both α1 and α2 have only
one port, the output port rate of α1 is s(α1), the input port rate of α2 is r(α2). Data communi-
cation between α1 and α2 is achieved through a FIFO queue with the following constraints
on the operation of the FIFO queue. α1 performs an enqueue operation on the FIFO queue
after execution is complete, and α2 performs a dequeue operation on the FIFO queue during
execution. The data-driven mechanism is based on the FIFO queue. We set a threshold
constant thd and a queue capacity variable caps for the FIFO queue, with the caps variable
being jointly maintained by α1 and α2. The threshold constant thd and the queue capacity
variable caps are defined as follows:

thd = r(α2) (6)

caps = caps + s(α1) (7)

caps = caps− r(α2) (8)

After α1 has finished updating the caps variable, when Equation (9) is satisfied, α1 will
access the waiting queue (Figure 5) to see if α2 has been created. If not, α2 is created, the



Algorithms 2022, 15, 56 8 of 17

status of the port corresponding to α2 is set to available and α2 is placed in the waiting
queue. After each instance is created, a status variable is also created for each input port of
the instance and initialised to unavailable. If so, the state of the port corresponding to α2 is
updated. If α2 has more than one input port, α2 is created whenever one of them satisfies
Equation (9).

caps > thd (9)

The memory overhead can be excessive when creating a FIFO queue for each directed
edge in the HSDFG. Therefore, we specify that instances created by the same actor share
a FIFO queue, e.g., A1 and A2 in Figure 2b share a FIFO queue. To ensure consistency in
reading data from the FIFO queue, a “pass lock” is set for both the enqueue and dequeue
operations. The “pass lock” specifies the instance that can open the lock, and the instance
cannot perform an enqueue or dequeue operation until the “pass lock” is opened. After the
current instance has completed its queuing operation, the lock is set to be opened by the
next instance in order of instance number, i.e., passed to the next instance. The last instance
passes the lock to the first instance. The “pass lock” defaults to the first instance being able
to open it at the initial stage.

T
o
k
en

queue

thd 2

enqueue

dequeue

create

wait queue ready queue

Physical cores

A1

A2

T
o
k
en

B1

B1 B1

Figure 5. SDAG model overview.

An overview of the SDAG model is shown in Figure 5, where instance B1 is created
using a data-driven mechanism and then B1 is added to the waiting queue. If B1 is
dependent on many FIFO queues, then the input port state of B1 is updated whenever
a FIFO queue satisfies Equation (9). When all input port states of B1 are available, B1 is
added to the ready queue. All instances in the ready queue can be dispatched directly to
the physical core for execution.

4.2. SDAG Computational Model Analysis

In the SDAG model, a computation consists of a series of thread-level tasks (instances).
The dependencies between these tasks are represented using a DAG. The creation of tasks
is data driven, each processor executes the task for which the data dependency has been
satisfied, and communication between processors is done via a FIFO queue in a shared
memory area. Figure 5 of the SDAG model shows that the cost function of an instance thus
constructed is as follows.

Tins = hins + wins + L (10)

where hins is the time interval between the first FIFO queue at the input port of instance
ins satisfying Equation (9) and the last FIFO queue satisfying Equation (9). wins is the
computation time of instance ins and L represents the shared memory FIFO queue operation
time (including enqueue, dequeue and “pass lock” time). So in the SDAG model, if there
are s instances, the total execution time TSDAG is:



Algorithms 2022, 15, 56 9 of 17

TSDAG =
s−1

∑
i=0

hi +
s−1

∑
i=0

wi + sL (11)

SDAG belongs to the shared memory model of computing and adopts the data-driven
idea of creating tasks in data flow, placing the communication of tasks in a limited shared
memory space. To save shared memory space, we specify that different instances of the
same actor share a FIFO queue. This is reflected in tasks that compute the same data
differently, which is very common in data flow tasks. To ensure data consistency, we have
added a “pass lock” mechanism so that the current FIFO queue can only be operated by
an instance that can open the “pass lock”. Instances are created sequentially, and if the
execution environment is homogeneous with multi-core processors, then the processor
computation times for instances of the same actor are the same, so that most instances
finish sequentially. The biggest advantage of the SDAG model is that it does not depend on
a specific hardware platform and can be implemented on all common hardware platforms.

