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Abstract: Detecting the intangible continuous object (ICO) is a significant task, especially when the 
ICO is harmful as a toxic gas. Many studies used steady sensors to sketch the contour and find the 
area of the ICO. Applying the mobile sensors can further improve the precision of the detected ICO 
by efficiently adjusting the positions of a subset of the deployed sensors. This paper proposed two 
methods to figure out the area of the ICO, named Delaunay triangulation with moving sensors 
(MDT) and convex hull with moving sensors (MCH). First, the proposed methods divide the sensors 
into ICO-covered and ICO-uncovered sensors. Next, the convex hull algorithm and the Delaunay 
triangulation geometric architecture are applied to figure out the rough boundary of the ICO. Then, 
the area of the ICO is further refined by the proposed sensor moving algorithm. Simulation results 
show that the figured out area sizes of MDT and MCH are 135% and 102% of the actual ICO. The 
results are better than the planarization algorithms Gabriel Graph (GG) and Delaunay triangulation 
without moving sensors, that amount to 137% and 145% of the actual ICO. The simulation also 
evaluates the impact of the sensors’ moving step size to find the compromise between the accuracy 
of the area and the convergence time of area refinement. 

Keywords: intangible continuous object; mobile sensors; boundary refinement; Delaunay  
triangulation; convex hull 
 

1. Introduction 
Wireless sensor networks help us remotely explore unknown fields or dangerous ar-

eas such as military areas, hazard environment sensing, and high-temperature industrial 
monitoring. These tiny devices can monitor the information of their locations and deliver 
the collected data to the data center via the wireless communication technique. These 
sensing techniques can reduce the exploring workforce and prevent humans from step-
ping into dangerous regions. 

Numerous studies have focused on detecting the boundary area of the intangible 
continuous object. Some of these studies organize the deployed sensors into multiple clus-
ters [1,2]. The methods in these studies provide rough boundary results of the continuous 
object. Their main objective is to track the boundary of a mobile object. Similar proposed 
studies trace the boundary of a mobile object by using grid architecture [3,4]. These meth-
ods divided the deployed region into multiple grids. The sensor in each grid reports 
whether the continuous object exists or not. The grid size determines the precision of the 
detected boundary. For refining the detected results, each grid is further divided into mul-
tiple smaller grids [4] to improve the detection precision. 

In addition, many boundary detection studies used planarization algorithms to fig-
ure out the boundary of the continuous object [5–11]. The sensors in these studies are 
stationary after being deployed. Their proposed methods treat the sensors as vertices on 
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the planer graph. They create a coarse boundary region to detect the boundary of the con-
tinuous objects. The sensors that are covered by the continuous object and close to the 
boundary line are the inner boundary nodes, and the sensors, which are near the bound-
ary line but uncovered by the continuous object, are outer boundary nodes. All these inner 
and outer boundary nodes are involved in building the boundary faces. Then, these meth-
ods applied the planarization algorithms, such as the Gabriel Graph (GG), Relative Neigh-
borhood Graph (RNG), and k-Localized Delaunay Graph (LDelk), to create the boundary 
faces. Considering the communication latency caused by delivering the positions of the 
sensors, Kundu et al. proposed the farthest-first routing technique to lower the latency 
[12]. 

Generally, these planarization algorithms assume that the sensors’ communication 
range is infinity. The assumption that every sensor can directly communicate with others 
without considering the physical distance is unrealistic. While considering the limited 
communication range, the network may determine that the sensors cannot return their 
positions to the controller. In this scenario, the planarization algorithms will lose their 
functionality. 

Therefore, some studies proposed using mobile sensors to refine the detected bound-
ary of the continuous object [13–15]. These methods use a set of mobile sensors traveling 
within the deploying area to refine the boundary that the stationary sensors have roughly 
figured out [13,14], or use all sensors to explore all areas of the continuous object. When 
the continuous object has a long boundary line, these methods may lose their timeliness. 

The above methods using stationary sensors to detect the boundary without consid-
ering the sensors’ limited communication range are impractical. Therefore, this paper as-
sumes that the sensors have a limited communication range and gives them the mobile 
ability to refine the boundary precision. The proposed methods applied the convex hull 
and the Delaunay triangulation methods to estimate the initial area of the continuous ob-
ject. Next, the sensors’ moving algorithm is adapted to refine the contour of the intangible 
continuous object (ICO). 

2. Related Works 
The existing continuous object detection and tracking methods have three classes. 

The first class comprises the cluster-based methods. Generally, the number of deployed 
sensors is high. It causes sensors to consume much energy on data propagation. Therefore, 
this class divides sensors into several small clusters. Every cluster selects a cluster head 
(CH) to coordinate the sensors’ data communication and collection. Then, the CH aggre-
gates data and delivers them to the sink to reduce the sink’s data receiving requests. 

