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Abstract: Connectivity in large-scale data center networks is a critical indicator to evaluate network
state. A feasible and performance-guaranteed algorithm enables us to find disjoint paths between
network vertices to ensure effective data transfer and to maintain the normal operation of network
in case of faulty nodes. As an important data center network, BCube Connected Crossbars (BCCC)
has many excellent properties that have been widely studied. In this paper, we first propose a
vertex disjoint path algorithm with the time complexity of O(nk) in BCCC, where n denotes a switch
connected to n servers and k denotes dimension. Then, we prove that the restricted connectivity
of BCCC(n, k). Finally, we present an O(knκ1(G)) fault-free algorithm in BCCC, where κ1(G) is the
restricted connectivity. This algorithm can obtain a fault-free path between any two distinct fault-free
vertices under the condition that each vertex has at least one fault-free neighbor in the BCCC and a
set of faulty vertices F with |F| < κ1(G).

Keywords: data center network; BCCC; restricted connectivity; vertex disjoint path; fault-free algorithm

1. Introduction

The data center network (DCN) is a critical infrastructure of cloud computing, which
can provide important cloud services such as GFS [1], Bigtable [2], and Dryad [3]. A data
center network is a bridge connecting large-scale servers in the data center for distributed
computing. As a widely used server-centric DCN, BCCC [4] can provide good network
performance using inexpensive off-the-shelf switches and commodity servers with only
two network interface card (NIC) ports. BCCC has many desirable properties such as
high scalability, a near-equal-length parallel path, and a small diameter. The Hamilton
properties and routing algorithm of BCCC have been studied [5–8].

Server failures are normal, since there are a large number of servers in the actual net-
work. When the network fails, how to restore normal communication should be considered
first. Furthermore, whether there is a fault-free path between any two different fault-free
vertices and how to construct a fault-free path using an algorithm should be also taken into
account. In other words, this is a problem of fault-tolerant routing, which is also the major
problem we will study in this paper.

When designing or selecting a network topology for a data center, the most funda-
mental consideration is the fault tolerance of the network. Fault tolerance refers to the
ability to continue working in the case of a network failure. Fault tolerance is the maximum
number of failed devices that the network will allow to operate normally. In this paper,
fault tolerance is directly determined by the connectivity of the network. The larger the
connectivity scale, the better fault-tolerant performance of the data center network. In
order to overcome the shortcoming of traditional connectivity, Harary [9] introduced the
concept of the restricted faulty nodes on the resulting graph. Following this trend, Esfa-
hanian [10] proposed the concept of restricted connectivity. The restricted connectivity is
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the connectivity under the condition that each fault-free node has at least one fault-free
neighbor.

There have been many studies on the restricted connectivity of networks. Li et al. [11]
establish a universally h-restricted connectivity for a class of hypercube-based compound
networks, such as hierarchical cubic network and its generalization complete cubic network.
Cheng [12] studies the h-restricted connectivity of an n-dimensional balanced hypercube
BHn. Li et al.[13] investigate the h-restricted connectivity of the generalized hypercube.
Liu et al. [14] prove the k-restricted edge connectivity of the data center network DCell and
Lin et al. [15] establish the 3-restricted connectivity of an n-dimensional split-star network.
Wang [16] shows the r-restricted connectivity of hyper Petersen graphs.
Ma et al. [17] prove the restricted edge connectivity of Kronecker product graphs.

Finding disjoint paths between two vertex sets in a massively parallel system estab-
lishes secure communication paths that do not interfere with each other. Constructing
multiple disjoint paths for two vertices increases the probability of constructing a fault-free
path. In addition to being used to avoid congestion, speed up transmission rates, and pro-
vide alternative propagation paths, disjoint paths can also enhance the robustness of vertex
failures and the ability to load balance. Wu et al. [18] propose an algorithm to give the
disjoint path between any two distinct vertices in dragonfly networks. Kern [19] gives exact
algorithms for disjoint paths and disjoint connected subgraphs on graphs with n vertices
and m edges in H-free graphs. Hadid et al. [20] propose a self-stabilizing One-to-Many
node disjoint path routing algorithm in star networks.

Fault-tolerant techniques are one of the pillar technologies of the network. At the
routing algorithm level, routing fault tolerance is achieved by selecting different routing
paths to bypass faulty links and nodes. Therefore, a fault-tolerant routing algorithm with
good effects can be achieved by improving the traditional routing algorithm. Fault-tolerant
routing algorithms for different networks have been studied. Pushparaj et al. [21] propose
an algorithm for routing the packets in the case of a link fault in Mesh-of-Tree (MoT)
topology. The algorithm ensures that the packets will reach their destination via the
shortest possible path. Nehnouh et al. [22] introduce a new fault-tolerant routing algorithm,
to tolerate permanent and transient faults in network-on-chips. Zhang et al. [23] propose
a novel fault-tolerant routing algorithm for 3-ary n-cube networks based on the disjoint
path with structure faults. Thuan et al. [24] propose a stochastic link-fault-tolerant routing
algorithm in a folded hypercube by introducing a type of limited global information called
routing probabilities. Ipek et al. [25] propose a highly adaptive fault-tolerant routing
algorithm for two-dimensional network-on-chips.