4.3. HSDFG Scheduling
4.3.1. Problem Definition

HSDFG scheduling is a static scheduling, which allows all tasks to be scheduled
during the compilation phase, and therefore HSDFG scheduling simulates the process of
execution. First, we introduce the basic notations related to hardware and software, as
shown in Table 1.

Table 1. Basic Notations.

Notation Description

α An instance in set V
W(α) The size of the instance α
IN(α) The set of input channels of the instance α

OUT(α) The set of output channels of the instance α
Iα The ID of input channel of the instance α
Oα The ID of output channel of the instance α

r(Iα) The token producing rate of instance α of channel Iα

s(Oα) The token consuming rate of instance α of channel Oα

et(α) The execution time of the instance α
e A channel in set E
C A set of all processing cores
c A processing core in C

p(c) The performance of processing core c
M The number of processing cores

A data flow application consists of a series of periodic instances. These instances are
represented using the HSDFG and we only consider instance scheduling per unit period.
The HSDFG is denoted by a tuple (V, E), V = {α1, α2, . . . , αn} denoting the set containing n
instances, αi is the instance ID, i = 1, . . . , n, and W(αi) is the size of αi. αi has the set of input
channels IN(αi) and the set of output channels OUT(αi), where IN(αi) = {Iαi

1 , Iαi
2 , . . .},

Iαi
j is the ID of the input channel of αi, j = 1, 2, . . ., r(Iαi

j ) denotes the tokens consumption

rate of Iαi
j , and OUT(αi) = {O

αi
1 , Oαi

2 , . . .}, Oαi
j is the ID of the output channel of αi, s(Oαi

j )

denotes the tokens production rate of Oαi
j . From the SDAG model, the total number of

tokens consumed sum(tokens) per unit period and the minimum space of the FIFO cache
queue min(FIFO) are defined as follows.

sum(tokens) =
n

∑
i=1

∑
Iαi∈IN(αi)

r(Iαi ) (12)



Algorithms 2022, 15, 56 10 of 17

min(FIFO) =
n

∑
i=1

∑
Oαi∈OUT(αi)

s(Oαi ) (13)

E = {e1, e2, . . . , ek} ∈ V ×V denotes the set containing k directed edges and ei is the
directed edge ID, i = 1, . . . , k.

We use ci(i = 1, 2, . . .) to denote the ID of the processor cores. For homogeneous
multi-core systems, each ID is associated with a logical core. p(ci) denotes the performance
of the processor core ci, and since the processor cores are homogeneous, we use p(c) denote
the performance of the processor. et(αi) denotes the execution time of the instance αi at the
processor core, including the FIFO queue operation time L, which is defined as follows.

et(αi) =
W(αi)

p(c)
+ L (14)

As instances communicate with each other in shared memory and instances are created
sequentially, the FIFO queue operation time and “pass lock” time are very short compared
to the execution time of instance αi, so we use a constant L to represent the FIFO queue
operation time for all instances.

U(ci) denotes all instances of ci assigned to the processor. cl(ci) denotes the finish
time at which processor ci has executed all instances in U(ci). l(ci) denotes the load on
processor ci, defined as follows:

l(ci) = ∑
α∈U(ci)

et(α) (15)

When instance αi is assigned to processor core ci, AFT(αi) denotes the actual execution
end time of instance αi. αexit denotes the terminating instance of the HSDFG. If a given
HSDFG has multiple terminating instances, then makespan is defined as follows.

makespan = max(AFT(αexit)) (16)

Our goal is to make full use of the limited number of processor cores to minimize s.
Therefore, the objective function is defined as follows:

min makespan

4.3.2. Instance Selection

level(αi) is the level value of instance αi, which represents the sum of the execution
times of all instances contained in the longest path from αi to the endpoint instance, as
defined below.

level(αi) = ∑
α∈S

et(α) (17)

S in Equation (16) denotes the set of all instances contained in the longest path from
αi to the endpoint instance. In the LSEFT algorithm, the level value of an instance is
used as the priority when scheduling, and the instance with the higher level value among
all instances is scheduled for execution first. In the level value calculation of the PAPS
algorithm, if there are many endpoint instances, then additional vertices need to be created
to connect these endpoint instances. We propose an improved method for level value
calculation, the reverse traversal to solve for level. The main idea is to use the reverse
traversal of multi-tree nodes and the Algorithm 2 is described.