The Dynamic Cluster Structure for Object Detection and Tracking algorithm [1], de-
noted as DCSODT, proposed by Ji et al., is a cluster-based method. DCSODT adopted a 
location-based clustering method to trace the continuous object. At first, DCSODT elects 
the boundary sensors according to the sensing status of the sensors. Next, it verifies the 
states of the one-hop neighbors of these boundary sensors to determine the cluster. When 
the continuous object shifts, DCSODT will update the boundary sensors and reform the 
sensors’ cluster. Although sensors in DCSODT reduce the numerous data transmission to 
the sink via the cluster structure, they still need to frequently exchange messages with 
their one-hop neighbors to update the cluster structure. 

Chang et al. also proposed a Continuous-Object Detection and Tracking Algorithm, 
denoted as CODA [2]. CODA dynamically clusters the sensors to detect and trace the con-
tinuous object. At first, it divides the sensors into multiple clusters. The CH of each cluster 
evaluates the locations of the newly joined sensors. Next, CODA models the sensors as 
the vertices in the geometrical plane and then applies the convex hull algorithm to select 
the boundary sensors. For reducing the energy consumption of the sensors, the clusters 
that included any boundary sensors can only send new data to the sink. CODA continu-
ously performs the clustering procedure to update the boundary sensors. The message 
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exchanging during the continuous clustering operation will generate great penalties in 
communication. 

Using the planarization algorithms to detect the boundary area is the role of the sec-
ond class. The widely used planarization algorithms for constructing the boundary area 
of the continuous object are Gabriel Graph (GG) [5], Relative Neighborhood Graph (RNG) 
[6], Delaunay Triangulation [7], k-Localized Delaunay Graph (LDelk) [8], and Yao Graph 
(YG) [9]. Generally, the planarization algorithms treat the sensors as vertices on the planer 
graph. Sun et al. compared the impact of GG, RNG, LDelk, and YG to analyze the accuracy 
of detecting the continuous object [16]. They concluded that LDelk has the best results. 
They classified the sensors into inner nodes and outer nodes according to whether the 
sensors detect the event or not. Nodes create a coarse boundary region to predict the 
boundary of the continuous objects. Usually, these methods focus on building the geom-
etry planer graph and ignore the practical communication range of the sensors. 

The third class uses the mobile sensors to adjust the initially deployed positions and 
then computes a more accurate boundary area. Shu et al. proposed a novel boundary area 
detection technique named DeGas scheme [13]. DeGas also treats sensors as the vertices 
of a graph and divides sensors into the inner boundary node (IBN) and the outer bound-
ary node (OBN). Each IBN constructs a link to each one-hop OBN neighbor. This kind of 
link is named critical edge (CE). The DeGas scheme chooses a CE to explore the connection 
edges between IBNs and OBNs to build an enclosed area (also called a boundary face) 
with a mobile car. The proposed method tries to avoid deploying too many redundant 
sensors. 

Shu et al. extended the idea of the DeGas scheme to detect the dangerous area of toxic 
gases [17]. This method considers the scenario that sensors may be out of function after 
operating for a while. Each sensor determines itself to be an IBN or an OBN for construct-
ing the Outer Boundary Area (OBA) and Inner Boundary Area (IBA) by checking its one-
hop neighbors’ status. The OBA and the IBA are composed of numerous boundary faces, 
and these faces cover the dangerous area. The area estimation is obtained simply by cal-
culating these irregular boundary faces. This study concluded that creating the boundary 
faces with the YG graph can yield the highest precision. Ping et al. also proposed a method 
that uses the planarization algorithms to locate and trace the boundary area of the contin-
uous object with Duty-Cycled WSNs [14]. They used the Kriging algorithm to refine the 
boundary face area [18]. Zhang et al., proposed a similar novel mechanism for continuous 
object boundary region detection [15]. To detect a practice boundary, a set of mobile sen-
sors traverses the predicted boundary. It uses a heuristic algorithm like ant colony opti-
mization (ACO) to find the optimal routings for mobile sensors. Experimental results 
show that the proposed mechanism could get a precise boundary area. Wang et al. used 
a gas concentration gradient to estimate and track the boundary [19]. A single moving 
platform with sensors constantly measures the gas concentration [20]. The proposed algo-
rithm controls the motion of a single unmanned underwater vehicle (UUV). As in [19], the 
initial detection of the cloud boundary and the tracking procedures in this study are ob-
tained according to the calculated toxic substance concentration gradient. 

Our previous study proposed an incremental deployment method for detecting the 
intangible event region, named Incremental Deployment with Gravitational Force (IDGF) 
[21]. IDGF applied the virtual force model to calculate subsequent sensor positions to track 
the boundary. Agents are continuously deployed within the region of the intangible 
events before the coverage area becomes stable. It can reduce the deployed sensors to 
cover the intangible event’s region. Krzyszto ’n et al., proposed a similar method with five 
procedures for calculating the optimal values of these parameters [22]. The proposed 
method also used the virtual force to deploy the sensors. 

These methods use stationary sensors to figure out the continuous object. Their pre-
cision is limited once the sensors are placed in the deployed area. By involving the mobile 
sensors, the figured out boundary area of the continuous object can be adjusted further. 
Thus, this paper adopts mobile sensors to improve precision. The deployed sensors start 
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by building a rough boundary area. Then, the proposed strategy for moving sensors is 
applied to improve the precision. 

