
����������
�������

Citation: Luo, K.; Spieksma, F.C.R.

Minimizing Travel Time and Latency

in Multi-Capacity Ride-Sharing

Problems. Algorithms 2022, 15, 30.

https://doi.org/10.3390/a15020030

Academic Editors: Frank Werner and

Hirotaka Ono

Received: 7 December 2021

Accepted: 14 January 2022

Published: 18 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Minimizing Travel Time and Latency in Multi-Capacity
Ride-Sharing Problems
Kelin Luo * and Frits C. R. Spieksma

Department of Mathematics and Computer Science, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands; f.c.r.spieksma@tue.nl
* Correspondence: k.luo@tue.nl

Abstract: Motivated by applications in ride-sharing and truck-delivery, we study the problem of
matching a number of requests and assigning them to cars. A number of cars are given, each of
which consists of a location and a speed, and a number of requests are given, each of which consists
of a pick-up location and a drop-off location. Serving a request means that a car must first visit the
pick-up location of the request and then visit the drop-off location. Each car can only serve at most c
requests. Each assignment can yield multiple different serving routes and corresponding serving
times, and our goal was to serve the maximum number of requests with the minimum travel time
(called CSsum) and to serve the maximum number of requests with the minimum total latency (called
CSlat). In addition, we studied the special case where the pick-up and drop-off locations of a request
coincide. Both problems CSsum and CSlat are APX-hard when c ≥ 2. We propose an algorithm,
called the transportation algorithm (TA), which is a (2c− 1)-approximation (resp. c-approximation)
algorithm for CSsum (resp. CSlat); these bounds are shown to be tight. We also considered the special
case where each car serves exactly two requests, i.e., c = 2. In addition to the TA, we investigated
another algorithm, called the match-and-assign algorithm (MA). Moreover, we call the algorithm
that outputs the best of the two solutions found by the TA and MA the CA. We show that the CA is a
two-approximation (resp. 5/3) for CSsum (resp. CSlat), and these ratios are better than the ratios of
the individual algorithms, the TA and MA.

Keywords: ride-sharing; approximation algorithms; transportation problem

1. Introduction

In the multi-capacity ride-sharing problem, we are given a set of cars (or trucks) D,
each car k ∈ D located at location dk, and a set of requests R, each request r ∈ R consisting
of a source sr (pick-up location) and a destination tr (drop-off location). Travel times are
given between each pair of locations. Each car k ∈ D has capacity c. Serving a request
means that a car first visits the pick-up location of the request (customer or parcel) and then
the drop-off location. Each car can serve multiple requests at the same time. This offers the
opportunity to share rides, which may reduce the travel time or traffic congestion. This
paper is concerned with two objectives when assigning the maximum number of requests
(min{|R|, c · |D|} requests): one is to assign requests to the cars such that each car serves at
most c requests while minimizing the total travel time, and the other problem is to assign
requests to the cars such that each car serves at most c requests while minimizing the total
waiting time (called total latency) incurred by customers that have submitted the requests.
We now provide more insight into these two objectives:

• Minimize total travel time: In this problem, we considered assigning the maximum
number of requests to cars, each with no more than c requests, to minimize the total
travel time, which is the sum of the travel times a car drives to serve its requests.
Viewed from the ride-sharing company or drivers, minimizing the total travel time is
the most important, since it results in minimizing the costs while serving the maximum

Algorithms 2022, 15, 30. https://doi.org/10.3390/a15020030 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2006-0601
https://orcid.org/0000-0002-2547-3782
https://doi.org/10.3390/a15020030
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15020030?type=check_update&version=1

Algorithms 2022, 15, 30 2 of 20

number of requests. Furthermore, it also results in the minimum pollution or emissions.
A solution for a given instance is a collection of trips with the minimum total travel
time where a car visits all locations of the requests assigned to that car, while visiting
the pick-up location of a request before the corresponding drop-off location. We call
the ride-sharing problem with the objective of minimizing the total travel time CSsum
and the special case of CSsum where the pick-up and drop-off locations are identical
for each request CSsum,s=t;

• Minimize total latency: In this problem, we considered assigning the maximum
number of requests to cars, each with no more than c requests, to minimize the total
waiting time, which is the sum of the travel times needed for each individual request
(customer or parcel) to arrive at the destination. Passengers or clients care about
reaching their destinations as soon as possible. Here, the goal is to obtain a solution
that is a collection of trips where the travel time summed over the individual requests
is minimum. We call the ride-sharing problem with the objective of minimizing
the total latency CSlat and the special case of CSlat where the pick-up and drop-off
locations are identical for each request CSlat,s=t.

1.1. Motivation

Many ride-sharing companies (see [1]) provide a service (carpooling, ride-sharing, etc.)
where customers submit their requests and then wait for the company to assign them a car.
Consider a large number of requests in a working day morning, each consisting of a pick-up
and a drop-off location. The company has a number of available cars whose locations and
capacity c are known. The value of capacity c can be seen as the capacity of each car over
time, i.e., the number of requests a car can accommodate in a relevant period of time. This
value may well differ from the instantaneous capacity of a car (say the number of seats), as a
pair of requests served by the same car may not be served simultaneously as one request is
dropped off before the other request is picked up. In order to achieve a balanced allocation
of requests to cars, each car receives no more than c requests. The task then is to assign the
maximum number requests to available cars with respect to the capacity constraint.

It is a fact, however, that in many practical situations, “each request is allowed to
occupy at most two seats in a car” (see Uber [1]). A regular vehicle has 4–8 seats; thus, only
a limited number of requests can be combined in a single vehicle; this can be modeled by
taking c ≤ 4.

Consider the application of our problem in the area of collective transport. For instance,
the company TransVision [2] provides transport service for specific groups of people
(patients, commuters, etc.), and they organize collective transport by collecting requests
in a particular region of The Netherlands in advance, combine these requests, and assign
them to some regular transport companies. To access their service, customers must make
their request the evening before the day of the actual transport; the number of requests for
a day often exceeds 5000. In this application, each server (car, bus, etc.) may pick up more
than four requests during its working period; hence, a value of c > 4 can be appropriate.

We can capture the above scenarios by the following problem: There is a set of
customers who have specified their pick-up locations and drop-off locations to the vehicle
provider, and the provider has a set of cars (also with drivers) that have a specified
location and capacity c. The task, in this paper, is to assign customers to vehicles without
exceeding the vehicles’ capacities and plan a service route for each of the vehicles based on
optimization criteria, either minimizing the total travel time in CSsum or minimizing the
total latency in CSlat.

The problems CSsum,s=t and CSlat,s=t are natural special cases of CSsum and CSlat,
respectively, and can be used to model situations where parcels have to be delivered to
clients (whose location is known and fixed). For instance, one can imagine a retailer sending
out trucks to satisfy clients’ demands where each truck is used to satisfy multiple clients.

Algorithms 2022, 15, 30 3 of 20

1.2. Related Work

There is a growing amount of literature related to ride-sharing (see [3] for a survey).
In a ride-sharing system, a number of cars are provided to serve requests from customers
in a fixed period of time. Typically, there are four types of ride-sharing models: one-to-one,
meaning that each car serves a single request at a time (see [4–7]); one-to-many, meaning
that each car can serve multiple requests at the same time (see [8,9]); many-to-one, meaning
that one request can be served consecutively by multiple cars ([10]); many-to-many, which
is a combination of the previous two models ([11]). The ride-sharing problem is to match
requests and cars while either minimizing the cost (see [8,9]) or maximizing the profit
(see [5–7,10]). In this paper, we study a ride-sharing problem of the one-to-many type with
the objective of minimizing the cost.

Different versions of ride-sharing problems have been studied. Alonso-Mora et al. [12]
and Pavone et al. [13] estimated what fleet size is appropriate for a city considering the
cost of cars, a maximum waiting time for a customer, and the extra expense of moving
cars. Agatz et al. [14] studied the problem of assigning cars to customers in real-time to mini-
mize the expected total delivery cost. For a dynamic ride-sharing problem, Stiglic et al. [15]
analyzed and showed that a small increase in the flexibility of either the cars or the cus-
tomers can significantly increase performance. Furthermore, Wang et al. [16] introduced
the notion of the stability of a ride-sharing system, and they presented methods to estab-
lish stable or nearly stable solutions. Considering the online ride-sharing model, Ashlagi
et al. [17] studied the problem of matching requests while they arrive one by one and
each of them must be either matched to another request within a prespecified period of
time or discarded. Each request can be matched at most once and yields a positive profit.
To maximize the total profit while requests arrive in an adversarial model, they provided
a randomized four-competitive algorithm. Lowalekar et al. [18] studied a special case of
the online version of the ride-sharing problem, such that the vehicles have to return to
their depot after serving a number of requests. Guo and Luo [19] designed algorithms
for the online ride-sharing problem under both the adversarial model and the random
arrival model.