Algorithms 2022, 15, 56 11 of 17

Algorithm 2: Calculate Level Values of Instances
Input: HSDFG
Output: each instance level value level(αi)

1: Put all instances of HSDFG are in reverse order into queue F, each instance
has a set of precursor instance pre(ins)

2: level(ins) = et(ins), ins ∈ F
3: for all ins ∈ F do
4: for all pins ∈ pre(ins) do
5: new_level = et(pins) + level(ins)
6: if level(pins) < new_level then
7: level(pins)← new_level
8: end if
9: end for

10: end for

The HSDFG is reconstructed from the SDFG, and the reconstruction process is also a
simulated execution of the SDFG. Instances of actors in the SDFG need to be created, the
order in which each actor is created is recorded, and all instances are added to the queue
F in reverse order. Using this special structure, the exact level value can be obtained by
traversing all instances in the HSDFG once.

If there are many instances with the same level value, we consider them to be at the
same level and add them to the queue D. numt(D) represents the number of instances in
the queue D at time t. For the instances in the to-be-scheduled queue D, we will use the
short-job-first policy, defined as follows:

min(et(α)), α ∈ D (18)

4.3.3. Core Selection

The PAPS algorithm does not use a policy for the core selection phase, but in our
experiments we compare the load balancing policy with the earliest finish time(EFT) policy,
and the results show that the EFT policy performs better. We therefore use the EFT policy
in the core selection phase, defined as follows.

min(cl(ci)), i = 1, 2, . . . , M (19)

4.3.4. Overall Algorithm

Algorithm 3 describes the overall process of the LSEFT scheduling algorithm.

Algorithm 3: LSEFT Algorithm
Input: queue F, set of cores M
Output: scheduling result

1: Create empty queue D
2: cl(c) = 0, c ∈ C
3: Compute level value using Algorithm 1
4: repeat
5: Put instance α with maximum level into D
6: Pick instance αi from D using Equation 18)
7: Assign instance αi to core ci using Equation 19)
8: cl(ci)← cl(ci) + et(αi)
9: until queue F is empty

The LSEFT algorithm uses a combination of level values and a short-job-first policy to
select instance. In Algorithm 3, the instances with the largest level value are first selected



Algorithms 2022, 15, 56 12 of 17

from queue F each time and these instances are added to the to-be-scheduled queue
D. Afterwards, the instance with the smallest execution time is selected from the to-be-
scheduled queue D. If there are many instances with the same minimum execution time,
the instance that enters the to-be-scheduled queue D earliest is selected first. Finally this
instance is assigned to the processor with the minimum finish time, and if many processors
have the same minimum finish time, the algorithm will select the one with the smallest
processor ID.

For the scheduling problem of a given SDFG, the SDFG is first converted into an
HSDFG using Algorithm 1, where the data structure of the converted HSDFG is a cross-
linked table. Then, using Algorithm 2, the priority of each instance in the HSDFG is
calculated, and finally, using Algorithm 3, a suitable processor is selected for each instance
to execute based on the priority of each instance to optimise the objective function.

5. Evaluation
5.1. SDFG Random Generator

To evaluate the advantages of our proposed algorithm, we designed an SDFG random
generator. The SDFG generator can randomly generate SDFGs that satisfy the consistency
requirement, and then convert the SDFGs to equivalent HSDFGs using the algorithm in
the [3]. In the conversion algorithm, how to choose the optimal unfolding factor [31] is not a
problem we consider, so we only consider the case where the unfolding factor is 1, i.e., only
the HSDFG consisting of all instances under a unit period is considered.