3. Proposed Methods 
This section gives the main idea of the proposed methods. The first part presents the 

preliminaries and assumptions. The second part contains the two proposed methods, De-
launay triangulation with moving sensors and convex hull with moving sensors (named 
MDT and MCH). MDT and MCH use the Delaunay triangulation architecture and the 
convex hull algorithm to find the rough boundary of the continuous object, respectively. 
Then they use a sensor moving strategy and a boundary-refining mechanism to improve 
the precision of the estimated area. 

3.1. Preliminaries and Assumptions 
In the beginning, sensors are randomly deployed within the region of interest (RoI). 

These deployed sensors are homogeneous, with the same communication range and sens-
ing range. Each sensor is moveable and can accurately obtain its position. All sensors pe-
riodically send their sensed data, identity, and position information to the sink node if the 
newly sampled data are different from the last ones. The continuous object has an irregu-
lar shape. We define that a sensor detects the event if it is within the coverage of the con-
tinuous object and its sensed concentration is higher than the threshold. 

3.2. The Continuous Object Area Computation 
This section shows how the MDT and the MCH figure out the rough area of the con-

tinuous object and how to adjust the positions of the boundary sensors to refine the rough 
area by using the mobile sensors. 

3.2.1. Compute the Rough Area of the Continuous Object 
All sensors are treated as the vertices (or nodes) on the geometrical plane. All sensors 

are classified into inner and outer nodes, denoted as the iNode or the oNode. The sensors 
enclosed within the coverage area of the continuous object are iNodes, and those uncov-
ered are oNodes. In the real world, an iNode is a sensor that detects the concentration of 
the event higher than a predefined threshold. Here, the notations Ψi and Ψo are repre-
sented as the set of the iNodes and oNodes, respectively. 

Next, the MDT applies the Delaunay triangulation to figure out the rough contour of 
the continuous object. The iNodes, which have any one-hop neighbor in Ψo, are retrieved 
as inner boundary nodes, denoted as ibNodes. Here we use Ψid’ to represent the set of 
ibNodes. The one-hop neighbors of iNodes which belong to Ψo are outer boundary nodes, 
denoted as obNodes. We use Ψod’ as the set of obNodes. Note that a neighbor of a node 
indicates that its physical distance is shorter than the communication range. All nodes are 
the vertices of the geographical plane. The Delaunay triangulation of vertices in set 
Ψod’∪Ψid’ is constructed. The summarized areas of these triangulations in the Delaunay tri-
angulation architecture will be the rough area of the continuous object shown in Figure 1. 
The reason for including the iNodes in set Ψid’ is to reduce the computation. The iNodes, 
which are not in Ψid’, must be in the area enclosed by the sensors in Ψid’. Therefore, com-
puting the Delaunay triangulation can exclude them to reduce the computation. Involving 
the oNodes included in Ψod’ is a way of trying to select the sensors, which are the closest 
ones to the boundary of the continuous object, for covering all iNodes. 
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Continuous Object iNode ibNode oNode  
Figure 1. The continuous object’s rough area is sketched by MDT. This rough area is figured out by 
the deployed sensors using their original locations instead of their adjusted locations. The sensors 
enclosed within the coverage area of the continuous object are iNodes, and those uncovered are 
oNodes. The nodes in both sets, iNodes and oNodes, closing to the practice boundary of the continu-
ous object, are picked as the vertices in the plane graph to create the Delaunay triangulation. 

MCH uses the convex- hull algorithm to enclose the continuous object, shown in Fig-
ure 2. After finding out the sets Ψi and Ψo, MCH applies the Graham scan algorithm to 
obtain the convex hull of the nodes in Ψi, shown in Figure 2a. Those nodes, which con-
struct the convex hull of the vertices in Ψi, are marked as ibNodes. Let Ψic’ be the set of 
these ibNodes. Similarly, the nodes which belong to Ψo and are the one-hop neighbors of 
the vertices in Ψic’ will be the candidate outer boundary nodes, and we denoted Ψoc as the 
set of these nodes. The nodes which organize the convex hull of the vertices in Ψoc will be 
the rough area of the continuous object, shown in Figure 2b. To simplify the presentation, 
let Ψoc’ be the set of these sensors. 

Continuous Object iNode ibNode oNode  
(a) 
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Continuous Object iNode ibNode oNode  
(b) 

Figure 2. The continuous object’s rough area is sketched by MCH. (a) The sensors included in the 
set of iNode are involved in finding their convex hull. The sensors used to construct this convex hull 
are the inner boundary nodes. (b) The sensors included in the set of oNodes are involved in finding 
their convex hull. The sensors used to construct this convex hull are the outer boundary nodes. The 
practice boundary of the continuous object is enclosed by the two convex hull polygons built with 
the sensors in iNode and oNode. 