Mori and Samaranayake [20] studied the ride-sharing problem with arbitrary capacity
while relaxing the assumption of serving all requests. They used an LP-based randomized
rounding algorithm to obtain a solution, such that the expected fraction of unassigned
requests was at most 1/e, while the total cost of serving assigned requests was no more
than the optimal solution.

This paper deals with a setting where the maximum number of requests needs to be
assigned to the cars such that each car serves no more than c requests while minimizing
the total travel time (CSsum) or minimizing the total waiting time (CSlat). As far as we are
aware, this particular ride-sharing problem has not been extensively studied, especially for
the latency criterion, i.e., CSlat. Notice that when c = 1, the ride-sharing problems CSsum
and CSlat become minimum weight assignment problems, and an optimal solution can be
found in O(|D|3) (see, e.g., [21]). Bei and Zhang [9] considered CSsum with c = 2 and gave
a 2.5-approximation algorithm for it. Luo and Spieksma [22] proposed approximation
algorithms for four versions of the problem, while still assuming c = 2. Here, we generalize
the ride-sharing problem to a problem involving any arbitrary constant c ≥ 2.

In fact, both CSsum and CSlat with c = 2 are a special case of the so-called two-to-one
assignment problem (2-1-AP) investigated by Goossens et al. [23]. Given a set G of n green
elements and a set R of 2n red elements, we call a triple a set of three elements that consists
of a single green element and two red elements. Each triple has a non-negative cost-efficient,
and the goal of the 2-1-AP problem is to find a collection of triples such that each element
is covered exactly once while minimizing the sum of the corresponding cost coefficients. In
the context of our ride-sharing problem with c = 2, the green elements represent the cars,
and the red elements represent the requests. The arguments presented in [23] allowed us to
conclude that both CSsum and CSlat are APX-hard, already for c = 2.

Algorithms 2022, 15, 30 4 of 20

For the special case of 2-1-AP where the cost of each triple (i, j, k) is defined as the sum
of the three corresponding distances, i.e., cost(i, j, k) = dij + djk + dki, where the distances d
satisfy the triangle inequality, Goossens et al. [23] gave an algorithm with the approximation
ratio of 4/3. The definition of the cost coefficients in CSsum, as well as in CSlat differs from
the above expression for cost(i, j, k); we refer to Section 4 for a precise definition.

1.3. Our Results

We formulated and analyzed an algorithm, called the transportation algorithm (TA),
that outputs a feasible solution to each of the four problems described above. This trans-
portation algorithm belongs to a type of heuristics, called hub heuristics, which have been
analyzed in the context of the multi-index assignment and multi-index transportation
problems (see [24,25]). We identified the worst-case ratios of the TA for the four problems
and show them to be tight (see [26] for the appropriate terminology). An overview of
these results is shown in Table 1, where “∗” means that the corresponding worst-case ratio
is tight.

Table 1. Overview of our results for ride-sharing problems with c ≥ 2.

Problem TA

CSsum (2c− 1) ∗ (Theorem 1)
CSsum,s=t (2c− 1) ∗ (Theorem 1)

CSlat c ∗ (Theorem 2)
CSlat,s=t c ∗ (Theorem 2)

For the case c = 2, we propose a so-called match-and-assign algorithm, the MA. We
also define an algorithm, the CA, that consists of outputting the better of the solutions
found by the TA and MA. An overview of the results for c = 2 is shown in Table 2 (see
also [22]). Notice that for CSsum,s=t, CSlat, and CSlat,s=t, the worst-case ratio of the combined
algorithm (CA) is strictly better than each of the two worst-case ratios of the individual
algorithms f which CA is composed.

Table 2. Overview of our results for ride-sharing problems with c = 2.

Problem MA TA CA

CSsum 2 ∗ (Theorem 3) 3 ∗ (Theorem 1) 2 ∗ (Theorem 6)
CSsum,s=t 1.5 ∗ (Theorem 4) 3 ∗ (Theorem 1) 7/5 ∗ (Theorem 7)

CSlat 2 ∗ (Theorem 5) 2 ∗ (Theorem 2) 5/3 (Theorem 8)
CSlat,s=t 2 ∗ (Theorem 5) 2 ∗ (Theorem 2) 3/2 ∗ (Theorem 9)

The paper is organized as follows. In Section 2, we give a precise problem description.
In Section 3, we present the transportation algorithm (TA) and analyze its performance
for both CSsum and CSlat. In Section 4, we consider the special case where each car serves
exactly two requests. We propose the match-and-assign algorithm (MA) and analyze the
performance of the MA and CA (the better solution of the MA and TA) for both CSsum and
CSlat. Section 5 concludes the paper.

2. Preliminaries

Notation. Given a metric space on vertices V, where the travel time between vertices
x1 ∈ V and x2 ∈ V is denoted by w(x1, x2), note that the travel times w(x1, x2) for all
x1, x2 ∈ V are non-negative, symmetric, and satisfy the triangle inequality. Furthermore,
we extended the notation of travel time between two locations to the travel time of a
path: w(x1, x2, . . . , xk) = ∑k−1

i=1 w(xi, xi+1). In the ride-sharing problem, we are given n cars,
denoted by D = {1, 2, . . . , n}, each car k consisting of its location dk ∈ V and m requests
R = {r1, r2, . . . , rm}, each ri consisting of a source (pick-up location) and destination (drop-

Algorithms 2022, 15, 30 5 of 20

off location) pair (si, ti) ∈ V ×V. Each car can serve at most c requests. We want to find an
allocation:

M = {(k, Rk) : k ∈ D, Rk ⊆ R, |Rk| ≤ c, R1, R2, .., Rn are pairwise disjoint},

serving the maximum number of requests while minimizing the total travel time or mini-
mizing the total latency. In the basic setting, we suppose m = c · n (see Section 3.3 for the
case m < c · n and m > c · n); thus, |Rk| = c holds for all k ∈ D of any feasible solution. We
now elaborate on these two objectives.

Minimizing total travel time: For each (k, Rk) ∈ M (k ∈ D) where Rk contains c
requests, i.e., |Rk| = c, we denote the minimum travel time of serving all requests in Rk
by cost(k, Rk), i.e., the minimum time (or distance) of visiting all locations {si, ti| i ∈ Rk}
starting from dk where si is visited before ti. The length of the shortest Hamiltonian path
of visiting all locations {si, ti| i ∈ Rk} starting from sr (r ∈ Rk) with si visited before ti is
denoted by SHP(sr, Rk). We view cost(k, Rk) as consisting of two parts: one term w(dk, sr)
expressing the travel time between dk and the first pick-up location sr and another term
SHP(sr, Rk) (r ∈ Rk) capturing the minimum travel time of visiting all requests starting
from sr. (It is true that, in general, the SHP is NP-hard; however, in our case, the parameter
c is a small constant leading to instances of a SHP of bounded size.) The travel time needed
to serve requests in Rk (k ∈ D) is then given by:

cost(k, Rk) = min
r∈Rk
{w(dk, sr) + SHP(sr, Rk)}. (1)

We denote the travel time of an allocation M by:

cost(M) = ∑
(k,Rk)∈M

cost(k, Rk). (2)

In CSsum and CSsum,s=t, the goal is to find an allocation M that minimizes cost(M).
Minimizing total latency: Here, we focus on the waiting time as perceived by an

individual customer, from the moment the car leaves his/her location until the moment
the customer reaches his/her drop-off location. For each (k, Rk) ∈ M (k ∈ D) where Rk
contains c requests, i.e., |Rk| = c, we denote the minimum total waiting time of all requests
in Rk by wait(k, Rk), i.e., the sum of the times to reach all drop-off locations tr (r ∈ Rk)
following a path that visits all locations {si, ti| i ∈ Rk} starting from dk while si is visited
before ti. We view wait(k, Rk) as consisting of two parts: one term c · w(dk, sr) expressing
the waiting time between dk and the first pick-up location sr; another term SHWP(sr, Rk)
capturing the sum of waiting times from the first pick-up location sr to every other drop-off
location, minimized over all feasible ways of traveling through the locations in Rk. The
latency needed to serve requests in Rk (k ∈ D) is then given by:

wait(k, Rk) = min
r∈Rk
{c · w(dk, sr) + SHWP(sr, Rk)}. (3)

We denote the latency of an allocation M by:

wait(M) = ∑
(k,Rk)∈M

wait(k, Rk). (4)

Thus, in CSlat and CSlat,s=t, the goal is to find an allocation M that minimizes wait(M).
Another variant of the ride-sharing problem considering the latency objective is

counted with respect to the pick-up location rather than the drop-off location in CSlat.
In this setting, the drop-off location clearly becomes irrelevant to the objective, and our
approximation results for CSlat,s=t become valid for this variant.