The main modules of our designed SDFG random generator are given in Figure 6,
along with the relationships between the modules. The number of randomly generated
nodes and directed edges obey a uniform distribution, and only the maximum values
of the number of nodes and directed edges need to be set at the APIs. The number of
nodes and directed edges are checked to ensure that both satisfy the boundedness of the
directed graph. The key function implemented by the randomly generated directed graph
module is to randomly construct the adjacency matrix and then do a connectivity test
on it. Randomly generated port rates are used to make the SDFG satisfy the consistency
requirement; randomly generated initial caches are used to resolve the deadlock situation
where the SDFG has a directed loop. The parameters of the SDFG random generator that
we use in this evaluation are shown in Table 2.

Randomly generate 

the number of nodes 

and directed edges

Verify the number 

of nodes and 

directed edges

Randomly generate 

an adjacency matrix

Verify weak 

connectivity

Randomly generate 

port rates

Verify graph 

consistency

Randomly generate 

initial cache tokens 
Deadlock detection

Figure 6. SDFG random generator process.

Table 2. Evaluation settings for SDFG random generator.

Parameters SDFG

Number of SDFG 958
Number of nodes U(1, 50)
Number of edges U(1, 80)

Port rate U(1, 3)
Execution time U(1, 3)



Algorithms 2022, 15, 56 13 of 17

5.2. SDFG Data

The data used in this study were open sourced on Github. The SDFG Randomizer
generated a total of 958 SDFGs using the parameters shown in Table 2. A total of 958 SDFGs
were divided into ten groups, each of which contained 90+ SDFGs. These were saved to a
file in csv format. In a csv file, an SDFG consists of three attributes, namely, “et” “tm” and
“buf”. “et” is a one-dimensional vector representing the execution time of each role in the
SDFG; “tm” is the topology matrix of the SDFG, which contains the port rate information of
the roles in the SDFG, the dependency information with the rest of the roles, and is the core
of the SDFG; “buf” is the topology matrix of the SDFG. It is the core of SDFG; “buf” is also
a vector that represents the number of caches that all channels in SDFG have, which is used
to break the deadlock structure. Github: https://github.com/wangcgzzu/SDFG-data.git
(accessed on 9 January 2022).

When the LSEFT algorithm was executed, the data in the csv file were read sequentially
by line and parsed to an SDFG. After the scheduling algorithm was completed, we obtained
the SDFG’s, and stored this makespan in the csv file.

5.3. Speed Up

For a given application and computing platform, the program execution time is
the most direct reflection of the effectiveness of the program execution. Our computing
platform is a simulated homogeneous multi-core platform, and the execution time of each
instance is also randomly generated in the configuration shown in Table 2. Although
makespan is the most commonly used metric, it does not provide an intuitive reflection
of the strengths and weaknesses of parallel algorithms, so we used the speedup, which is
defined as follows.

η =
SFT

makespan
(20)

where SFT denotes the execution finish time of all instances of HSDFG for a single core
per unit period. Based on the load we defined (15), we added a load-balancing policy to
the PAPS algorithm. In the core selection phase, the core with the lowest current load is
selected, this algorithm is called the PAPS-B algorithm. We first generated a specific number
of SDFGs using the SDFG random generator and then converted the SDFGs to HSDFGs
using the conversion algorithm in [3] to test the speedup at different processor counts.

Table 3 shows the speedup results under different scenarios. In this case, the number
of instances of HSDFG is 8, 32, 64 and 128. Four different sizes of SDFG were used as
test cases to test the speedup at different processor core counts. The number of simulated
processor cores M is 2, 4 and 8, respectively. Three scheduling algorithms are compared,
namely, the PAPS algorithm, the PAPS-B algorithm and our proposed LSEFT algorithm.
The purpose of comparing the PAPS-B algorithm is to compare the advantages of the EFT
policy with balancing policy. From the experimental results in Table 3, it can be seen that
the speedup of the LSEFT algorithm are all improved to varying degrees compared to
the algorithm before the improvement. In particular, when the number of instances is
higher and the number of processors is greater, the speedup of the LSEFT algorithm is
improved more significantly. Because instances are represented as task graphs, there are
dependencies between instances and instances can only be scheduled for execution when
all dependencies are satisfied. If the priority of the currently ready instances is consistent,
then the short job priority policy is used, giving short execution times. At the end of the
execution of the short instance, more instances of the ready state are available, which have
parallelism between them and can further be assigned to execute in different processor
cores. The parallelism is fully exploited, the makespan is reduced and therefore a higher
speedup is obtained. The results in Table 3 also show that the LSEFT algorithm, with a
higher number of processors, also achieves a higher speedup.

https://github.com/wangcgzzu/SDFG-data.git 


Algorithms 2022, 15, 56 14 of 17

Table 3. Speed up vs. number of instances with different scheduling algorithms.