3.2.2. Refine the Enclosed Area with Mobile Sensors 
• Determine the moving direction for the sensors 

In MDT, the constructed triangulations created by the nodes in sets Ψi and Ψo must 
settle on the boundary of the continuous objects. Adjusting the positions of these nodes 
can refine the bounded area of the continuous object. Let ΔQBC be one of the triangula-
tions constructed by MDT, shown in Figure 3a. The vertex Q is selected to adjust its posi-
tion because the detecting status of Q is different from the other two vertices, A and B. 
The moving direction of vertex Q, denoted as D, is computed as the resultant vector of 
𝑄𝑄𝐵𝐵�����⃑  and 𝑄𝑄𝐶𝐶�����⃑ . That is, 𝐷𝐷��⃑ = �𝑄𝑄𝑄𝑄������⃑ +𝑄𝑄𝐶𝐶�����⃑ �

|𝑄𝑄𝑄𝑄������⃑ +𝑄𝑄𝐶𝐶|�������⃑ . 



Algorithms 2022, 15, 31 7 of 17 
 

Q

B

C

Q'

 
(a) 

B

C
E

Q'

Q

D

Q"

 
(b) 

Figure 3. Moving direction of a position-adjusting sensor. (a) The MDT determines a sensor’s mov-
ing direction according to the vectors to the other two sensors of the same triangle, which is con-
structed by the Delaunay triangulation architecture. (b) The MCH determines a sensor’s moving 
direction according to the vectors of all neighboring sensors that have a different set of convex hull. 

In MCH, all the sensors in sets Ψic’ and Ψoc’ are settled at both sides of the continuous 
object’s boundary. MCH only selects them to adjust the positions instead of all nodes in 
Ψic and Ψoc. This choice can efficiently reduce the number of moving sensors. Considering 
the moving direction of a sensor Q in Ψoc’, Q firstly collects the position of its one-hop 
neighbor Nj in Ψic’ to compute vector 𝑄𝑄𝑁𝑁𝚥𝚥�������⃑ . Let the number of one-hop neighbors be k. Then, 
the unit vector of the resultant vector, ∑ 𝑄𝑄𝑁𝑁𝚥𝚥�������⃑𝑘𝑘

𝑗𝑗=1 , will be its moving direction. That is, 𝐷𝐷��⃑ =
∑ 𝑄𝑄𝑁𝑁𝚥𝚥��������⃑𝑘𝑘
𝑗𝑗=1

|∑ 𝑄𝑄𝑁𝑁𝚥𝚥��������⃑𝑘𝑘
𝑗𝑗=1 |

, shown in Figure 3b. If sensor Q is in Ψic’ instead of Ψoc’, the mechanism to deter-

mine the moving direction of Q is similar. Q uses its one-hop neighbors in Ψic’ instead of 
Ψoc’. 

This involves more one-hop neighbors of Q with distinct detected states, which can 
make the position adjust to the boundary line more efficiently. Suppose that Q only selects 
two sensors in set Ψic’ to compute its next target position instead of all one-hop sensors. 



Algorithms 2022, 15, 31 8 of 17 
 

Without any further information, Q may choose the sensors B and E. This decision makes 
Q move to location Q”, which is farther away from the boundary than Q’. 
• Determine the moving step size of the mobile sensors and location freeze mechanism 

Adopting the appropriate moving step size is very important. Using a small moving 
step size is helpful to improve the precision of the figured area, but it increases the con-
vergence time of the moving operation. Using a large moving step size can shorten the 
convergence time of the sensors’ moving task, but the sensors will easily cross the bound-
ary of the continuous object. Thus, the maximum value of the moving step size for any 
sensor Q must be well controlled. Let γ be the moving step size. The maximum value of 
the moving step size of mobile sensor Q, γmax, is set to 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 = 1

2
× �𝑄𝑄𝑂𝑂𝑎𝑎��������⃑ + 𝑄𝑄𝑂𝑂𝑏𝑏��������⃑ �, where Qa 

and Qb are two of the nodes that determine the moving direction of Q and are closest to 
Q. Taking half the size of the resultant vector can reduce the probability that the mobile 
sensor Q crosses the boundary of the continuous object in one movement. Different mov-
ing step sizes λ × γmax|0 < λ ≦ 1 will be evaluated in the simulation section. In addition, the 
proposed algorithms design a moving freeze mechanism to prevent the sensors from over-
correcting their positions. The vertex goes back to its original position and becomes sta-
tionary when it detects its status change during its movement. The refinement moving 
procedure of MDT terminated when all vertices in set Ψod’∪Ψid’ become stationary. In MCH, 
Ψid’ and Ψod’ are replaced as Ψic’ and Ψoc’, respectively. Algorithm 1 shows the completed 
MDT algorithm. 

Algorithm 1. The algorithm of the MDT. 
V   : Set of the deployed nodes. 
Ψi   : The iNode set. 
Ψo   : The oNode set. 
Ψid’  : The ibNode set. 

Ψod’  : The obNode set. 
Ψ(v): The set that the node v belongs to. The set may be Ψid’ or Ψod’. 
γ: The moving step size. 
Es(u): the detecting status of node u. 
Q.Lock:the lock status of node Q. If its value is true, node Q freezes its moving opera-
tion. 
(QX,QY): the coordinates of node Q. 
(Q’X,Q’Y): the last coordinates of node Q. 
 