Algorithms 2022, 15, 30 6 of 20

3. The Transportation Algorithm and Its Analysis

We describe the transportation algorithm in Section 3.1 and analyze its performance
for CSsum, CSsum,s=t, CSlat, and CSlat,s=t in Section 3.2.

3.1. The Transportation Algorithm

In this section, we present the transportation algorithm. The idea of the algorithm
is to assign to each car k ∈ D c requests based only on the travel times between the car
locations dk and the request locations sr, tr, thereby ignoring travel times between different
request locations.

We implemented this idea by replacing each car k ∈ D by c virtual cars {γ1(k), . . . , γc(k)},
resulting in car sets Γ = {γ1(1), . . . , γc(1), . . . , γ1(n), . . . , γc(n)} with |Γ| = c · n. Next, we
assigned c · n requests to the c · n cars using a particular definition of the cost v1(γi(k), r)
(or v2(γi(k), r)) between a request r ∈ R and a car γi(k) ∈ Γ:

v1(γi(k), r) =

{
w(dk, sr, tr) + w(tr, dk) if i < c
w(dk, sr, tr) if i = c

. (5)

v2(γi(k), r) =

{
(c− i + 1)w(dk, sr, tr) + (c− i)w(tr, dk) if i < c
w(dk, sr, tr) if i = c

. (6)

Next, we introduce how to assign c · n requests to the c · n cars. As is showed in
Algorithm 1.

Algorithm 1 Transportation algorithm (TA(v)).

1: Construct a graph: Let G1 ≡ (Γ ∪ R, v1) (resp. G2 ≡ (Γ ∪ R, v2)) be the complete
bipartite graph with left vertex-set Γ, right vertex-set R, and edge weights v1(γi(k), r)
(resp. v2(γi(k), r)) for γi(k) ∈ Γ and r ∈ R.

2: Find a min-weight assignment: Find a minimum weight assignment M1 (resp, M2) in
G1 ≡ (Γ ∪ R, v1) (resp, G2 ≡ (Γ ∪ R, v2)) with weight v1(M1) (resp. v2(M2)).

3: Output: TA(v1) ≡ {(k, {r1, . . . , rc}) : (γ1(k), r1), . . . , (γc(k), rc) ∈ M1}.
TA(v2) ≡ {(k, {r1, . . . , rc}) : (γ1(k), r1), . . . , (γc(k), rc) ∈ M2}.

A solution is then found by letting car k ∈ D serve the requests assigned to virtual
cars {γ1(k), . . . , γc(k)}. Let Rk = {r1, r2, . . . , rc} (k ∈ D) denote the requests assigned to a
car k, where request ri ∈ Rk is assigned to γi(k).

In our algorithm, two minimum weight assignments based on these costs are found:
M1 with weight v1(M1) and M2 with weight v2(M2). We use M1 to construct a solution
for CSsum and M2 to construct a solution for CSlat.

Observe that v1(M1) = ∑(γi(k),r)∈M1
v1(γi(k), r). This amounts to a solution where

each car k ∈ D travels according to the following path:

dk → sr1 → tr1 → dk → sr2 → tr2 → · · · → dk → src → trc .

Notice that, due to the triangle inequality, the cost of such a path will not increase by
“short-cutting” the path, i.e., by traveling from each tri directly to sri+1 :

dk → sr1 → tr1 → sr2 → tr2 → · · · → trc−1 → src → trc .

In fact, we use TA(v1) to denote this resulting solution found by the TA for CSsum,
with cost(TA(v1)) denoting its cost.

We conclude:
cost(TA(v1)) ≤ v1(M1). (7)

Algorithms 2022, 15, 30 7 of 20

A similar observation can be made with respect to M2. The quantity v2(M2) collects
the waiting time of all requests by following, for each car k ∈ D, the path:

dk → sr1 → tr1 → dk → sr2 → tr2 → · · · → dk → src → trc .

As argued above, shortcutting gives us then a feasible solution for an instance of CSlat
we denote by TA(v2) with cost wait(TA(v2)). We have:

wait(TA(v2)) ≤ v2(M2). (8)

Recall that our problem does not force the driver to return to the original position.
This implies that the cost of a driver when serving a set of request Rk does not include the
time from the last drop-off location to the driver’s original location. This explains why in
the expression for v1(M1) (also, v2(M2)), we can subtract the corresponding travel time
from the total travel time. We now give two lemmas concerning v1(M1) (which we need
to prove Theorem 1) and two more lemmas concerning v2(M2) (which we need to prove
Theorem 2).

Lemma 1. For any c ≥ 2, we have:

v1(M1) = ∑
(k,Rk)∈TA(v1)

(
∑

r∈Rk

w(dk, sr, tr, dk)−max
r∈Rk

w(dk, tr)

)
.

Proof. We claim that v1(M1) is minimized if and only if, for each car k ∈ D and (γc(k), rc) ∈
M1, rc = arg maxr∈Rk w(dk, tr). If this claim holds, then based on the definition of the cost
v1(·, ·), we have v1(k, Rk) = ∑r∈Rk

w(dk, sr, tr, dk) − w(dk, trc) = ∑r∈Rk
w(dk, sr, tr, dk) −

maxr∈Rk w(dk, tr), and thus:

v1(M1) = ∑
(k,Rk)∈TA(v1)

(
∑

r∈Rk

w(dk, sr, tr, dk)−max
r∈Rk

w(dk, tr)

)
.

It remains to prove the claim. Consider any Rk = {r1, r2, . . . , rc} for car k ∈ D. We
prove that v1(M1) is minimized if and only if w(dk, trc) ≥ w(dk, trx) for all rx ∈ Rk.

Necessary condition: Since v1(k, Rk) is minimized, we have w(dk, srx , trx) + w(dk, trx) +
w(dk, src , trc) ≤ w(dk, src , trc) + w(dk, trc) + w(dk, srx , trx) based on the definition of v1 (see
Equation (5)), then w(dk, trx) ≤ w(dk, trc) holds.

Sufficient condition: Since w(dk, trc) ≥ w(dk, trx), then w(dk, src , trc) + w(dk, trc) + w(dk,
srx , trx) ≥ w(dk, srx , trx) + w(dk, trx) + w(dk, src , trc), and that means v1(M1) is minimized
as rc = arg maxr∈Rk w(dk, tr).

From the above lemma and the fact that M1 is a minimum weight assignment in
G1 ≡ (Γ ∪ R, v1), we have the following lemma:

Lemma 2. For c ≥ 2 and for each allocation M, we have:

v1(M1) ≤ ∑
(k,Rk)∈M

(
∑

r∈Rk

w(dk, sr, tr, dk)−max
r∈Rk

w(dk, tr)

)
.

We now provide two lemmas concerning v2(M2). In the statement of these lemmas,
we index the requests such that, for each k ∈ D, Rk = {r1, r2, . . . , rc}.

Lemma 3. For any c ≥ 2, for each car k ∈ D and ∀rx, ry ∈ Rk with x < y, w(dk, srx , trx) +
w(dk, trx) ≤ w(dk, sry , try) + w(dk, try).

Algorithms 2022, 15, 30 8 of 20

Proof. We claim that v2(M2) is minimized if and only if for each car k ∈ D and ∀rx, ry ∈
Rk = {r1, r2, . . . , rc} with x < y, w(dk, srx , trx) + w(dk, trx) ≤ w(dk, sry , try) + w(dk, try).
Consider ∀rx, ry ∈ Rk = {r1, r2, . . . , rc} with x < y for car k ∈ D. We prove that v2(M2) is
minimized if and only if w(dk, srx , trx) + w(dk, trx) ≤ w(dk, sry , try) + w(dk, try).

Necessary condition: Since v2(M2) is minimized, based on definition of cost v2(·, ·),
we have:

(c− x + 1)w(dk, srx , trx) + (c− x)w(trx , dk) + (c− y + 1)w(dk, sry , try) + (c− y)w(try , dk)

≤ (c− x + 1)w(dk, sry , try) + (c− x)w(try , dk) + (c− y + 1)w(dk, srx , trx) + (c− y)w(trx , dk).