Number of
Instances M Speed Up η of

PAPS
Speed Up η of

PAPS-B
Speed Up η of

LSEFT

8 2 1.56 1.56 1.75
32 2 1.19 1.33 1.33
64 2 1.09 1.09 1.24

128 2 1.04 1.20 1.20
8 4 2.00 2.00 2.33
32 4 1.33 1.33 1.33
64 4 1.24 1.24 2.15

128 4 1.20 1.20 2.24
8 8 2.33 2.33 2.33
32 8 1.33 1.33 2.80
64 8 1.24 2.04 3.29

128 8 2.02 2.02 3.61

Without loss of generality, we used the SDFG random generator, configured as shown
in Table 2, to generate 958 SDFGs. The same conversion algorithm in the [3] is used to
convert to 958 HSDFGs. We processed 958 HSDFGs using the PAPS, PAPS-B and LSEFT
algorithms, respectively. The PAPS, PAPS-B and LSEFT algorithms calculate the speedup
using Equation (20) after each HSDFG is processed and save the speedup. When all the test
case data were processed, the speedup for each test case were also calculated and stored.
Finally, the average of these speedups was calculated; the results are shown in Figure 7. In
Figure 7, we take the average of 958 speedups as the measurement data. The performance
ranking of the algorithm based on the average speedup is LSEFT, PAPS-B, PAPS. For the
generated SDFG, LSEFT outperforms the rest of the algorithms. Moreover, the average
speedup of the LSEFT algorithm performs well for the 8-core simulation, with an average
speedup improvement of 10.17% compared to the PAPS algorithm. Furthermore, Figure 7
shows that the EFTstrategy is superior to the load balancing strategy.

0

1

2

3

4

5

6

7

8

2-cores 4-cores 8-cores

p
u 

pee
p

S e
gare

v
A

The number of cores

PAPS

PAPS-B

LSEFT

Figure 7. Average speed up with different scheduling algorithms.

5.4. Parallel Efficiency

Parallel efficiency reflects the practical effect of an increase in hardware resources in
computing. On homogeneous processor system, parallel efficiency E f f is defined as follow.

E f f =
η

M
(21)

For a homogeneous processor system, the execution performance of each processor
core is the same. For a given number of HSDFGs and processor cores, the denominator of
Equation (21) is constant, so the smaller the makespan, the larger the speed up η, and the
higher the parallel efficiency, corresponding to the better the scheduling algorithm. We also
tested the average parallelism efficiency using 958 HSDFGs for each scheduling algorithm.
The performance ranking of the algorithms based on average parallel efficiency is LSEFT,
PAPS-B, PAPS. The results are shown in Figure 8, where the parallel efficiency of the PAPS



Algorithms 2022, 15, 56 15 of 17

algorithm decreases as the number of processor cores increases. Although the parallel
efficiency of the LSEFT algorithm also decreases, the decrease in LSEFT is significantly
lower than that of the PAPS algorithm. In terms of the decreasing trend, the PAPS algorithm
has a steeper decreasing trend, implying that the parallel efficiency of the PAPS algorithm
will decrease more when the number of processor cores increases. Therefore, the results in
Figure 8 also clearly show that the LSEFT algorithm has a higher and more stable parallel
efficiency.

0

0.2

0.4

0.6

0.8

1

1.2

2-cores 4-cores 8-cores

yc
neiciffe lellara

p e
g are

v
A

The number of cores

PAPS PAPS-B LSEFT

Figure 8. Average parallel efficiency with different scheduling algorithms.

6. Conclusions

SDFG is widely used to model streaming applications. With the current proliferation of
dedicated homogeneous multi-core processors, it is important that streaming applications
make full use of these computational resources.