1. For all node u ∊ V 
2. Verify the Es(u) and Classify u into sets Ψi and Ψo  
3. For all node v ∊Ψi 
4. Find the nodes v* which have any one-hop neighbor w ∈ Ψo  
5. Put v* to set Ψid’ 
6. Put w to set Ψod’ 
7. Apply the Delaunay triangulation algorithm on {Ψid’, Ψod’} and put all computed 

triangles ΔABC into set ΩΔ 
8. While (∃ Q# ∈{Ψid’, Ψod’} && Q#.Lock == false){ 
9. For all ΔABC ∊ ΩΔ { 
10. Get the nodes {A,B,C} of ΔABC 
11. If (!(∀{A, B, C}∈Ψid’) or !(∀{A, B, C}∈Ψod’)) { 
12. Get Q* ∈{A,B,C} where Ψ(Q*) != Ψ({A,B,C}\Q*) 
13. Get {Qa, Qb}∈{A,B,C}, where Ψ(Qa) = Ψ(Qb) 
14. If (Q*.Lock == true) 
15. Break; 

16. Compute the moving direction, 𝐷𝐷 =
�𝑄𝑄∗𝑄𝑄𝑎𝑎������������⃑ +𝑄𝑄∗𝑄𝑄𝑏𝑏�����������⃑ �

|𝑄𝑄∗𝑄𝑄𝑎𝑎������������⃑ +𝑄𝑄∗𝑄𝑄𝑏𝑏�����������⃑ |
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17. (Q*’X,Q*’Y) ←(Q*X,Q*Y)            //store the current location as the last one 
18. (Q*X,Q*Y) ← (Q*X + γ×D.x, Q*Y + γ×D.y)//update the current location 
19.  
20. If (the event detection of Q* changes) { 
21. Restore the original location, (Q*X,Q*Y)←(Q*’X,Q*’Y) 
22. Q*.Lock = true 
23. } 
24. } 
25. }  
26. } 

• MCH: Refine by updating the boundary nodes. 
MCH can refine its enclosed area further. There are still many obNodes near the 

boundary of the continuous object but not belonging to set Ψoc’ after using mobile sensors 
to refine the bounded area. For each vertex S | S ∈ Ψoc’, MCH traces every neighboring 
obNode Q of S to refine the size of the bounded area. For any one-hop neighboring ob-
Node Q of S ∈ Ψoc’, if the detecting status of S and Q are the same, replacing S with Q can 
reduce the enclosed area size. MCH substitutes Q for S to be the new boundary node. 

However, the following cases will not update the MCH’s boundary node. The first 
case is that the selected S cannot find another neighbor Q within its communication range. 
There is no other choice for updating the boundary node. The second case is that the se-
lected S has only a one-hop neighbor Q |{Q ∈ Ψoc and Q ∈ Ψoc’}. This neighbor Q has already 
been the boundary node. So, updating the boundary node is unnecessary. The last one is 
that the selected S has more than two one-hop neighbors Q|{Q ∈ Ψoc and Q ∉ Ψoc’}, but the 
area of the created convex hull does not enclose these neighbors. Using them as boundary 
nodes will increase the bounded area instead of refining it. The Algorithm 2 is the com-
pleted MCH algorithm. 

Algorithm 2. The algorithm of the MCH. 
V   : set of the deployed nodes 
Ψi   : the iNode set 
Ψo    : the oNode set 
Ψic’  : the ibNode set 

Ψoc’  : the obNode set 
Ψoc   : the one-hop neighbor of the nodes in Ψic’ 
γ: the moving step size 
Es(u): the detecting status of node u 
Q.Lock: the lock status of node Q 
(QX,QY): the coordinates of node Q 
(Q’X,Q’Y): the last coordinates of node Q 
 
1. For all node u ∊ V 
2. Verify the Es(u) and Classify u into sets Ψi and Ψo  
3. Applies the Graham scan algorithm to obtain the convex hull of nodes in Ψi and 

put the nodes constructing the convex hull as set Ψic’ 
4. For all node v ∊Ψic’ 
5. Find any one-hop neighbor w ∈ Ψo  
6. Put w to set Ψoc 
7. Applies the Graham scan algorithm to obtain the convex hull of nodes in Ψoc 
8. Put the nodes constructing the convex hull as set Ψoc’ 
9.  
10. While (∃ Q ∈{Ψic’, Ψoc’} and Q.Lock == false){ 
11. If (Q ∈ Ψic’) and (Q has at least one-hop neighbor N ∈ Ψoc’)  or  
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(Q ∈ Ψoc’) and(Q has at least one-hop neighbor N ∈ Ψic’) { 

12. Compute the moving direction, 𝐷𝐷 =
∑ 𝑄𝑄𝑁𝑁𝚥𝚥��������⃑𝑘𝑘
𝑗𝑗=1

|∑ 𝑄𝑄𝑁𝑁𝚥𝚥��������⃑𝑘𝑘
𝑗𝑗=1 |

,  

13. //k is the number of one-hop neighbors that are in different set from Q 
14. (Q’X,Q’Y) ←(QX,QY)            //store the current location as the last one 
15. (QX,QY) ← (QX + γ×D.x, QY + γ×D.y)//update the current location 
16. If (the event detection of Q* changes) { 
17. Restore the original location, (QX,QY)←(Q’X,Q’Y) 
18. Q.Lock = true 
19. } 
20. } 
21. } 
22. } 
23. } 
24.  
25. Compute Ae, the enclosed area of the nodes in set Ψoc’ after movement 
26. For each S ∊ Ψoc’ { 
27. Find the each node Q” ∊ Ψoc, and Q” is a one-hop neighbor of S 
28. Replace S with Q”  
29. Compute the area A*, the convex hull constructed by the nodes in Ψoc’ 
30. If (A* < Ae) 
31. Update Ψoc’ = Ψoc – {S} + {Q”} 
32. } 