In this paper, we study the vertex disjoint path construction algorithm and fault-
tolerant routing algorithm under restricted connectivity in the BCCC. The major contribu-
tions are as follows:

(1) We first propose a vertex disjoint path construction algorithm in BCCC. Time
complexity is o(nk). With this algorithm, n vertex disjoint paths can be constructed for any
two vertices in the BCCC.

(2) We prove that under the condition that each vertex has at least one fault-free
neighbor in BCCC, its restricted connectivity is 2κ(G)− k− 1 and 2κ(G)− n− 2, when
n < k + 1 and n ≥ k + 1, respectively, where κ(G) is the connectivity.

(3) We give an O(knκ1(G)) fault-free algorithm, where κ1(G) denotes the restricted
connectivity of BCCC. This algorithm can obtain a fault-free path between any two distinct
fault-free vertices under the condition that each vertex has at least one fault-free neighbor.

The rest of this paper is organized as follows: Section 2 provides the preliminaries.
Section 3 proposes a vertex disjoint path construction algorithm. Section 4 discusses the
restricted connectivity of BCCC. Section 5 gives a fault-free algorithm to obtain a fault-
free path and an analysis of the time complexity of the algorithm. Section 6 provides the
discussion and conclusion.
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2. Preliminaries
2.1. Graph-Theoretic Terms

Given a simple graph G, we use V(G) and E(G) to denote the vertex set and the edge
set, respectively. An edge with end vertices u and v is denoted by (u, v). For each vertex
v ∈ V(G), if (u, v) ∈ E(G), we say that u is a neighbor of v or u is adjacent to v. The set
of all the neighbors of u is called the neighbor set of u in G, denoted by NG(u). The total
number of vertices of graph G is denoted by N.

Pathway P is a sequence consisting of (x1, x2, . . ., xn) with a length of n, and there is
(xm, xm + 1) ∈ E(G) for any 0 ≤ m ≤ n. For any two different paths, P1 and P2, the starting
and ending points are the same, named x and y, respectively. If V(P1) ∩V(P2) = {x, y},
then P1 and P2 will be vertex disjoint paths. Furthermore, if all vertices in P are fault-
free, then P will be a fault-free path. If P1 is a path between u and x, and P2 is a path
between x and v in G, then let (P1,P2) be a path between u and v in G. The reverse of P is
(xn, xn−1, . . ., x1), denoted by P−1.

Let F ⊂ V(G) and F be a set of faulty vertices. For any vertex x in G, if x ∈ F, then x is
faulty; otherwise, x is fault-free. The connectivity of graph G is defined as κ(G). This is
the minimum number of vertices needed to make the graph disconnected or trivial. If we
specify that every vertex has at least one fault-free neighbor, we call the connectivity in this
case the limited connectivity, which is defined as κ1(G).

2.2. Structure and Properties of BCCC

The BCCC structure connects servers by using recursively defined squares. In BCCC(n, k),
n denotes the n-port server and k denotes the dimension. First, we let n servers connect
to an n-port switch as an element, denoted by BCCC(n,0). BCCC(n,k) is composed of n
BCCC(n,k−1)s connecting nk elements. Two types of switch are used in BCCC, which are
the type A switch and type B switch. A type A switch has n ports for forming an element
and a type B switch has (k + 1) ports for connecting different elements. Any server x in
BCCC(n,k) can be represented by xkxk−1. . .xi . . .x0, xi ∈ 〈n− 1〉 and i ∈ 〈k〉. Any switch s
can be represented by sksk−1. . .si . . .s0 and si ∈ 〈n− 1〉, 1 ≤ i ≤ k + 1, s0 ∈ 〈n + k〉. Overall,
to build BCCC(n,k), we need (k + 1)nk+1 dual-port servers, (k + 1)nk type A switches, and
nk+1 type B switches. An example of BCCC(3, 2) is shown in Figure 1.

We can see that a pair of servers ak+1akak−1. . .a0 and a
′
k+1a

′
ka
′
k−1. . .a

′
0 are neighbors,

meaning that they are connected by the same switch, if and only if ∃i, i = a0 + 1 or i = 0,
such that ai 6= a

′
i, and ∀j, 0 ≤ j ≤ k + 1, i 6= j, such that aj = a

′
j.
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Figure 1. Structure of BCCC(3, 2).

According to the numbering rules of the BCCC server, x0 connects different layers.
xi ∈ [0, n− 1], 1 ≤ i ≤ k + 1. Therefore, BCCC can be divided into n subgraphs. We divide
BCCC into n subgraphs according to the second digit number of the server from right to
left. Servers with the same second digit number are located in the same subgraph. These
subgraphs are named BCC1

n,k, BCC2
n,k,. . . , BCCn

n,k. The second digit number is 0 and the
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subgraph is BCC1
n,k. We named the server connected to other subgraphs u1, and named those

not connected to other subgraphs u2. An example of BCCC1
3,2 is shown in Figure 2.
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Figure 2. Structure of BCCC1
3,2.

Lemma 1. BCCC (n,k) has the following properties: [4]
(1) BCCC(n, k) is (n+k−1)-regular graph. N = (k + 1)nk+1.
(2) The connectivity of BCCC(n, k) is κ(G) = n + k− 1.
(3) There are nk vertex disjoint paths connecting different BCCC(n, k− 1) in BCCC(n, k).