We extend the DAG model using data-driven methods to propose the SDAG model as
a model for parallel computation of SDFGs under the von Neumann architecture. Then,
we improved the PAPS algorithm and proposed the LSETF algorithm for scheduling
SDFGs on a homogeneous multi-core processor system. Based on an experimental study
of 956 randomly generated SDFGs of different sizes, the LSEFT algorithm outperforms
the pre-improvement algorithm in terms of performance metrics (speedup and parallel
efficiency). The LSEFT algorithm is a feasible solution to the SDFG scheduling problem on
homogeneous systems.

For the task priority calculation method of the LSEFT algorithm, we studied a new
calculation method to avoid solving the longest path in the DAG. In the processor selection
phase, we compared the load balancing strategy with the shortest completion time strategy.
The disadvantage of the LSEFT algorithm is that it is based on HSDFG scheduling and
cannot be scheduled in the original SDFG graph. Furthermore, the LSEFT algorithm does
not take into account the communication overhead between processors when scheduling.
We will extend the LSEFT algorithm to accommodate heterogeneous processor systems
while incorporating communication overhead in the future work. We also working on
future scheduling methods based on reinforcement learning and our dataset can be used
for reinforcement learning as well.

Author Contributions: Conceptualization, L.W., C.W. and H.W.; methodology, L.W.; software, C.W.;
validation, L.W., C.W. and H.W.; formal analysis, L.W.; data curation, C.W.; writing—original draft
preparation, C.W.; writing—review and editing, L.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by State Key Laboratory of Complex Electromagnetic Envi-
ronment Effects on Electronics and Information System (project no. CEMEE2018K0302B), Sichuan
Science and Technology Program in China Grant Number 2020YFG0059 and Fundamental Research
Funds for the Central Universities in China Grant Number ZYGX2019J128.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Algorithms 2022, 15, 56 16 of 17

Data Availability Statement: The data presented in this study are openly available in [Github] at
[https://github.com/wangcgzzu/SDFG-data.git] (accessed on 9 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DAG Directed Acyclic Graphs
FIFO First In First Out
HSDFG Homogeneous SDFG
LSEFT Level Shortest First Earliest Finish Time
SDAG Super Directed Acyclic Graphs
SDFG Synchronous Data Flow Graphs
PAPS Periodic Admissible Parallel Schedule

References
1. Damavandpeyma, M.; Stuijk, S.; Basten, T.; Geilen, M.; Corporaal, H. Schedule-Extended Synchronous Dataflow Graphs. IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst. 2013, 32, 1495–1508. [CrossRef]
2. Lee, E.; Messerschmitt, D. Synchronous data flow. Proc. IEEE 1987, 75, 1235–1245. [CrossRef]
3. Lee, E.A.; Messerschmitt, D.G. Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing. IEEE Trans.

Comput. 1987, 100, 24–35. [CrossRef]
4. Lin, H.; Li, M.F.; Jia, C.F.; Liu, J.N.; An, H. Degree-of-node task scheduling of fine-grained parallel programs on heterogeneous

systems. J. Comput. Sci. Technol. 2019, 34, 1096–1108. [CrossRef]
5. Cole, R.; Zajicek, O. The APRAM: Incorporating Asynchrony into the PRAM Model. In Proceedings of the First Annual ACM

Symposium on Parallel Algorithms and Architectures, SPAA’89, Santa Fe, NM, USA, 18–21 June 1989; Association for Computing
Machinery: New York, NY, USA, 1989; pp. 169–178. [CrossRef]

6. Suettlerlein, J.; Zuckerman, S.; Gao, G.R. An implementation of the codelet model. In Proceedings of the European Conference on
Parallel Processing, Aachen, Germany, 26–30 August 2013; Springer: Berlin/Heidelberg, Germany, 2013, pp. 633–644. [CrossRef]

7. Hu, T.C. Parallel sequencing and assembly line problems. Oper. Res. 1961, 9, 841–848. [CrossRef]
8. Thies, W.; Karczmarek, M.; Amarasinghe, S. StreamIt: A Language for Streaming Applications. In Compiler Construction;

Horspool, R.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 179–196.
9. Zhang, W.; Wei, H.; Yu, J. COStream: A language for dataflow application and compiler. Chin. J. Comput. 2013, 36, 1993–2006.