4. Simulation Results 
This section gives the simulation results. The environmental setup of the simulation 

is presented in the first part. The numerical results and relative discussion are presented 
in the next part. The evaluation includes the impacts caused by the number of sensors, the 
radio range, and the moving step size. The planarization algorithms using stationary sen-
sors are also included for evaluation. 

4.1. Environment Setup 
The ROI is an 800 m × 800 m area. The total area size of the ICO presented in this 

paper is 79,601 m2. It is an irregular shape without diffusing. The sensors are homogene-
ous and randomly deployed within the ROI. The estimated numbers of sensors are {100, 
300, 500, 700, 900} with communication ranges R set to {60 m, 70 m, 80 m}. The evaluated 
moving step sizes of the sensors are {γ/2, γ/3, γ/4}, where γ is the maximum moving dis-
tance addressed in Section 3.2.2. The simulation results are averaged from 100 random 
scenarios. This paper defines the terminated threshold, denoted as ϴ. When the distance 
between the boundary nodes with different detecting statuses is less than ϴ, the proposed 
algorithm terminates. This paper evaluates the existing methods, the Gabriel Graph (GG) 
and the Delaunay triangulation with stationary sensors (SDT), and the proposed ones, the 
Delaunay triangulation with moving sensors (MDT) and the convex-hull with moving 
sensors (MCH). 

The evaluation metrics include the size of the enclosed area, the False-Positive Area 
(FPA), the True-Negative Area (TNA), the convergence time of the algorithms, the number 
of moving sensors, and the total number of sensors’ movement. A good algorithm will 
approximate its enclosed area to that of the continuous object. The FPA is the region in-
cluded within the enclosed area of an algorithm but not covered by the domain of the 
continuous object. The TNA is the region covered by the continuous object but not con-
tained within the domain figured by an algorithm. The convergence time evaluates the 
required time for an algorithm to obtain the output results. The number of moving sensors 
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verifies the number of sensors influenced in boundary adjusting, and the number of sen-
sors’ movements checks the number of issued moving instructions. 

4.2. Numerical Results 
Figure 4 shows the comparison of the enclosed area between the existing planariza-

tion algorithms (GG and SDT) and the proposed methods (MDT and MCH). In this exper-
iment, the communication range is 70 m, the moving step size is γ/3, and ϴ is R/8. The 
total area size of the ICO is 79,601 m2. In the case of 100 sensors, the deployed sensors are 
insufficient to cover the whole continuous object. When the number of sensors is more 
than 300, the enclosed area sizes of GG, SDT, MDT, and MCH are 136.9–160.1%, 144.9–
164.5%, 135.1–157.2%, and 104.8%, respectively. GG and SDT bound a larger area than 
MDT and MCH. MDT is less than SDT (4.4–6.7%) and close to GG (0.1–2.3%). The area 
size of MCH is very close to the actual size of the continuous object. Its area is less than 
that of GG and SDT (22.8–32.7% and 29.6–30%, respectively). 

 
Figure 4. Compare the Size of the Enclosed Area. This experiment compares the enclosed area of 
the methods that use mobile sensors and the traditional ones, without mobile sensors. The precision 
of MDT and MCH is better than that of GG and SDT. 

Figure 5 evaluates the impact of the communication range R on the size of the en-
closed area. This experiment only evaluates SDT, MDT, and MCH, and did not involve 
GG. This is because GG does not consider the communication range. In this experiment, 
the moving step size is γ/3, and ϴ is R/8. Let α be the ratio of the area enclosed by an 
evaluated method over that of the continuous object. An algorithm is said to have high 
precision if α is close to 100%. In this figure, xxR means that the communication range is 
xxm. For example, 60R-SDT indicates we apply the SDT algorithm with a communication 
range of 60 m. 

  
(a) (b) 
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(c) (d) 

Figure 5. The Impact of the Communication Range on the Enclosed Area. (a) The ratio α of the 
enclosed area sizes. The value of α is the ratio of the area enclosed by an evaluated method over the 
practice size of the continuous object. An algorithm is said to have high precision if α is close to 
100%. (b) The ratio α of FPA in the enclosed area. (c) The ratio α of TNA in the enclosed area. (d) 
The ratio α of the accumulated FPA and TNA in the enclosed area. 