⇐⇒ (y− x)(w(dk, srx , trx) + w(dk, trx)) ≤ (y− x)(w(dk, sry , try) + w(dk, try))

Thus, w(dk, srx , trx) + w(dk, trx) ≤ w(dk, sry , try) + w(dk, try), since x < y.
Sufficient condition: According to the above statement, the condition w(dk, srx , trx) +

w(dk, trx) ≤ w(dk, sry , try) + w(dk, try) implies that v2(M2) is minimized.

Since M2 is a minimum weight assignment in G2 ≡ (Γ ∪ R, v2), we have the following
lemma:

Lemma 4. For c ≥ 2 and for each allocation M, we have:

v2(M2) ≤ ∑
(k,Rk)∈M

c

∑
i=1

((c− i + 1) · w(dk, sri , tri) + (c− i) · w(dk, tri)).

3.2. Approximation Analysis of the TA

Let us denote an optimal allocation in CSsum by M∗ = {(k, R∗k) : k ∈ D}. Let
M∗R = {R∗k : (k, R∗k) ∈ M∗} denote the collection of c-tuples of requests in an optimal
solution M∗. We now establish the worst-case ratios of the TA(v1) for CSsum and CSsum,s=t.

Theorem 1. The TA(v1) is a (2c− 1)-approximation algorithm for CSsum. Moreover, there exists
an instance I of CSsum,s=t for which cost(TA(v1)(I)) = (2c− 1) · cost(M∗(I)).

Proof.

cost(TA(v1)) ≤ v1(M1) (9)

≤ ∑
(k,R∗k)∈M∗

 ∑
r∈R∗k

w(dk, sr, tr, dk)−max
r∈R∗k

w(dk, tr)

 (10)

= ∑
(k,R∗k)∈M∗

 ∑
r∈R∗k

w(dk, sr, tr) + ∑
r∈R∗k

w(tr, dk)−max
r∈R∗k

w(dk, tr)

 (11)

≤ ∑
(k,R∗k)∈M∗

(2c− 1) cost(k, R∗k) (12)

= (2c− 1) cost(M∗) (13)

We now comment on the validity of the inequalities above. Inequality (9) follows from
applying Inequality (7), and Inequality (10) follows from Lemma 2. The final Inequality (12)
follows from the fact that for any r ∈ R∗k , w(dk, tr) ≤ w(dk, sr, tr) ≤ cost(k, R∗k).

To see that the bound 2c − 1 is tight even for CSsum,s=t, consider the instance I
depicted in Figure 1. This instance has c cars D = {k1, k2, . . . , kc} with car locations
{d1, d2, . . . , dc} and c2 requests R = {1, 2, . . . , c2} with locations {s1, s2, . . . , sc2} (the pick-
up and drop-off locations are identical for each request). Locations corresponding to distinct
vertices in Figure 1 are at Travel Time 1. Observe that an optimal solution is M∗(I) =
{(k1, {1, 2, . . . , c}), (k2, {c + 1, c + 2, . . . , 2c}), . . . , (kc, {c(c− 1) + 1, c(c− 1) + 2, . . . , c2})}
with cost(M∗(I)) = c.

Algorithms 2022, 15, 30 9 of 20

Let us now analyze the performance of TA(v1) on instance I. Notice that TA(v1) may
assign requests {i, c + i, . . . , (c− 1)c + i} to car ki. In that case, the total cost of TA(v1) is
c(2(c− 1) + 1)) = c(2c− 1), showing tightness.

{s1, s2, . . . , sc}

{sc+1, . . . , s2c}
{s2c+1, . . . , s3c}

{d1, d2, . . . , dc} {s(c−1)c+1, . . . , sc2}

. . .

Figure 1. A worst-case instance for the transportation algorithm.

We proceed by establishing the worst-case ratios of the TA(v2) for CSlat and CSlat,s=t.
Again, we assume that an optimal solution to CSlat is denoted by M∗, and the collection
of c-tuples of requests in M∗ is denoted by M∗R = {R∗k : (k, R∗k) ∈ M∗}. In the following
theorem, we index the requests such that, for each k ∈ D, R∗k = {r1, r2, . . . , rc}.

Theorem 2. The TA(v2) is a c-approximation algorithm for CSlat. Moreover, there exists an
instance I of CSlat,s=t for which wait(TA(v2)(I)) = c · wait(M∗(I)).

Proof.

wait(TA(v1)) ≤ v2(M2) (14)

≤ ∑
(k,Rk)∈M∗

c

∑
i=1

((c− i + 1) · w(dk, sri , tri) + (c− i) · w(dk, tri)) (15)

= ∑
(k,R∗k)∈M∗

c

∑
i=1

(c · w(dk, sri , tri)− (i− 1) · w(dk, sri , tri) + (c− i) · w(dk, tri)) (16)

≤ ∑
(k,R∗k)∈M∗

c

∑
i=1

c · w(dk, sri , tri) (17)

≤ ∑
(k,R∗k)∈M∗

c ·wait(k, R∗k) (18)

= c ·wait(M∗) (19)

We now comment on the validity of the inequalities above. Inequality (14) follows
from applying Inequality (8), and Inequality (15) follows from Lemma 4. Inequality (17)
follows from (we prove it later):

c

∑
i=1

(−(i− 1) · w(dk, sri , tri) + (c− i) · w(dk, tri)) ≤ 0.

The final Inequality (18) follows from the fact that ∑c
i=1 w(dk, sr, tr) ≤ wait(k, R∗k).

Notice that:

c

∑
i=1

(−(i− 1) · w(dk, sri , tri) + (c− i) · w(dk, tri))

≤ ∑
i< c+1

2

(c− 2i + 1) · w(dk, tri)− ∑
i≥ c+1

2

(2i− c− 1) · w(dk, sri , tri)

= ∑
i< c+1

2

(
(c− 2i + 1) · w(dk, tri)− (2(c + 1− i)− c− 1) · w(dk, src+1−i , trc+1−i)

)
≤ 0

Algorithms 2022, 15, 30 10 of 20

where the first inequality follows from the triangle inequality; the second inequality fol-
lows from w(dk, trx) ≤ w(dk, sry , try) for all rx, ry ∈ R∗k with x < y since w(dk, srx , trx) +
w(dk, trx) ≤ w(dk, sry , try) + w(dk, try) by Lemma 3.

To see that the bound c is tight even for CSlat,s=t, consider the instance depicted
in Figure 1. Observe that an optimal solution is M∗(I) = {(k1, {1, 2, . . . , c}), (k2, {c +
1, c + 2, . . . , 2c}), . . . , (kc, {c(c− 1) + 1, c(c− 1) + 2, . . . , c2})} with wait(M∗(I)) = c2. Let
us now analyze the performance of TA(v2) on instance I. TA(v2) may assign requests
{i, c + i, . . . , (c − 1)c + i} to car ki. In that case, the total waiting time of TA(v2) is c ·
(1 + 3 + · · ·+ (2(i− 1) + 1) + · · ·+ 2(c− 1) + 1)) = c(c · (1 + 2c− 1)/2) = c3, showing
tightness.

3.3. Discussion

Clearly, the TA is a polynomial-time algorithm, and it is easy to implement; moreover,
it can be generalized to handle a variety of situations. We now list three situations and
briefly comment on the corresponding worst-case behavior:

• Ride-sharing with car-dependent speeds or related ride-sharing. In this situation,
the cars have speed p1, p2, . . . , pn. The travel time of serving requests in Rk is de-
noted by cost(k, Rk)/pk, and the total travel time of an allocation M is denoted by
∑(k,Rk)∈M cost(k, Rk)/pk. Analogously, the total latency of an allocation M is denoted
by ∑(k,Rk)∈M wait(k, Rk)/pk. Without going into the details, we point out that the TA
can be modified by appropriately redefining v1(k, r) and v2(k, r) in terms of the cost
above; we claim that the corresponding worst-case ratios of TA as shown in Table 1
remain unchanged;

• Ride-sharing with car-dependent speeds or related ride-sharing. In this situation,
the cars have speed p1, p2, . . . , pn. The travel time of serving requests in Rk is de-
noted by cost(k, Rk)/pk, and the total travel time of an allocation M is denoted by
∑(k,Rk)∈M cost(k, Rk)/pk. Analogously, the total latency of an allocation M is denoted
by ∑(k,Rk)∈M wait(k, Rk)/pk. Without going into the details, we point out that the TA
can be modified by appropriately redefining v1(k, r) and v2(k, r) in terms of the cost
above; we claim that the corresponding worst-case ratios of TA as shown in Table 1
remain unchanged;