[CrossRef]
10. Veen, A.H. Dataflow Machine Architecture. ACM Comput. Surv. 1986, 18, 365–396. [CrossRef]
11. Kung, S.Y.; Arun.; Gal-Ezer.; Rao, B. Wavefront Array Processor: Language, Architecture, and Applications. IEEE Trans. Comput.

1982, 100, 1054–1066. [CrossRef]
12. JéJé, J. An Introduction to Parallel Algorithms; Addison-Wesley: Reading, MA, USA, 1992; Volume 10, p. 133889.
13. Dorostkar, F.; Mirzakuchaki, S. List Scheduling for Heterogeneous Computing Systems Introducing a Performance-Effective

Definition for Critical Path. In Proceedings of the 2019 9th International Conference on Computer and Knowledge Engineering
(ICCKE), Mashhad, Iran, 24–25 October 2019 ; pp. 356–362. [CrossRef]

14. Wu, Q.; Zhou, M.; Zhu, Q.; Xia, Y.; Wen, J. MOELS: Multiobjective Evolutionary List Scheduling for Cloud Workflows. IEEE
Trans. Autom. Sci. Eng. 2020, 17, 166–176. [CrossRef]

15. Djigal, H.; Feng, J.; Lu, J. Performance Evaluation of Security-Aware List Scheduling Algorithms in IaaS Cloud. In Proceedings of
the 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia,
11–14 May 2020; pp. 330–339. [CrossRef]

16. Bo, Y.; Benfa, Z.; Feng, L.; Xiaoyu, Z.; Xinjuan, L.; Fang, W.; Zhitao, Z. List scheduling algorithm of improved priority with
considering load balance. In Proceedings of the 2021 IEEE International Conference on Data Science and Computer Application
(ICDSCA), Haikou, China, 29–31 October 2021; pp. 324–327. [CrossRef]

17. Suzuki, M.; Ito, M.; Hashidate, R.; Takahashi, K.; Yada, H.; Takaya, S. Fundamental Study on Scheduling of Inspection Process for
Fast Reactor Plants. In Proceedings of the 2021 2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI),
1–15 September 2020; pp. 797–801. [CrossRef]

18. Miao, C. Parallel-Batch Scheduling with Deterioration and Group Technology. IEEE Access 2019, 7, 119082–119086. [CrossRef]
19. Hu, Z.; Li, D.; Zhang, Y.; Guo, D.; Li, Z. Branch Scheduling: DAG-Aware Scheduling for Speeding up Data-Parallel Jobs. In

Proceedings of the 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS), Phoenix, AZ, USA, 24–25 June
2019; pp. 1–10. [CrossRef]

20. Wu, X.; Yuan, Q.; Wang, L. Multiobjective Differential Evolution Algorithm for Solving Robotic Cell Scheduling Problem with
Batch-Processing Machines. IEEE Trans. Autom. Sci. Eng. 2021, 18, 757–775. [CrossRef]

https://github.com/wangcgzzu/SDFG-data.git
http://doi.org/10.1109/TCAD.2013.2265852
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1007/s11390-019-1962-4
http://dx.doi.org/10.1145/72935.72954
http://dx.doi.org/10.1007/978-3-642-40047-6_63
http://dx.doi.org/10.1287/opre.9.6.841
http://dx.doi.org/10.3724/SP.J.1016.2013.01993
http://dx.doi.org/10.1145/27633.28055
http://dx.doi.org/10.1109/TC.1982.1675922
http://dx.doi.org/10.1109/ICCKE48569.2019.8964738
http://dx.doi.org/10.1109/TASE.2019.2918691
http://dx.doi.org/10.1109/CCGrid49817.2020.00-60
http://dx.doi.org/10.1109/ICDSCA53499.2021.9650131
http://dx.doi.org/10.1109/IIAI-AAI50415.2020.00157
http://dx.doi.org/10.1109/ACCESS.2019.2936004
http://dx.doi.org/10.1145/3326285.3329071
http://dx.doi.org/10.1109/TASE.2020.2969469