3. Vertex Disjoint Path Construction Algorithm

In this section, we propose a vertex disjoint path construction algorithm for BCCC.
The algorithm constructs n vertex disjoint paths between any two nodes u and v in
the BCCC.

3.1. Algorithm Description and Implementation

There are two vertex disjoint path algorithms, including BuildPathSet and Convert.
BuildPathSet is the master algorithm. The Convert algorithm can change one bit of the
u node number to the corresponding bit of the v node. The flow of the vertex disjoint
path algorithm is as follows (refer to Algorithm 1). First, a series of v nodes located at the
vertices of the same type A switch v2, v1..., vn−1 are selected. Then, a vertex vn located on
the same type B switch as v is determined. The mode of the first path is as follows. First, we
reach node x. The value of the u0 bit of x is 0. In addition, x is on the same type A switch as
the source node. The path is selected from node x to node v1. The second path pattern is as
follows. First, some data arrive at the y node. The value of the u0 bit of y is 1. In addition,
node y and the source node reside on the same type A switch. The path is from node y to
node v2. The other paths follow the same rules. The Convert algorithm is invoked n− 1
times during the process from the source node to the target node. One digit is changed
from the highest digit of the number to the lowest digit each time.

Algorithm 1 Vertex Disjoint Path Algorithm of BCCC.

Input: Two different vertices u = uk+1uk . . .u0 and vs. = vk+1vk . . .v0 in BCCC(n, k). Let the
neighbor node of the same type A switch with v be v1, v2, . . ., vn−1, and select any a
neighbor node in the same type B switch as vn.

Output: n vertex disjoint paths from u to v.
1: function BUILDPATHSET(BCCC(n, k), u, v)
2: z = v;
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3: for i = 0; i = n− 1; i ++ do
4: v = vi+1, Path = ∅;
5: add u to Path;
6: if uu0 6=i then
7: u=uk+1uk . . .uu0. . .u0, uu0=i, i∈ {1, 2, . . ., k + 1};
8: add u to Path;
9: for j=k+1; j>0; j−− do

10: if u == z then
11: break;
12: if uj 6= vj then
13: u, path=CONVERT(u,v,uj,vj,Path);

14: if u0 6= v0 then
15: u=uk+1uk . . .v0;
16: add u to Path;
17: if u 6= z then
18: add v,z to Path;
19: print(Path);

20: function CONVERT(u,v,ux,vy,Path)
21: u = uk+1uk . . .ux . . .u0, x∈ {1, 2, . . ., k + 1};
22: v = vk+1vk . . .vy. . .v0, y∈ {1, 2, . . ., k + 1};
23: if u0==v0 then
24: w = u;
25: else
26: u0 = vy;
27: w = uk+1uk . . .vy;
28: add w to Path;
29: ux = uy;
30: u=uk+1uk . . .vy. . .u0;
31: add u to Path;
32: return(u,Path);

3.2. Analysis of Vertex Disjoint Path Construction Algorithm

First, the time complexity of the Convert algorithm is analyzed. The node number of u
is changed from one bit to v. This node is added to the path set and the time complexity is
O(1). The second ’for’ loop in the BuildPathSet algorithm runs a total of k times from high
to low with O(k) concomitant time complexity. The first ’for’ loop causes the algorithm to
form a total of n paths with O(n) adjoint time complexity. In summary, the time complexity
of the BuildPathSet algorithm is O(nk).

3.3. Application Examples

Example 1. Given the network BCCC(3, 2) (see Figure 1), three vertex disjoint paths are con-
structed by the algorithm. The source node is selected as 0000 and the target node as 2011. It can be
obtained that the nodes located in the same switch with the target node are 2111, 2211, and 2010.
The first path is from 0000 to 2111. The Convert algorithm is used to gradually change from the
highest bit to the lowest bit. Therefore, Path1 = 0000 → 0002 → 2002 → 2001 → 2101 →
2100→ 2110→ 2111. This eventually reaches 2011 through the type A switch.

The second path first selects node 0010, which is located in the same type A switch as node
0000, and reaches 2211 from 0010, using the Convert algorithm. Therefore, Path2 = 0000 →
0010→ 0012→ 2012→ 2011. Because the 2011 node is encountered on the path to the 2211 node
and 2011 is the target node, the path is obtained by jumping out directly according to lines 10 and
17 of the algorithm.
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The third path selects node 0020, which is located in the same type A switch as node 0000.
The Convert algorithm is used to reach 2010 from 0020. Therefore, Path3 = 0000 → 0020 →
0022 → 2022 → 2020 → 2010 → 2011. Finally, three vertex disjoint paths from 0000 to 2011
are obtained.

4. Restricted Connectivity of BCCC

In this section, we prove the restricted connectivity of BCCC. We refer to the entire
graph of BCCC as G.

Theorem 1. The restricted connectivity of BCCC is
κ1(G) ≤ 2n + k− 3 = 2κ(G)− k− 1, if n < k + 1,
κ1(G) ≤ n + 2k− 2 = 2κ(G)− n, if n ≥ k + 1, when n ≥ 3 and k ≥ 2.

Proof. Let u and v be two vertices of the same type A switch (v ∈ NG(u)). Therefore,
|NG(u) ∩ NG(v)| = n− 2.