• Car redundancy: c · n > m. In this situation, our problem is to find an allocation that
serves all requests with the minimum total cost (total travel time or total latency).
Clearly, some cars may serve less than c requests, or even do not serve a request.
To apply TA for this situation, we need to add a number of requests to fill the shortage
of requests, without affecting the total travel time or latency. We created an instance of
our problem by adding a number of dummy requests Rd with |Rd| = c · n−m, where
the travel time between a request in Rd and a car in D is zero, i.e., v1(γi(k), r) = 0
and v2(γi(k), r) = 0 for all i ∈ [c], k ∈ D, r ∈ Rd. Since the cost of assigning dummy
requests is zero in any feasible solution, removing dummy requests of a solution for the
newly created instance with c · n = |R| will give us a solution to the original instance;

• Car deficiency: c · n < m. In this situation, our problem is to find an allocation
that serves the maximum number of requests (c · n requests) with the minimum total
cost (total travel time or total latency). It follows that some requests will not be
served. To apply the TA for this situation, we created an instance of our problem
by adding a number of dummy cars Dd with |Dd| = m − n · c, where the travel
time between a car in Dd and a request in R is H (H is a sufficiently large number),
i.e., v1(k, r) = H and v2(k, r) = H for all k ∈ Dd, r ∈ R. Removing dummy cars
(and their corresponding requests) gives us a solution to the original instance. Since
we found an assignment with the minimum total weight and we removed the set of
requests assigned to the dummy cars, we claim that the TA selected c · n requests with
the minimum total weight. In fact, the proofs in Section 3.1 imply that the TA(v1) is
a (2c− 1)-approximation algorithm for CSsum and the TA(v2) is a c-approximation
algorithm for CSlat.

Algorithms 2022, 15, 30 11 of 20

4. The Case c = 2: Algorithms and Their Analysis

In this section, we consider the ride-sharing problems CSsum, CSsum,s=t, CSlat, and
CSlat,s=t with capacity c = 2 and each car serving exactly two requests, i.e., m = 2n
(see [22]). In Section 4.1, we propose and analyze the match-and-assign algorithm (MA).
Next, in Section 4.2, we analyze the combined algorithm (CA), i.e., the better of the two
algorithms, the MA and TA.

For convenience, we explicitly write the quantity SHP(si, {i, j}) in CSsum by a parame-
ter uij as follows:

uij ≡ min{w(si, sj, ti, tj), w(si, sj, tj, ti), w(si, ti, sj, tj)}
for each i, j ∈ R× R, i 6= j. (20)

Notice that the uij’s are not necessarily symmetric. Obviously, uij ≥ w(si, sj) and
uji ≥ w(si, sj). For CSsum,s=t, we have uij = uji ≡ w(si, sj).

The travel time needed to serve requests in Rk = {i, j} (k ∈ D) is then given by:

cost(k, {i, j}) = min{w(dk, si) + uij, w(dk, sj) + uji}. (21)

For convenience, we also explicitly write the quantity SHWP(si, {i, j}) in CSsum by a
parameter µij as follows:

µij ≡ min{w(si, sj, ti) + w(si, sj, ti, tj), w(si, sj, tj) + w(si, sj, tj, ti),

w(si, ti) + w(si, ti, sj, tj)} for each i, j ∈ R× R, i 6= j. (22)

Notice that the µij’s are not necessarily symmetric. For CSlat,s=t, we have µij = µji ≡
w(si, sj).

The latency needed to serve requests in Rk = {i, j} (k ∈ D) is then given by:

wait(k, {i, j}) = min{2w(dk, si) + µij, 2w(dk, sj) + µji}. (23)

4.1. The Match-and-Assign Algorithm and Its Analysis

We came up with a match-and-assign algorithm, the MA(α, v), the idea being that,
first, requests are matched into request pairs, after which the request pairs are assigned
to the cars. Finding request pairs is performed by using a carefully chosen time v3({i, j})
between a pair of requests {i, j}, as well as a travel time v4(k, {i, j}) between each request
pair {i, j} and a car k ∈ D:

v3({i, j}) ≡
vij + vji

2
, v ∈ {u, µ}. (24)

v4(k, {i, j}) ≡ min{αw(dk, si) +
vij − vji

2
, αw(dk, sj)−

vij − vji

2
}, α ∈ {1, 2}, v ∈ {u, µ}. (25)

Now, we introduce the match-and-assign Algorithm 2.
The resulting quantity is v3(M3) + v4(M4); we now prove two lemmas concerning

this quantity, which will be of use in the approximation analysis.

Algorithms 2022, 15, 30 12 of 20

Algorithm 2 Match-and-assign algorithm (MA(α, v)).

1: Matching step:
• Construct a graph: Let G3 ≡ (R, v3) be the complete weighted graph where an

edge between vertex i ∈ R and vertex j ∈ R has weight v3({i, j});
• Find a min-weight matching: Find a minimum weight perfect matching M3 in

G3 ≡ (R, v3) with weight v3(M3).
2: Assignment step:

• Construct a graph: Let G4 ≡ (D ∪M3, v4) be the complete bipartite graph with
left vertex-set D, right vertex-set M3, and edges with weight v4(k, {i, j}) for k ∈ D,
and {i, j} ∈ M3;

• Find a min-weight assignment: Find a minimum weight assignment M4 in G4 ≡
(D ∪M3, v4) with weight v4(M4).

3: Output: MA = M4.

Lemma 5. For each α ∈ {1, 2} and v ∈ {u, µ}, we have:

v3(M3) + v4(M4) = ∑
(k,{i,j})∈M4

min{αw(dk, si) + vij, αw(dk, sj) + vji}.

Proof. Without loss of generality, for any {i, j} ∈ M3, suppose vij − vji ≥ 0 (the other case
is symmetric).

v3(M3) + v4(M4) = ∑
{i,j}∈M3

vij + vji

2
+

= ∑
(k,{i,j})∈M4

min{αw(dk, si) +
vij − vji

2
, αw(dk, sj)−

vij − vji

2
}

= ∑
(k,{i,j})∈M4

min{αw(dk, si) + vij, αw(dk, sj) + vji}.

The first equality follows from the definition of v3 and v4 (see Equations (24)
and (25)).

Lemma 6. For α ∈ {1, 2}, v ∈ {u, µ}, and for each allocation M, we have:

v3(M3) + v4(M2) ≤ ∑
(k,{i,j})∈M

αw(dk, si) + αw(dk, sj) + vij + vji

2
.

Proof. For an allocation M, let MR = {Rk : (k, Rk) ∈ M}. Observe that:

v3(M3) ≤ ∑
{i,j}∈MR

vij + vji

2
, (26)

since M3 is a minimum weight perfect matching in G3 ≡ (R, v3).
We claim that:

v4(M4) ≤ ∑
(k,{i,j})∈M

αw(dk, si) + αw(dk, sj)

2
. (27)

When summing (26) and (27), the lemma follows.
Hence, it remains to prove (27). Consider an allocation M, and consider the matching

M3 found in the first step of the MA. Based on M and M3, we construct the graph G′ =
(R ∪ D, M1 ∪ {({i, k}, {j, k}) : (k, {i, j}) ∈ M}). Note that every vertex in graph G′ has
degree two. Thus, we can partition G′ into a set of disjoint cycles called C; each cycle c ∈ C

Algorithms 2022, 15, 30 13 of 20

can be written as c = (i1, j1, k1, i2, j2, k2, . . . , kh, i1), where {is, js} ∈ M3, (ks, {js, is+1}) ∈ M
for 1 ≤ s < h and (kh, {jh, i1}) ∈ M. Consider now, for each cycle c ∈ C, the following two
assignments called Mc

` and Mc
r :

• Mc
` = {({i1, j1}, k1), ({i2, j2}, k2), . . . , ({ih, jh}, kh)},

• Mc
r = {(k1, {i2, j2}), (k2, {i3, j3}), . . . , (kh, {i1, j1})}.

Obviously, both M` ≡
⋃

c∈C Mc
` and Mr ≡

⋃
c∈C Mc

r are a feasible assignment in
G4 = (D ∪ M3, v4). Given the definition of v4(k, {i, j}) (see Equation (25)), we derive
for each pair of requests {i, j} and two cars a, b: v4(a, {i, j}) + v2(b, {i, j}) ≤ αw(da, si) +
vij−vji

2 + αw(db, sj)−
vij−vji

2 = α(w(da, si)+w(db, sj)). Similarly, it follows that: v4(a, {i, j})+
v4(b, {i, j}) ≤ α(w(da, sj) + w(db, si)). Thus, for each c ∈ C:

∑
(k,{i,j})∈Mc

`

v4(k, {i, j}) + ∑
(k,{i,j})∈Mc

r

v4(k, {i, j}) ≤ ∑
{i,k},{j,k}∈c
(k,{i,j})∈M

α(w(dk, si) + w(dk, sj)). (28)

Note that M4 is a minimum weight assignment in G4 = (D ∪M3, v4), and both M`

and Mr are a feasible assignment in G4 = (D ∪M3, v4). Thus:

v4(M4) ≤ ∑
c∈C

min{v4(Mc
`), v4(Mc

r)}

≤ 1
2 ∑

c∈C

 ∑
(k,{i,j})∈Mc

`

v4(k, {i, j}) + ∑
(k,{i,j})∈Mc

r

v4(k, {i, j})


≤ ∑

(k,{i,j})∈M

αw(dk, si) + αw(dk, sj)

2
.