Figure 5a shows that α raises when the number of deployed sensors increases in all 
methods. The values of α of SDT in 300 sensors are 150%, 167%, and 182% for these three 
evaluated communication ranges. The values become 172%, 188%, and 204% in 900 sen-
sors. Without adopting the positions of the sensors, the enclosed area size of SDT is 1.5 to 
2 times the actual area of the continuous object. For the MDT method, the values of α are 
about 125%, 135%, and 152% in the case of 300 sensors for the three evaluated communi-
cation ranges. The values become 149%, 157%, and 178% in 900 sensors. MDT decreases α 
by at least 22.6% of the value in SDT for all cases. MCH shows the best results against SDT 
and MDT. The values of α in 900 sensors are about 103%, 104, and 110% for the three 
evaluated communication ranges. The results of 100 sensors exhibit different trends be-
cause the sensors cannot cover the continuous object completely. Thus, Figure 5b,c shows 
FPA and TNA for further evaluation. 

In Figure 5b, FPA increases as the number of sensors increases. Increasing the num-
ber of sensors will introduce more obNodes to enclose the continuous object. So, the en-
closed area increases. The increasing trend of FPA gradually becomes moderate as the 
density of deployed sensors grows. Similarly, increasing the size of R will also include 
more sensors into the set of obNodes. Because each sensor can cover more area, the size 
of the total enclosed area grows. In this figure, MDT always has less FPA than SDT in all 
kinds of R. The FPA of MCH outstands both SDT and MDT, so that its enclosed area sizes 
are very close to the actual size of the continuous object. 

Figure 5c shows the sizes of TNA. SDT almost has no TNA because it encloses more 
parts of FPA to reduce the possibility of generating TNA. Both MDT and MCH have non-
zero sizes of TNA, and the size of TNA efficiently reduces as R grows. Referring to Figure 
5b, the payment a using large R is increasing the size of FPA. When the number of sensors 
is higher than 500, the TNA of MDT is zero. The position adjusting reduces the FPA of 
MDT. However, part of the experimental scenarios may overcorrect the enclosed area to 
generate TNA. When the number of sensors increases, this phenomenon disappears. 

MCH has more explicitly overcorrection results than the other methods. MCH greed-
ily approximates the actual area of the continuous object to reduce the FPA shown in Fig-
ure 5b. This is the main reason why MCH generates more TNA than the other methods. 
The sizes of the TNA of MDT and MCH are explicitly shown in 100 sensors. This is be-
cause the sensors are too few to cover the actual area of the continuous object. Figure 5d 
shows the accumulated sizes of FPA and TNA. By referring to SDT, MDT can slightly 
reduce this accumulated size with by adjusting the position of the sensors. The results of 
MCH are the best indicator that it can fit the actual size of the continuous object more 
accurately. 
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Figure 6 evaluates the impact of the moving step size on the enclosed area. In this 
experiment, the communication range R is 70 m, and ϴ is R/8. Without adjusting the posi-
tions of the sensors, SDT has the worst area size shown in Figure 6a. The area size of MDT 
is close to that of SDT when the moving step size is γ/2. Shortening the moving step size 
to γ/3 can refine more than 30% of the area size. However, the improvement of the moving 
step size γ/4 is not as explicit as that of γ/3. The reduced area size is less than 5%. MCH 
has the best results among all the methods when the moving step size is γ/2. Similarly, the 
improved area size using moving step size γ/3 is better than that of γ/2 from 31% to 36% 
when the sensors are more than 300. Compared with the result of γ/3, using γ/4 improves 
less than 1.5% of the area size. 

  
(a) (b) 

  
(c) (d) 

Figure 6. The Impact of Moving Step Sizes on the Enclosed Area (a) The ratio α of the enclosed area 
sizes. The value of α is the ratio of the area enclosed by an evaluated method over the practice size 
of the continuous object. An algorithm is said to have high precision if α is close to 100%. (b) The 
ratio α of the FPA in the enclosed area. (c) The ratio α of the TNA in the enclosed area. (d) The ratio 
α of the accumulated FPA and TNA in the enclosed area. 

Figure 6b,c indicates the size of FPA and TNA while applying different moving step 
sizes. All methods’ FPA and TNA decrease while the moving step size decreases. For the 
size of FPA, the results of γ/3 and γ/4 are very close. This is also consistent with the results 
in Figure 6a. The final size of the enclosed area, TNA, and FPA are similar while applying 
moving step sizes γ/3 and γ/4. The results in 100 sensors do not have the same trend as 
the others. This is because the sensors cannot fully enclose the continuous object after they 
adjust their positions. This experiment shows that using a smaller moving step can in-
crease the precision to enclose the actual area of the continuous object. It can be further 
verified from the accumulated sizes of FPA and TNA shown in Figure 6d. 

Figure 7 evaluates the impact of terminating threshold ϴ on the number of moving 
rounds, and Figure 8 shows the corresponding precision of the proposed MCH algorithm. 
In this experiment, the communication range R is 70 m, the moving step sizes are {γ/3, 
γ/4}, and the number of sensors is 900. The round defined in this experiment is that all 
obNodes and ibNodes need to adjust their positions. It is similar to the times that the 
algorithm requests to change the topology of the deployed sensors. When the terminating 
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threshold is large, the mobile sensors can quickly step into the stop status shown in Figure 
7. However, the enclosed area will have worse precision, as shown in Figure 8. When the 
terminating threshold is small, shortening the moving step size can improve the precision, 
but the number of rounds will increase exponentially. The operation rounds by using θ = 
R/16 is more than twice by using θ = R/8. However, the improved area is 4%. A small 
terminating threshold makes the sensors frequently adjust their positions within a local 
region with a minor moving distance, so that the number of rounds grows explicitly. From 
the results exhibited by these two figures, setting the θ at R/8 seems more suitable for 
compromising the computation convergence and the area precision. 