If |NG(u)| = |NG(v)| = κ(G), according to the definition,

|NG({u, v})| = |NG(u) ∪ NG(v)\(NG(u) ∩ NG(v))|
= |NG(u)− 1|+ |NG(v)− 1| − (n− 2)

= 2(κ(G)− 1)− (n− 2)

= 2κ(G)− n

(1)

Let F = NG({u, v}), so G − F is divided into two disconnected subgraphs: one is
G(u, v) and the other is G− (NG({u, v}) ∩ {u, v}). Furthermore, u has a fault-free neighbor
v. Therefore, each vertex of subgraph G(u, v) has at least one fault-free neighbor. Let H =
NG({u, v})\{u, v}, for BCCC(n, k), when u and v are located in the same type A switch,
each node in NG(H) has only one neighbor that is a faulty node. According to Lemma 1 (2),
κ(G) = n + k− 1. Therefore, κ(G) is constantly greater than 2 when n ≥ 3 and k ≥ 2. It can
be ensured that each node in G− (NG({u, v}) ∩ {u, v}) has at least one fault-free neighbor.

In summary, G− F is disconnected and each vertex in both subgraphs contains at least
one fault-free neighbor. Hence, κ1(G) ≤ 2n + k− 2 = 2κ(G)− n. Therefore, the theorem
holds.

Let x and y be two vertices of the same type B switch (v ∈ NG(u)) (y ∈ NG(x)).
Therefore, |NG(x) ∩ NG(y)| = k− 1.

If |NG(x)| = |NG(y)| = κ(G), according to the definition,

|NG({x, y})| = |NG(x) ∪ NG(y)\(NG(x) ∩ NG(y))|
= |NG(x)− 1|+ |NG(y)− 1| − (k− 1)

= 2(κ(G)− 1)− (k− 1)

= 2κ(G)− k− 1

(2)

Proving that the two vertices are in the same type B switch is the same as proving the
two vertices are in the same type A switch. Let F = NG({x, y}), so G− F is disconnected
and each vertex in both subgraphs contains at least one fault-free neighbor. Above all,
κ1(G) ≤ 2k + n− 3 = 2κ(G)− k− 1. Therefore, the theorem holds.

Theorem 2. The restricted connectivity of BCCC is
κ1(G) ≥ 2n + k− 3 = 2κ(G)− k− 1, if n < k + 1,
κ1(G) ≥ n + 2k− 2 = 2κ(G)− n, if n ≥ k + 1, when n ≥ 3 and k ≥ 2.

Proof. Let F be the set of faulty vertices in G. Proving this theorem is equivalent to proving,
for any two vertices u and v in G− F, there exists a fault-free path from u to v. Furthermore,
any vertex in G− F has at least one fault-free neighbor.
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If u and v are adjacent, the theorem holds. Hence, we discuss the case that u and
v are not adjacent. According to the structure of BCCC, BCCC can be divided into n
subgraphs. Let BCCi

n,k for i ∈ 〈n〉\{0} be the subgraph of G. Furthermore, u ∈ BCCα
n,k,

v ∈ BCCβ
n,k for α, β ∈ 〈n〉\{0}. Let Fα = V(BCCα

n,k) ∩ F and Fβ = V(BCCβ
n,k) ∩ F. Let

R = 〈n〉\{0, α}, BCCR
n,k be a subgraph other than BCCα

n,k in G and FR = V(BCCR
n,k) ∩ F. If

NG(u) ∩V(BCCR
n,k) 6= ∅, u is named as u1. Otherwise, u is named as u2.

Lemma 2. If F is a set of vertices in BCCC(n, k), and for any subgraph i in BCCC(n, k), BCCR
n,k

is connected if |F ∩V(G−V(BCCi
n,k))| ≤ κ(G)− 2.

Proof. According to the construction rules of BCCC, U is set as the point adjacent to BCCi
n,k

in BCCR
n,k to reach the conclusion that the point set of U is located in the same type A switch

of subgraph BCCi
n,k and has no neighbors. Therefore, the point in the set of U points is

the one with the fewest neighbors in BCCi
n,k. These vertices have k vertex disjoint paths in

the BCCi
n,k subgraph. This achieves κ(BCCi

n,k) = k(k ≥ 2). Moreover, for any vertex x in
BCCR

n,k to connect to BCCi
n,k, one of x’s neighbors in the same type A switch is not in the

subgraph. Therefore, κ(BCCR
n,k) = κ(G)− 1.

Because |F ∩ V(G − V(BCCi
n,k))| ≤ κ(G)− 2 and κ(BCCR

n,k) = κ(G)− 1, BCCR
n,k are

connected, and the Lemma holds.

According to the position of u and v vertices in BCCC, we have the following cases.

Case 1. α 6= β.

Subcase 1.1. |Fα| ≥ κ(BCCα
n,k)or|Fβ| ≥ κ(BCCβ

n,k).

Without losing generality, suppose |Fα| ≥ κ(BCCα
n,k). Apparently, |FR| = |F\Fα| ≤

2κ(G) − n − 1 − (κ(G) − n + 1) ≤ κ(G) − 2. According to Lemma 2, BCCR
n,k − FR is

connected. Next, we discuss the following cases.