The last inequality follows from (28), and hence, (27) is proven.

Lemma 7. For any two requests i and j, we have:

max{uij, uji} −min{uij, uji} ≤ w(si, sj);

and:
uij ≤ 2uji.

Without loss of generality, suppose uij ≥ uji, uij ≤ w(si, sj) + uji. Since w(si, sj) ≤
min{uij, uji}, we have uij ≤ 2uji for any two requests i and j.

Theorem 3. The MA(1, u) is a two-approximation algorithm for CSsum. Moreover, there exists an
instance I for which cost(MA(I)) = 2cost(M∗(I)).

Proof. We assume w.l.o.g. that, for each (k, {i, j}) ∈ M∗, cost(k, {i, j}) = w(dk, si) + uij.
We have:

Algorithms 2022, 15, 30 14 of 20

cost(MA(1, u)) = ∑
(k,{i,j})∈MA

min{w(dk, si) + uij, w(dk, sj) + uji} (29)

= v3(M3) + v4(M4) (30)

≤ ∑
(k,{i,j})∈M∗

w(dk, si) + w(dk, sj) + uij + uji

2
(31)

≤ ∑
(k,{i,j})∈M∗

2w(dk, si) + w(si, sj) + 3uij

2
(32)

≤ 1
2 ∑

(k,{i,j})∈M∗
(2w(dk, si) + 4uij) (33)

≤ 1
2 ∑

(k,{i,j})∈M∗
4cost(k, {i, j}) (34)

= 2 cost(M∗). (35)

Equation (29) follows from (2) and (21). Equation (30) follows from Lemma 5. In-
equality (31) follows from Lemma 6. Inequality (32) follows from the triangle inequality,
and uji ≤ 2uij for each request pair {i, j} ∈ R2 based on Lemma 7. Inequality (33) follows
from w(si, sj) ≤ uij. Notice that cost(MA(I)) ≤ 2cost(M∗(I)) is actually tight by the
instance depicted in Figure 2.

{d1, d2, s1, s2}

{s3, t1, t3} {s4, t2, t4}

1 1

1

Figure 2. A worst-case instance for the CAsum of CSsum.

Theorem 4. The MA(1, u) is a 3/2-approximation algorithm for CSsum,s=t. Moreover, there
exists an instance I for which cost(MA(I)) = 3/2 cost(M∗(I)).

Proof.

cost(MA(1, u)) = ∑
(k,{i,j})∈MA

min{w(dk, si) + uij, w(dk, sj) + uji} (36)

≤ ∑
(k,{i,j})∈M∗

w(si, sj) +
w(dk, si) + w(dk, sj)

2
(37)

≤ ∑
(k,{i,j})∈M∗

3/2 cost(k, {i, j}) (38)

≤ 3/2 cost(M∗) (39)

Equation (36) follows from (20). Inequality (37) follows from Lemma 5 and 6, and
uij = uji = w(si, sj).

To see that the equality may hold in cost(MA(I)) ≤ 3/2 cost(M∗(I)), consider the
subgraph induced by the nodes (d1, s3), (s1, s2), and (d2, s4) in Figure 3 with cars {k1, k2}
and requests {1, 2, 3, 4}. Observe that an optimal solution is {(k1, {1, 3}), (k2, {2, 4})} with
cost(M∗(I)) = 2. Note that MR∗ = {{1, 3}, {2, 4}}. Let us now analyze the performance
of MA(1, u) on this instance. Based on the u values as defined in (20), MA(1, u) can find,
in the first step, matching M3 = {{1, 2}, {3, 4}} because v3(M3) = v3(MR∗) = 2. Then,
no matter how the second step assigns the request pairs to cars, the total waiting time of
MA(1, u) will be three.

Algorithms 2022, 15, 30 15 of 20

{s1, t1, s2, t2}{d1, s3, t3} {d2, s4, t4}
4 4

{s5, t5, s6, t6} {d3, d4} {s7, t7, s8, t8}

1 1

Figure 3. A worst-case instance for the CAsum of CSsum,s=t.

Theorem 5. The MA(2, µ) is a two-approximation algorithm for CSlat. Moreover, there exists an
instance I of CSlat,s=t for which wait(MA(I)) = 2wait(M∗(I)).

Proof.

wait(MA(2, µ)) = ∑
(k,{i,j})∈MA

min{2w(dk, si) + µij, 2w(sk, sj) + µji} (40)

≤ ∑
(k,{i,j})∈M∗

2w(dk, si) + µij + 2w(dk, sj) + µji

2
(41)

≤ ∑
(k,{i,j})∈M∗

4 min{w(dk, si), w(dk, sj)}+ µij + 2w(si, sj) + µji

2
(42)

≤ ∑
(k,{i,j})∈M∗

min{4w(dk, si) + 2µij, 4w(dk, sj) + 2µji} (43)

= ∑
(k,{i,j})∈M∗

2 wait(k, {i, j}) (44)

= 2 wait(M∗) (45)

Inequality (41) follows from Lemmas 5 and 6. Inequality (42) follows from the triangle
inequality. Inequality (43) follows from w(si, sj) ≤ min{µij, µji}.

To see that the equality may hold in wait(MA(I)) ≤ 2wait(M∗(I)), consider the
instance I depicted in Figure 4. This instance has two cars D = {k1, k2} with car locations
{d1, d2} and four requests R = {1, 2, 3, 4}. If two points are not connected by an edge, their
travel time equals five. Observe that an optimal solution is {(k1, {1, 3}), (k2, {2, 4})} with
wait(M∗(I)) = 4. Note that M∗R = {{1, 3}, {2, 4}}. Let us now analyze the performance of
the MA(2, µ) on instance I.

{s1, t1, s2, t2}{d1, s3, t3} {d2, s4, t4}
2 2

Figure 4. A worst-case instance of the MA(2, µ) for CSlat,s=t.

Based on the µ values as defined in (22), the MA(2, µ) can find, in the first step,
matching M3 = {{1, 2}, {3, 4}} because v3(M3) = v3(M∗R) = 8. Then, no matter how the
second step assigns the request pairs to cars, the total waiting time of the MA(2, µ) will be
eight.

4.2. The Combined Algorithm and Its Analysis

The CAsum runs the MA(1, u) and TA(v1) and then outputs the better of the two
solutions. We now state the main result for CSsum.

Theorem 6. The CAsum is a two-approximation algorithm for CSsum. Moreover, there exists an
instance I for which cost(CAsum(I)) = 2cost(M∗(I)).

Algorithms 2022, 15, 30 16 of 20

Proof. It is obvious that, as cost(CAsum) = min{cost(MA(1, u)), cost(TA(v1))}, Theorems 1
and 3 imply that the CAsum is a two-approximation algorithm for CSsum. We now provide
an instance for which this ratio is achieved.

Consider the instance I depicted in Figure 2. This instance has two cars D = {k1, k2}
with car locations {d1, d2} and four requests R = {1, 2, 3, 4}. Locations corresponding
to distinct vertices in Figure 2 are at Travel Time 1. Observe that an optimal solution is
M∗(I) = {(k1, {1, 3}), (k2, {2, 4})} with cost(M∗(I)) = 2. Note that M∗R = {{1, 3}, {2, 4}}.
Let us now analyze the performance of the MA(1, u) and TA(v1) on instance I.

Based on the uij values as defined in (20), the MA(1, u) can find, in the first step,
matching M3 = {{1, 2}, {3, 4}} with v3(M3) = v3(M∗R) = 3. Then, no matter how the
second step assigns the request pairs to cars (since two cars stay at the same location),
the total cost of MA(1, u) will be four.

The TA(v1) may assign Requests 1 and 2 to Car 1 and Requests 3 and 4 to Car 2 since:

v1({(k1, 1), (k1, 2), (k2, 3), (k2, 4)}) = v1({(k1, 1), (k1, 3), (k2, 2), (k2, 4)}) = 6.

Thus, the total cost of the TA(v1) is four.
To summarize, the instance in Figure 2 is a worst-case instance for the CAsum.