 
Figure 7. The number of Moving Rounds with Different Terminated Thresholds. Shortening the 
moving step size will increase the number of terminating rounds. When the terminating threshold 
grows, the number of moving rounds decreases. This is because the mobile sensors can quickly step 
into the stop status. 

 
Figure 8. The Precision of the Enclosed Area with Different Terminated Thresholds. When the ter-
minating threshold is small, shortening the moving step size can improve the precision, but the 
number of moving rounds will increase exponentially (referring to Figure 7). Setting the θ at R/8 is 
more suitable for compromising the computation convergence and the area precision. 

Figure 9 compares the moving costs spent by the mobile sensors. In this experiment, 
the communication range R is 70 m, θ is R/8, and the evaluated moving step sizes are {γ/3, 
γ/4}. This experiment compares the proposed MCH and the method that uses a fixed num-
ber of mobile sensors traveling along the selected boundary line to improve the precision 
of the boundary area [15], denoted as MobSnsr. The sensor’s moving speed is 5 m/s. It is 
the parameter used by MobSnsr in [15]. The number of mobile sensors of MobSnsr evalu-
ated in this experiment is {3, 4, 5}. The x of MobSnsr-x represents the number of mobile 
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sensors. In addition, the virtual force-based methods proposed in [21,22], are also com-
pared, denoted as vForce. 

 
(a) 

 
(b) 

 
(c) 

Figure 9. The Number of Moving Sensors and the Convergency Time of Refinement. The experi-
ment evaluates the number of moving sensors and the convergency time of the algorithm for mov-
ing to the stable state. (a) The number of moving sensors of MCH and the method in [15]. (b) The 
average convergency time for moving sensors to meet the stable status. (c) The precision of the en-
closed area. 
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Figure 9a shows the number of moving sensors used for refining the boundary. The 
number of mobile sensors in MobSnsr is steady, but the proposed MCH adapts the mov-
ing sensors according to the initial deploying topology. Although MCH moves more sen-
sors to refine the boundary, the number of sensors is generally less than 10% of the de-
ployed sensors. The method vForce using the virtual force model makes all deployed sen-
sors continuously adjust their locations to fit the practice area of the continuous object. 
Therefore, all deployed sensors are moved. 

Figure 9b shows the average convergence time in which the mobile sensors finish the 
boundary-area-refining task. The average time of MobSnsr is about three to five times the 
time spent by MCH. The vForce method makes all the sensors continuously adjust their 
positions. Because all the sensors adjust their locations simultaneously, its convergence is 
still better than that of MobSnsr. A special note is its convergence time decrease as the 
number of sensors increases. This is because high -density deployed sensors will quickly 
make the sensors diffuse to the uncovered area. Therefore, the convergence time de-
creases. 

Figure 9c shows the precision of the enclosed area of the experiment in Figure 9. 
MCH can provide higher accuracy than MobSnsr (1–2.5%). The area precision of the 
MobSnsr method does not explicitly improve while increasing the number of mobile sen-
sors. However, when the moving step size is γ/4, the area precision is about 102%. The 
increasing number of mobile sensors is no more than three. The vForce can achieve higher 
accuracy than MCH and MobSnsr when the sensors are diffused from the covered area of 
the continuous object. The conclusion is that more sensors are required to adjust their lo-
cations and more time is required to make the sensors achieve a stable state. 

5. Conclusions 
This paper proposed two algorithms to detect the area of intangible continuous ob-

jects (ICO), with mobile sensors named Delaunay triangulation with moving sensors 
(MDT) and convex hull with moving sensors (MCH). First, MDT and MCH classified sen-
sors into ICO-covered ones and ICO-uncovered ones. Then, they applied the Delaunay 
triangulation and the convex hull techniques on the steady sensors to estimate the rough 
area of the continuous object, respectively. Next, MDT and MCH used the proposed mov-
ing mechanism to adjust the positions of the sensors to refine the enclosed region of the 
ICO. Simulation results show that MDT can achieve a precision of 135–157% of the actual 
area of the ICO. MCH can reach 102–145% of that area in ICO. They are better than GG 
and SDT, which can achieve 137–160% and 145–164% of the actual area of the ICO. The 
experiments also concluded that moving the step size to γ/4 allows for a precision similar 
to the one obtained with γ/3. However, the number of termination rounds spent by using 
γ/4 is about twice as high. Finally, MCH compared the number of moving sensors with 
the method that uses a steady number of mobile sensors to travel the boundary line for 
area refinement. Although the proposed MCH moves more sensors than the existing 
method, the area precision of the proposed MCH can increase 1% to 2.5% by using only 
one-third to one-fifth of the time spent by the algorithm proposed in [15]. 
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