Subcase 1.1.1. u is u1.

Subcase 1.1.1.1. NG(u1) ∩V(BCCR
n,k) 6⊆ F.

Selecting a vertex x, x ⊆ (NG(u1) ∩ V(BCCR
n,k)), there is a path P1 from u1 to x in

BCCα
n,k − Fα. Because BCCR

n,k − FR is connected, there exists a fault-free path P2 from x to v in
BCCR

n,k .

Subcase 1.1.1.2. NG(u1) ∩V(BCCR
n,k) ⊆ F.

Because the neighbors of u1 are all fault vertices in subgraph BCCR
n,k, there must be a

fault-free neighbor in subgraph BCCα
n,k. Now, we consider how many fault-free paths from

u1 to BCCR
n,k exist in BCCα

n,k. Furthermore, NG(u1) ∩V(BCCR
n,k) = n− 1.

Let x1, x2, . . ., xn−1 be all neighbors of u1 in BCCR
n,k.

Let y1, y2, . . ., yk be all neighbors of u1 in BCCα
n,k; y1′ , y2′ , . . ., yk′ be the same type A

switch neighbors of y1, y2, . . ., yk; y1′′ , y2′′ , . . ., yk′′ be all neighbors of y1′ , y2′ , .., yk′ in BCCα
n,k

and NG(yi′′) ∩ v(BCCR
n,k) 6= ∅, i ∈ {1, 2, . . ., k}. Thus, there are (n− 1)(k + 1) paths from

u1 to BCCR
n,k as follows (refer to Figure 3). The specific paths are listed below:{

Xi = (u1, xi), 1 ≤ i ≤ n− 1

Yi = (u1, yi, yi′ , yi′′), 1 ≤ i ≤ k, i′ = k(n− 1)

Because NG(u1) ∩V(BCCR
n,k) ⊆ F, F ∩V(BCCR

n,k) ≥ n− 1, F ∩V(BCCα
n,k) ≤ κ1(G)−

1− n + 1 = κ1(G)− n. Whether κ1(G) = 2κ(G)− n or 2κ(G)− k − 1, (n− 1)(k + 1)−
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k1(G)− n ≥ 1. Therefore, there is at least one fault-free path P1 from u1 to BCCR
n,k. Assume

that t is the last vertex in the path P1. If t = v, then P1 is a path from u1 to v in G − F.
Otherwise, since BCCR

n,k − FR is connected, there is a fault-free path P2 from t to v in BCCR
n,k.

Then, the path (P1, P2) is a fault-free path from u1 to v in G− F.

u1

x1

x2

Xn-1

...

y1

y2

yk

...

y11'

...

y11''

y12''
y12'

y1k'

...

y1k''

y21'

y22'...

y2k'

y21''

y22''...

y2k''

yk1'
yk2'...
ykk'

yk1''
yk2''

ykk''

...

Figure 3. (n− 1)(k + 1) paths from u1 to BCCR
n,k.

Subcase 1.1.2. u is u2.

It can be obtained that u2 is a vertex in BCCα
n,k and its neighbors are all in this subgraph.

According to the definition of restricted connectivity, there is a fault-free neighbor in BCCα
n,k.

Now, we consider how many fault-free paths there are from u2 to BCCR
n,k in BCCα

n,k.
Let x be the neighbor of u2 and NG(x) ∩V(BCCR

n,k) 6= ∅.
Let y1, y2, . . ., yn−1 be the same type A switch neighbors of u2; y1′ , y2′ , . . ., yn−1′ be all

neighbors of y1, y2, . . ., yn−1 in BCCα
n,k, and NG(yi′) ∩V(BCCR

n,k) 6= ∅, i ∈ {1, 2, . . ., n− 1}.
Let z1, z2, . . ., zk−1 be neighbors of u2 in the same type B switch, except x; z1′ , z2′ , . . ., zk−1′

be the same type A switch neighbors of z1, z2, . . ., zk−1; z1′′ , z2′′ , . . ., zk−1′′be all neighbors
of z1′ , z2′ , . . ., zk−1′ in BCCα

n,k and NG(zi′′) ∩V(BCCR
n,k) 6= ∅, i ∈ {1, 2, . . ., k− 1}. Above all,

there are (k − 1)(n − 1) + n paths from u2 to BCCR
n,k as follows (refer to Figure 4). The

specific paths are listed below:
Xi = (u2, x)

Yi = (u2, yi, yi′), 1 ≤ i ≤ n− 1

Zi = (u2, zi, zi′ , zi′′), 1 ≤ i ≤ k− 1, i′ = (k− 1)(n− 1)

Since |F(G)| = 2k(G)− n− 1 = 2(n + k− 1)− n− 1 = n + 2k− 3, we have (k− 1)
(n− 1) + n− |F(G)| = 1 when n = k + 1 and n = 3. Furthermore, when n > 3, whether
κ1(G) = 2κ(G)− n or 2κ(G)− k− 1, (k− 1)(n− 1) + n− κ1(G) > 1. Therefore, there is at
least one fault-free path P in the above (k− 1)(n− 1) + n paths from u2 to BCCR

n,k. Assume
that w is the last vertex in the path P1. If w = v, then P1 is a path from u to v in G − F.
Otherwise, since BCCR

n,k − FR is connected, there is path P2 between w and v in BCCR
n,k.