Theorem 7. The CAsum is a 7/5-approximation algorithm for CSsum,s=t. Moreover, there exists
an instance I for which cost(CAsum(I)) = 7/5 cost(M∗(I)).

Proof. We assume w.l.o.g. that, for each (k, {i, j}) ∈ M∗, cost(k, {i, j}) = w(dk, si) + uij.
We have:

5cost(CAsum) ≤ 4cost(MA(1, u)) + cost(TA(v1)) (46)

≤ 4(v3(M3) + v4(M4)) + v1(M1) (47)

≤ ∑
(k,{i,j})∈M∗

(
4w(dk, si) + 3w(dk, sj) + 4w(si, sj)

)
(48)

≤ ∑
(k,{i,j})∈M∗

(
7w(dk, si) + 7w(si, sj)

)
(49)

= ∑
(k,{i,j})∈M∗

7 cost(k, {i, j}) (50)

= 7 cost(M∗) (51)

Inequality (47) follows from Lemma 5 and inequality (7). Inequality (48) follows from
Lemmas 2 and 6. Inequality (49) follows from the triangle inequality. Inequality (50) follows
from cost(k, {i, j}) = w(dk, si) + uij.

We now provide an instance for which this ratio is achieved. Consider the instance I de-
picted in Figure 3. This instance has four cars {k1, k2, k3, k4}with car locations {d1, d2, d3, d4}
and eight requests R = {1, 2, . . . , 8}. If two points are not connected by an edge, their travel
time equals five. Observe that an optimal solution is

{(k1, {1, 3}), (k2, {2, 4}), (k3, {5, 6}), (k4, {7, 8})}

with cost(M∗(I)) = 10. Note that M∗R = {{1, 3}, {2, 4}, {5, 6}, {7, 8}}. Let us now analyze
the performance of MA(1, u) and TA(v1) on instance I.

Based on the uij values as defined in (20), the MA(1, u) can find, in the first step,
matching M3 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}} because v3(M3) = v3(M∗R) = 8. Then, no
matter how the second step assigns the request pairs to cars (since two cars stay at the same
location), the total cost of MA(1, u) will be 14.

TA(v1) may assign Requests 1 and 3 to Car 1 and Requests 2 and 4 to Car 2 and,
similarly, Requests 5 and 7 to Car 3 and Requests 6 and 8 to Car 4 because:

v1({(k3, 5), (k3, 7), (k4, 6), (k4, 8)}) = v1({(k3, 5), (k3, 6), (k4, 7), (k4, 8)}) = 6.

Algorithms 2022, 15, 30 17 of 20

Thus, the total cost of the TA(v1) is 14.
To summarize, the instance in Figure 3 is a worst-case instance for the CAsum.

The CAlat runs the MA(2, µ) and TA(v2) and then outputs the better of the two
solutions. We now state the main result for CSlat. The following lemma is useful to analyze
the performance of the CA for CSlat.

Lemma 8. For each (k, {i, j}) ∈ D× R2,

min{2w(dk, si, ti) + w(ti, dk, sj, tj), 2w(dk, sj, tj) + w(tj, dk, si, ti)}
+2w(dk, si) + 2w(dk, sj) + µij + µji

≤ min{8w(dk, si) + 5µij, 8w(dk, sj) + 5µji}.

Proof. We first prove 2w(dk, si, ti) + w(ti, dk, sj, tj) + 2w(dk, si) + 2w(dk, sj) + µij + µji ≤
8w(dk, si) + 5µij. We distinguish three cases based on µij: (1) µij = w(si, ti) + w(si, ti, sj, tj);
(2) µij = w(si, sj, ti) + w(si, sj, ti, tj); (3) µij = w(si, sj, tj) + w(si, sj, tj, ti).

Consider Case (1): µij = w(si, ti) + w(si, ti, sj, tj). We have:

2w(dk, si) + µij = 2w(dk, si) + 2w(si, ti) + w(ti, sj) + w(sj, tj).

According to the triangle inequality, we know that:

w(dk, ti) ≤ w(dk, si) + w(si, ti),

w(dk, sj) ≤ (dk, si) + w(si, ti) + w(ti, sj).

Based on the definition of µ, we know:

µij = 2w(si, ti) + w(ti, sj) + w(sj, tj),

µji ≤ 2w(sj, tj) + w(tj, si) + w(si, ti) ≤ 3w(sj, tj) + 2w(si, ti) + w(ti, sj).

Using the above inequalities, we have:

2w(dk, si, ti) + w(ti, dk, sj, tj) + 2w(dk, si) + 2w(dk, sj) + µij + µji

≤ 8w(dk, si) + 10w(si, ti) + 5w(ti, sj) + 5w(sj, tj)

= 8w(dk, si) + 5µij.

The other two cases (2) and (3) are obtained similarly.
Analogously, we have 2w(dk, sj, tj) + w(tj, dk, si, ti) + 2w(dk, si) + 2w(sk, sj) + µij +

µji ≤ 8w(dk, sj) + 5µij.

Theorem 8. The CAlat is a 5/3-approximation algorithm for CSlat.

Proof.

3wait(CAlat) ≤ 2wait(MA(2, µ)) + wait(TA(v2)) (52)

≤ 2(v3(M3) + v4(M4)) + v2(M2) (53)

≤ ∑
(k,{i,j})∈M∗

min{8w(dk, si) + 5µij, 8w(dk, sj) + 5µji} (54)

≤ ∑
(k,{i,j})∈M∗

5 min{2w(dk, si) + µij, 2w(dk, sj) + µji} (55)

= 5 wait(M∗). (56)

Inequality (53) follows from Lemma 5 and Inequality (8). Inequality (54) follows from
Lemmas 4, 6, and 8.

Algorithms 2022, 15, 30 18 of 20

Theorem 9. The CAlat is a 3/2-approximation algorithm for CSlat,s=t. Moreover, there exists an
instance I for which wait(CAlat(I)) = 3/2 wait(M∗(I)).

Proof. We assume w.l.o.g. that, for each (k, {i, j}) ∈ M∗, wait(k, {i, j}) = 2w(dk, si) +
w(si, sj). We have:

2wait(CA(2, µ)) ≤ wait(MA(2, µ)) + wait(TA(v2)) (57)

= ∑
(k,{i,j})∈MA

min{2w(dk, si) + µij, 2w(sk, sj) + µji} (58)

+ ∑
(k,{i,j})∈TA(v2)

min{2w(dk, si) + µij, 2w(sk, sj) + µji} (59)

= v3(M3) + v4(M4) + v2(M2) (60)

≤ ∑
(k,{i,j})∈M∗

(
w(si, sj) + w(dk, si) + w(dk, sj) + 3w(dk, si) + w(dk, sj)

)
(61)

≤ ∑
(k,{i,j})∈M∗

(
3w(si, sj) + 6w(dk, si)

)
(62)

= ∑
(k,{i,j})∈M∗

3 wait(k, {i, j}) (63)

= 3 wait(M∗). (64)

Equation (59) follows from (23). Equation (60) follows from Lemma 5. Inequality (62)
follows from the triangle inequality. Equation (63) follows from wait(k, {i, j}) = 2w(dk, si)+
µij.

We now provide an instance for which this ratio is achieved. This instance has four
cars {k1, k2, k3, k4} with car locations {d1, d2, d3, d4} and eight requests R = {1, 2, . . . , 8}.
Consider the instance I depicted in Figure 5. If two points are not connected by an edge,
their travel time equals five. Observe that an optimal solution is:

{(k1, {1, 3}), (k2, {2, 4}), (k3, {5, 6}), (k4, {7, 8})}

with wait(M∗(I)) = 8. Note that M∗R = {{1, 3}, {2, 4}, {5, 6}, {7, 8}}. Let us now analyze
the performance of the MA(2, µ) and TA(v2) on instance I.

{s1, t1, s2, t2}{d1, s3, t3} {d2, s4, t4}
2 2

(s5, t5, s6, t6) (d3, d4) (s7, t7, s8, t8)

1 1

Figure 5. A worst-case instance for the CAlat of CSlat,s=t.

Based on the µij values as defined in (22), the MA(2, µ) can find, in the first step,
matching M3 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}} because v3(M3) = v3(M∗R) = 4. Then, no
matter how the second step matches the pairs to cars, the total waiting time of the MA(2, µ)
will be 12.

The TA(v2) may assign Requests 1 and 3 to Car 1 and assign Requests 4 and 2 to Car
2 and, similarly, assign Requests 5 and 7 to Car 3 and assign Requests 6 and 8 to Car 4
because:

v2({(k3, 5), (k3, 7), (k4, 6), (k4, 8)}) = v2({(k3, 5), (k3, 6), (k4, 7), (k4, 8)}) = 8.