Algorithms 2022, 15, 56 17 of 17

21. Moi, S.H.; Yong, P.Y.; Weng, F.C. Genetic Algorithm Based Heuristic for Constrained Industry Factory Workforce Scheduling. In
Proceedings of the 2021 7th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 23–26 April
2021; pp. 345–348. [CrossRef]

22. Yang, S.; Xu, Z. Intelligent Scheduling for Permutation Flow Shop with Dynamic Job Arrival via Deep Reinforcement Learning.
In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC),
Chongqing, China, 12–14 March 2021; Volume 5, pp. 2672–2677. [CrossRef]

23. Jeong, D.; Kim, J.; Oldja, M.L.; Ha, S. Parallel Scheduling of Multiple SDF Graphs Onto Heterogeneous Processors. IEEE Access
2021, 9, 20493–20507. [CrossRef]

24. Bonfietti, A.; Benini, L.; Lombardi, M.; Milano, M. An efficient and complete approach for throughput-maximal SDF allocation
and scheduling on multi-core platforms. In Proceedings of the 2010 Design, Automation Test in Europe Conference Exhibition
(DATE 2010), Dresden, Germany, 8–12 March 2010; pp. 897–902. [CrossRef]

25. Ali, H.I.; Stuijk, S.; Akesson, B.; Pinho, L.M. Reducing the Complexity of Dataflow Graphs Using Slack-Based Merging. ACM
Trans. Des. Autom. Electron. Syst. 2017, 22, 1–22. [CrossRef]

26. Bambha, N.; Kianzad, V.; Khandelia, M.; Bhattacharyya, S.S. Intermediate representations for design automation of multiprocessor
DSP systems. Des. Autom. Embed. Syst. 2002, 7, 307–323. [CrossRef]

27. Choi, J.; Ha, S. Worst-Case Response Time Analysis of a Synchronous Dataflow Graph in a Multiprocessor System with Real-Time
Tasks. ACM Trans. Des. Autom. Electron. Syst. 2017, 22, 1–26. [CrossRef]

28. Jung, H.; Oh, H.; Ha, S. Multiprocessor Scheduling of a Multi-Mode Dataflow Graph Considering Mode Transition Delay. ACM
Trans. Des. Autom. Electron. Syst. 2017, 22, 1–25. [CrossRef]

29. Bouakaz, A.; Fradet, P.; Girault, A. Symbolic Analyses of Dataflow Graphs. ACM Trans. Des. Autom. Electron. Syst. 2017, 22, 1–25.
[CrossRef]

30. Stuijk, S.; Geilen, M.; Basten, T. SDF3: SDF For Free. In Proceedings of the Sixth International Conference on Application of
Concurrency to System Design (ACSD’06), Turku, Finland, 28–30 June 2006; pp. 276–278. [CrossRef]

31. Rajadurai, S.; Alazab, M.; Kumar, N.; Gadekallu, T.R. Latency Evaluation of SDFGs on Heterogeneous Processors Using Timed
Automata. IEEE Access 2020, 8, 140171–140180. [CrossRef]

http://dx.doi.org/10.1109/ICCAR52225.2021.9463323
http://dx.doi.org/10.1109/IAEAC50856.2021.9390893
http://dx.doi.org/10.1109/ACCESS.2021.3054725
http://dx.doi.org/10.1109/DATE.2010.5456924
http://dx.doi.org/10.1145/2956232
http://dx.doi.org/10.1023/A:1020307222052
http://dx.doi.org/10.1145/2997644
http://dx.doi.org/10.1145/2997645
http://dx.doi.org/10.1145/3007898
http://dx.doi.org/10.1109/ACSD.2006.23
http://dx.doi.org/10.1109/ACCESS.2020.3013013

	Introduction
	SDFG Background
	Related Work
	SDAG Model and HSDFG Scheduling
	SDAG Computational Model
	SDAG Computational Model Analysis
	HSDFG Scheduling
	Problem Definition
	Instance Selection
	Core Selection
	Overall Algorithm


	Evaluation
	SDFG Random Generator
	SDFG Data
	Speed Up
	Parallel Efficiency

	Conclusions
	References