Then, the path (P1, P2) is a path from u2 to v in G− F.
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u2
x

z1

z2

zk-1

...

z11'

...

z11''

z12''
z12'

Z1k-1'

...

z1k''

z21'

z22'...

z2k'

z21''

z22''...

z2k''

zk1'
zk2'... zkk'

zk1''
zk2''

zkk''

...
y1
y2... yk

y1'
y2'...
yk'

Figure 4. (k− 1)(n− 1) + n paths from u2 to BCCR
n,k.

Subcase 1.2. |Fα| < κ(BCCα
n,k)and|Fβ| < κ(BCCβ

n,k).

Because BCCα
n,k − Fα and BCCβ

n,k − Fβ are all connected, let {xi|x1, x2, .., xn2} be a set
of vertices connected to other subgraphs in BCCα

n,k. Let {yi|y1, y2, . . ., yn2} be a set of

vertices connected to other subgraphs in BCCβ
n,k. It can be obtained that |NG(xi) ∩ yi| = n2.

Whether κ1(G) = 2κ(G)− n or 2κ(G)− k− 1, n2 > κ1(G)− 1. Therefore, there must exist
a fault-free vertex x(x ∈ xi) and y(y ∈ yi) in the same type A switch. If u = x, then it
is directly connected to BCCβ

n,k. If u 6= x, since BCCα
n,k − Fα is connected, there exists a

fault-free path P1 from u to x in BCCα
n,k − Fα. Since x and y are located in the same switch,

there is a fault-free path P2 from x to y. If v = y, it is directly connected to BCCα
n,k. If v 6= y,

since BCCβ
n,k − Fβ is connected, there exists a fault-free path p3 from y to v in BCCβ

n,k − Fβ.
Then, the path (P1, P2, P3) is a path from u to v in G− F (refer to Figure 5b).

Subcase 2. α = β.

If |Fα| < κ(BCCα
n,k), BCCα

n,k − Fα is connected. There exists a fault-free path from
u to v in BCCα

n,k. Thus, we only need to consider that |Fα| ≥ κ(BCCα
n,k). According to

subcase 1.1, if BCCα
n,k − Fα is not connected, BCCR

n,k − FR is connected. According to
subcase 1.1.1 and subcase 1.1.2, whether u = u1 or u = u2, there must exist a fault-free path
from u(v) to BCCR

n,k. Thus, there exists a fault-free path P1 from u to a vertex x in BCCα
n,k

and a fault-free path P2 from v to a vertex y in BCCα
n,k. If x = y, the path (P1, P−1

2 ) is a path
from u to v. If x 6= y, since BCCR

n,k − FR is connected, there exists a fault-free path P3 from x
to y. Then, the path (P1, P3, P−1

2 ) is a path from u to v in G− F (refer to Figure 5c).



Algorithms 2022, 15, 481 10 of 14

Fα F-Fα

u x
P1

vP2

Fα Fβ

u

y

P1

v

P2x

P3

Fα F-Fα

u

y

P1

v

P2

x

P3

(a) (b)

(c)

Figure 5. Figure (a) is subcase 1.1.1.1; Figure (b) is subcase 1.2; Figure (c) is subcase 2.

In summary, if there exists a fault-free path between any two vertices u and v in BCCC,
the theorem holds.

Theorem 3. The restricted connectivity of BCCC is
κ1(G) = n + 2k− 3 = 2κ(G)− k− 1, if n < k + 1,
κ1(G) = 2n + k− 2 = 2κ(G)− n, if n ≥ k + 1, when n ≥ 3 and k ≥ 2.

Proof. According to Theorem 1 and Theorem 2, the theorem holds.

5. Fault-Free Routing Algorithm of BCCC under the Restricted Connectivity

In this section, we first give a fault-free routing Algorithm BCCFTP. Furthermore, we
analyze the time complexity of this algorithm.

5.1. Algorithm Description and Implementation

Algorithm BCCFTP (refer to Algorithm 2) can give a fault-free path between any two
fault-free vertices u and v in G− F, where F is the set of faulty vertices in G, |F| < κ1(G),
and any vertex in G− F has at least one neighbor.

Algorithm 2 Fault-free routing algorithm of BCCC.

Input: Given the graph G to represent BCCC(n, k), a set of fault vertices F ⊂ V(G), two
different vertices u and v. The subgraph α in which u is located, subgraph β in which v
is located.

Output: A fault-free path from vertex u to v in G− F.
1: function BCCFTP(u,v,α,β,F,BCCC(n, k))
2: if F = ∅ then
3: Return BCTP(u,v,BCCC,F);
4: else if (u, v)∈ E(G) then
5: Return(u,v);
6: κ ← κ(BCCα

n,k), α← u, β← v;

7: Fα ← F ∩ (κ(BCCα
n,k), Fβ ← F ∩ (κ(BCCβ

n,k)
8: if α 6= β then
9: if |Fα| ≥ κ then

10: P1 ←PATHSEQ(u, F, BCCα
n,k, G− BCCα

n,k);
11: let s be the last vertex of Path P1;
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12: if s = v then
13: return P1;
14: return(P1, BCTP(s,v,G− BCCα

n,k, F\Fβ);
15: else if |Fβ| ≥ κ then

16: P1 ← PATHSEQ(v, F, BCCβ
n,k, G− BCCβ

n,k);
17: let s be the last vertex of Path P1;
18: if s = u then
19: return P1;
20: return(BCTP(u, s, G− BCCβ

n,k, F\Fα), p−1
1 );