Thus, the total waiting time of the TA(v2) is 12.

Algorithms 2022, 15, 30 19 of 20

To summarize, the instance in Figure 5 is a worst-case instance for the combined
algorithm CAlat.

5. Conclusions

We analyzed a polynomial-time algorithm, called the transportation algorithm (TA),
for four different versions of a ride-sharing problem where each car serves at most c requests.
We proved that the TA is a (2c− 1)-approximation (resp. c-approximation) algorithm for
CSsum and CSsum,s=t (resp. CSlat and CSlat,s=t). Furthermore, for the special case where
capacity c = 2 and m = c · n, we proposed another algorithm, called match-and-assign
(MA), which firstly matches the requests into pairs and then assigns the request pairs to
the cars. We proved that (for most problem variants) the worst-case ratio of the algorithm
defined by the better of the two corresponding solutions is strictly better than the worst-case
ratios of the individual algorithms.

For future directions, it would be interesting to extend the MA for the ride-sharing
problem for any constant capacity c. It would also be interesting to obtain meaningful
lower bounds on the approximability of the ride-sharing problem. Other possible directions
include studying the problem under different objectives such as minimizing the makespan
or considering the release times and/or deadlines of the requests.

Author Contributions: Investigation, conceptualization, methodology, formal analysis, K.L. and
F.C.R.S.; writing—original draft preparation, K.L.; writing—review and editing, F.C.R.S. All authors
have read and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement number 754462 and
funding from the NWO Gravitation Project NETWORKS, Grant Number 024.002.003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Uber. 2021. Available online: https://www.uber.com/nl/en/ride/uberpool/ (accessed on 1 December 2021).
2. TransVision. 2021. Available online: https://www.transvision.nl/ (accessed on 1 December 2021).
3. Tafreshian, A.; Masoud, N.; Yin, Y. Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and

Future Directions. Serv. Sci. 2020, 12, 44–60. [CrossRef]
4. Agatz, N.; Erera, A.L.; Savelsbergh, M.W.; Wang, X. Dynamic ride-sharing: A simulation study in metro Atlanta. Procedia-Soc.

Behav. Sci. 2011, 17, 532–550. [CrossRef]
5. Luo, K.; Erlebach, T.; Xu, Y. Car-Sharing between Two Locations: Online Scheduling with Two Servers. In Proceedings of the

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018), Liverpool, UK, 27–31 August
2018; Volume 117, pp. 50:1–50:14.

6. Luo, K.; Erlebach, T.; Xu, Y. Car-Sharing on a Star Network: On-Line Scheduling with k Servers. In Proceedings of the 36th
International Symposium on Theoretical Aspects of Computer Science (STACS 2019), Berlin, Germany, 13–16 March 2019; Volume
126, pp. 51:1–51:14.

7. Liu, H.; Luo, K.; Xu, Y.; Zhang, H. Car-Sharing Problem: Online Scheduling with Flexible Advance Bookings. In Proceedings
of the Combinatorial Optimization and Applications—13th International Conference (COCOA 2019), Xiamen, China, 13–15
December 2019; Volume 11949, pp. 340–351.

8. Baldacci, R.; Maniezzo, V.; Mingozzi, A. An exact method for the car pooling problem based on lagrangean column generation.
Oper. Res. 2004, 52, 422–439. [CrossRef]

9. Bei, X.; Zhang, S. Algorithms for trip-vehicle assignment in ride-sharing. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

10. Masoud, N.; Jayakrishnan, R. A decomposition algorithm to solve the multi-hop peer-to-peer ride-matching problem. Transp.
Res. Part B Methodol. 2017, 99, 1–29. [CrossRef]

11. Masoud, N.; Jayakrishnan, R. A real-time algorithm to solve the peer-to-peer ride-matching problem in a flexible ride-sharing
system. Transp. Res. Part B Methodol. 2017, 106, 218–236. [CrossRef]

https://www.uber.com/nl/en/ride/uberpool/
https://www.transvision.nl/
http://doi.org/10.1287/serv.2020.0258
http://dx.doi.org/10.1016/j.sbspro.2011.04.530
http://dx.doi.org/10.1287/opre.1030.0106
http://dx.doi.org/10.1016/j.trb.2017.01.004
http://dx.doi.org/10.1016/j.trb.2017.10.006

Algorithms 2022, 15, 30 20 of 20

12. Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.; Rus, D. On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment. Proc. Natl. Acad. Sci. USA 2017, 114, 462–467. [CrossRef] [PubMed]

13. Pavone, M.; Smith, S.L.; Frazzoli, E.; Rus, D. Robotic load balancing for mobility-on-demand systems. Int. J. Robot. Res. 2012,
31, 839–854. [CrossRef]

14. Agatz, N.; Campbell, A.; Fleischmann, M.; Savelsbergh, M. Time slot management in attended home delivery. Transp. Sci. 2011,
45, 435–449. [CrossRef]

15. Stiglic, M.; Agatz, N.; Savelsbergh, M.; Gradisar, M. Making dynamic ride-sharing work: The impact of driver and rider flexibility.
Transp. Res. Part E Logist. Transp. Rev. 2016, 91, 190–207. [CrossRef]

16. Wang, X.; Agatz, N.; Erera, A. Stable matching for dynamic ride-sharing systems. Transp. Sci. 2018, 52, 850–867. [CrossRef]
17. Ashlagi, I.; Burq, M.; Dutta, C.; Jaillet, P.; Saberi, A.; Sholley, C. Edge weighted online windowed matching. In Proceedings of the

2019 ACM Conference on Economics and Computation, Phoenix, AZ, USA, 24–28 June 2019; pp. 729–742.
18. Lowalekar, M.; Varakantham, P.; Jaillet, P. Competitive Ratios for Online Multi-capacity Ridesharing. In Proceedings of the 19th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’20), Auckland, New Zealand, 9–13 May
2020; pp. 771–779.

19. Guo, X.; Luo, K. Algorithms for online car-sharing problem. In Proceedings of the CALDAM 2022: The 8th Annual International
Conference on Algorithms and Discrete Applied Mathematics, Puducherry, India, 10–12 February 2022.

20. Mori, J.C.M.; Samaranayake, S. On the Request-Trip-Vehicle Assignment Problem. In Proceedings of the SIAM Conference on
Applied and Computational Discrete Algorithms (ACDA21), Virtual Conference, 19–21 July 2021; pp. 228–239.

21. Burkard, R.; Dell’Amico, M.; Martello, S. Assignment Problems: Revised Reprint; SIAM: Philadelphia, PA, USA, 2012.
22. Luo, K.; Spieksma, F.C.R. Approximation Algorithms for Car-Sharing Problems. In Proceedings of the Computing and

Combinatorics—26th International Conference (COCOON 2020), Atlanta, GA, USA, 29–31 August 2020; Volume 12273,
pp. 262–273.

23. Goossens, D.; Polyakovskiy, S.; Spieksma, F.C.; Woeginger, G.J. Between a rock and a hard place: The two-to-one assignment
problem. Math. Methods Oper. Res. 2012, 76, 223–237. [CrossRef]

24. Bandelt, H.J.; Crama, Y.; Spieksma, F. Approximation algorithms for multidimensional assignment problems with decomposable
costs. Discret. Appl. Math. 1994, 49, 25–49. [CrossRef]

25. Queyranne, M.; Spieksma, F. Approximation algorithms for multi-index transportation problems with decomposable costs.
Discret. Appl. Math. 1997, 76, 239–254. [CrossRef]

26. Williamson, D.P.; Shmoys, D.B. The Design of Approximation Algorithms; Cambridge University Press: Cambridge, UK, 2011.

http://dx.doi.org/10.1073/pnas.1611675114
http://www.ncbi.nlm.nih.gov/pubmed/28049820
http://dx.doi.org/10.1177/0278364912444766
http://dx.doi.org/10.1287/trsc.1100.0346
http://dx.doi.org/10.1016/j.tre.2016.04.010
http://dx.doi.org/10.1287/trsc.2017.0768
http://dx.doi.org/10.1007/s00186-012-0397-2
http://dx.doi.org/10.1016/0166-218X(94)90199-6
http://dx.doi.org/10.1016/S0166-218X(96)00128-X

	Introduction
	Motivation
	Related Work
	Our Results

	Preliminaries
	The Transportation Algorithm and Its Analysis
	The Transportation Algorithm
	Approximation Analysis of the TA
	Discussion

	The Case c=2: Algorithms and Their Analysis
	The Match-and-Assign Algorithm and Its Analysis
	The Combined Algorithm and Its Analysis

	Conclusions
	References