21: else|Fα| < κ && |Fβ| < κ

22: P1 ←PATHSEQ(u, F, BCCα
n,k, BCCβ

n,k);
23: let s be the last vertex of Path P1;
24: if s = v then
25: return P1;
26: P1+=BCTP(s, v, BCCβ

n,k, Fβ);
27: return P1;
28: else if |Fα| < κ then
29: return(BCTP(u, v, BCCβ

n,k, Fα).
30: else
31: P1 ←PATHSEQ(u, F, BCCα

n,k, G− BCCα
n,k);

32: let s be the last vertex of Path P1;
33: P2 ←PATHSEQ(v, F, BCCα

n,k, G− BCCα
n,k);

34: let t be the last vertex of Path P2;
35: if w be the first common vertex of P1 and P2 then
36: return (Path(P1, u, w),Path(P−1

2 , w, v));

37: P1+=BCTP(s, t, G− BCCα
n,k, F\Fα);

38: return P1+ P−1
2 ;

39:

40: function PATHSEQ(u, F, H1, H2)
41: if NG(u) ∩V(H2) 6= ∅ then
42: if NG(u) ∩V(H2)\F 6= ∅ then
43: select one fault-free vertex x from NG(u) ∩V(H2);
44: return(u, x);
45: else
46: for all y1 ∈ NG(u) ∩V(H1)\F do
47: if NG(y1) ∩V(H1)\F 6= ∅ then
48: for all y2 ∈ NG(u) ∩V(H1)\F do
49: if NG(y2) ∩V(H1)\F 6= ∅ then
50: for all y3 ∈ NG(u) ∩V(H2)\F do
51: if NG(y3) ∩V(H2)\F 6= ∅ then
52: select one fault-free vertex y4 from NG(y3) ∩V(H2)\F;
53: return(u, y1, y2, y3, y4)

54: else
55: Select a vertex x1 connected to other subgraphs, select a vertex y1 in the same

type A switch, and a vertex z1 in the same type B switch from NG(u) ∩V(H1)\F;
56: if NG(x1) ∩V(H2)\F 6= ∅ then
57: select one fault-free vertex x2 from NG(x1) ∩V(H2)\F;
58: return(u, x1, x2);
59: if NG(y1) ∩V(H1)\F 6= ∅ then
60: for all y2 ∈ NG(y1) ∩V(H1)\F do
61: if NG(y2) ∩V(H2)\F 6= ∅ then
62: for all y3 ∈ NG(y2) ∩V(H2)\F do
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63: select one fault-free vertex y3 from NG(y3) ∩V(H2)\F;
64: return(u, y1, y2, y3);

65: for all z2 ∈ NG(z1) ∩V(H1)\F do
66: if NG(z2) ∩V(H1)\F 6= ∅ then
67: for all z3 ∈ NG(z2) ∩V(H1)\F do
68: if NG(z3) ∩V(H1)\F 6= ∅ then
69: for all z4 ∈ NG(z2) ∩V(H2)\F do
70: select one fault-free vertex z4 from NG(z3) ∩V(H1)\F;
71: return(u, z1, z2, z3, z4);
72:

73: function BCTP(u, v, BCCC, F)
74: Select a fault free path from BuildPathSet(BCCC, u, v) in G− F;

5.2. Analysis of Fault-Free Unicast Algorithm

First, the time complexity of PATHSEQ(u, F, H1, H2) and BCTP(u, v, BCC, F) func-
tions is analyzed. u in H1 exists in the PATHSEQ(u, F, H1, H2) function. This depends on
whether u is connected to other subgraphs, including u1 and u2. The path from u1 to the
subgraph H2 is (u, x), (u, y1, y2, y3, y4). The time complexity of PATHSEQ in different situ-
ations is as follows. First, the path is (u, x), because (NG(u)∩V(H2))\F 6= ∅ finds a vertex
x in H2, and returns a path (u, x). The time complexity is O(1) in this case. Second, the path
is (u, y1, y2, y3, y4). Each vertex in the set is y1 and the time complexity is O(1) after travers-
ing (NG(u) ∩V(H1))\F. Each vertex in the set is y2 and the time complexity is less than
O(κ(G)) after traversing (NG(y1) ∩ V(H1))\(F ∪ u). Each vertex in the set is y3 and the
time complexity is less than O(κ(G)) after we go through (NG(y2)∩V(H1))\(F∪ y1). Each
vertex in the set is y4 and the time complexity is O(1). After traversing (NG(y3)∩V(H2))\F,
paths (u, y1, y2, y3, y4)) are obtained. The time complexity is less than O(κ(G)2) in this case.

The path from u2 to subgraph H2 includes (u, x1, x2), (u, y1, y2, y3), and (u, z1, z2, z3, z4).
First, the path is (u, x1, x2). Each vertex in the set is x and the time complexity is O(1) after the
function traverses (NG(u) ∩V(H1))\F. Next, vertex x2 is found from (NG(x1) ∩V(H2))\F.
The time complexity in this case is O(k) < O(k(G)). Second, the path is (u, y1, y2, y3). The
function traverses (NG(u) ∩V(H1))\F. The node is set on the same type A switch as u to y1
and the time complexity to O(1). Then, traversing (NG(y1) ∩V(H1))\(F ∪ u) sets the point
connected with other subgraphs as y2, and the time complexity is less than O(κ(G)). Finally,
(NG(y2) ∩ V(H2))\F is traversed and node y3 selected. In this case, the time complexity
is less than O(κ(G)). Third, the path of u2 (u, z1, z2, z3, z4) is the same as the path of u1
(u, y1, y2, y3, y4). In summary, the time complexity of the PATHSEQ(u, F, H1, H2) function is
O(κ(G)2) combined with u1 and u2.

Next, we analyze BCCFTP(u, v, α, β, F, BCC(n, k)). BCCFTP is divided into two cases,
including α 6= β and α = β.

In the case of α 6= β, if |Fα| ≥ k, Algorithm BCCFTP will first obtain a fault-free
path P1 from u to a vertex s in G − BCCα

n,k by PATHSEQ(u, F, BCCα
n,k, G − BCCα

n,k). The
time complexity of this part is O(κ(G)2). Next, Algorithm BCCFTP will return P1 if
s = v; then, the time to obtain the path from u to v in G − F is O(κ(G)2). Otherwise,
Algorithm BCCFTP will return (P1,BCTP(s, v, G − BCCα

n,k, F\Fβ)); then, the time to run
BCTP(s, v, G− BCCα

n,k, F\Fβ) is O(knκ1(G)) and the time to obtain a path (P1,BCTP(s, v, G−
BCCα

n,k, F\Fβ)) by connecting path P1 and BCTP is O(1). Thus, the time to obtain the path
from u to v in G− F is O(κ(G)2 + knκ1(G) + 1)=O(knκ1(G)). Furthermore, for subcases
|Fβ| ≥ k, |Fα| < k, and |Fβ| < k, the time to obtain the path from u to v in G − F is
O(knκ1(G)), which is similar to that discussed in the case of |Fα| ≥ k.

In the case of α = β, if |Fα| ≤ k, Algorithm BCCFTP will firstly obtain a fault-
free path from u to v in BCCα

n,k by PATHSEQ (u, F, BCCα
n,k, Fα). The time complexity

of this part is O(κ(G)2). Then, Algorithm BCCFTP will first obtain a fault-free path P1
from u to a vertex s and path P2 from v to a vertex t in BCCα

n,k in the time of O(κ(G)2).
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If P1 and P2 have a common vertex w, Algorithm BCCFTP will return (Path(P1, u, w),
Path(P−1

2 , w, v)). Since the time to obtain Path(P1, u, w) is O(1), the time complexity is
O(2 ∗ κ(G)2 +O(1))=O(κ(G)2). If P1 and P2 have no common vertex, the function will run
BCTP(s, t, G− BCCα

n,k, F\Fα) to construct a fault-free path from s to t. The time complexity
of this part is O(knκ1(G)). Therefore, the time to obtain the path from u to v in G is
O(2 ∗ κ(G)2 + knκ1(G) + 2 ∗ 1)=O(knκ1(G)).

In summary, the time complexity of Algorithm BCCFTP is O(knκ1(G)).

6. Discussion and Conclusions

As the infrastructure of cloud computing, data center networking has become a
hot topic in recent years. As an important DCN model, BCCC can support millions of
servers with excellent communication characteristics and provide good fault tolerance. In
this paper, a point disjoint path algorithm with time complexity O(nk) is proposed. The
algorithm can give n vertex disjoint paths between any two vertices. Multiple disjoint
paths can enhance routing performance and improve network reliability. Then, we prove
the condition that each vertex has at least one fault-free neighbor, and that the restricted
connectivity of BCCC is 2κ(G) − k − 1 and 2κ(G) − n, when n < k + 1 and n ≥ k +
1, respectively. Restricted connectivity can be obtained at almost twice the traditional
connectivity. The larger the connectivity scale, the better the fault-tolerant performance
of the data center network. Finally, we give the O(knκ1(G)) trouble-free algorithm with
limited connectivity. This algorithm can obtain the fault-free path between any two different
fault-free vertices. The premise is that each vertex has at least one fault-free neighbor in
the BCCC.

Our algorithm is proposed based on the condition that each fault-free vertex has
one fault-free neighbor. In the majority of cases, each vertex has more than one fault-free
neighbor in large interconnected networks. In the future, the h-restricted connectivity
(h ≥ 2) of BCCC will be studied, which is a guarantee for accommodating more failed
servers when the network is large enough. Fault-free algorithms based on h-restricted
connectivity can ensure that the network allows more fault nodes. In addition, many other
network connectivity limitations in DCN have not been studied, such as Ficonn[26], HCN
and BCN [27]. This, together with the design of related routing algorithms, may be worth
further investigation. In the meantime, most networks only consider server failures. In
fact, both switches and links could fail. There are currently few studies on switch and
link failures. Therefore, the fault tolerance of switches and links in the network can be
analyzed, and corresponding fault-tolerant routing algorithms can be designed to ensure
the connectivity of the network.
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