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Abstract: The evaluation of the fault diagnosis capability of a data center network (DCN) is important
research in measuring network reliability. The g-extra diagnosability is defined under the condition
that every component except the fault vertex set contains at least g+1 vertices. The t/k diagnosis
strategy is that the number of fault nodes does not exceed t, and all fault nodes can be isolated into
a set containing up to k fault-free nodes. As an important data center network, BCube Connected
Crossbars (BCCC) has many excellent properties that have been widely studied. In this paper, we
first determine that the g-extra connectivity of BCn,k for 0 ≤ g ≤ n− 1. Based on this, we establish
the g-extra conditional diagnosability of BCn,k under the MM* model for 1 ≤ g ≤ n − 1. Next,
based on the conclusion of the largest connected component in g-extra connectivity, we prove that
the t/k-diagnosability of BCn,k under the MM* model for 1 ≤ k ≤ n− 1. Finally, we present a t/k
diagnosis algorithm on BCCC under the MM* model. The algorithm can correctly identify all nodes
at most k nodes undiagnosed. So far, t/k-diagnosability and diagnosis algorithms for most networks
in the MM* model have not been studied.

Keywords: data center networks; BCCC; fault tolerance; MM* model; g-extra diagnosability; t/k-
diagnosability

1. Introduction

As the infrastructure for cloud computing, the study of data center networks is a
hot topic that has emerged in recent years. A data center network serves as a bridge that
connects the data center and a series of servers in distributed computing. As a widely used
server-centric DCN, BCCC [1] can provide good network performance using inexpensive
commodity off-the-shelf switches and commodity servers with only two network interface
card (NIC) ports. Based on this construction method, BCCC has many excellent properties
such as high scalability, near-equal-length parallel path and a small diameter. The Hamilton
property and fault tolerant routing of BCCC have been studied [2–4].

Fault tolerance is the maximum number of failed nodes allowed, provided the network
is working properly. This paper evaluates the fault tolerance of networks by measuring the
additional connectivity of networks. The g-extra connectivity proposed by Fàbrega et al. [5]
is defined as the minimum number of nodes required to disconnect the entire network
when each connected component has at least g + 1 vertices. Li et al. [6] estabished the
{1, 2, 3}-extra connectivity of enhanced hypercubes. Zhang et al. [7] proposed {1, 2}-extra
connectivity of DQcube. Cheng and Dongqin [8] proved that {1, 2}-extra connectivity of
2-dimensional torus networks for n ≥ 4. On the basis of traditional connectivity, additional
connectivity adds specific conditions, which is more suitable for the needs of large-scale
network reliability [9–11].

With the increasing scale of a data center network, server failure is inevitable. Fault
diagnosis is an important index for assessing the operation status when networks have
faulted servers. In fact, the diagnosis of DCN servers is similar to that of multiprocessors.
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Each server represents a processor of multiprocessor systems. In order to diagnose system
faults more efficiently, many diagnostic models have been proposed. One major model
is the MM model, which is based on the comparison model, proposed by Maeng and
Malek [12]. The MM model is diagnosed by comparing the response of a pair of processors
to perform tests. The MM* model is a variant of the MM model. It is suitable for diagnosing
large interconnected networks with multiple adjacent nodes by comparison. The MM*
model has been applied to many fault diagnosis works [13–16]. We introduce this model in
detail in Section 2.

Extra conditional diagnosability [17] is a newly proposed conditional diagnostic
strategy. It is defined as the number of faulty processors that the system can diag-
nose, given that each connected component in the system has at least g + 1 processors.
Cheng et al. [18] estabished the g-extra diagnosability of the generalized exchanged hyper-
cube. Wang et al. [19] proved the g-extra diagnosability of the balanced hypercube under
the PMC and MM* model.

Meanwhile, the t/k diagnostic strategies, proposed by Somani and Peleg [20], refers
to a test symptom when the fault set F exists, in which the number of fault nodes does
not exceed t, and all fault nodes can be separated into a set F′ containing up to k fault-free
nodes and |F′| ≤ |F|+ k. It has been proven that when the number of fault-free nodes
misdiagnosed as faulty nodes is excessively small, the t/k-diagnosis significantly enhances
the autodiagnosis of networks. Xie et al. [21] studied the t/s-diagnosability of the k-ary
n-cube under the PMC model. Liu [22] explored the relationship between the k-extra
connectivity and t/k-diagnosability for regular networks under the classic PMC diagnostic
model. Li et al. [23] proved the t/k-diagnosability of the data center network DCell and
proposed an efficient t/k-diagnosis algorithm under the PMC model.

In the t/k diagnosis strategy, we represent the number of misdiagnosed nodes with k.
Meanwhile, in BCCC(n,k), different dimensions are represented with k. Hence, in order to
differentiate them, we replace k with h to represent the number of misdiagnosed nodes in
the t/k diagnosis.

For any integers n ≥ 3, k ≥ 2, we use BCn,k to denote a k-dimensional BCCC with n-
port switches. In this paper, we first explore the g-extra connectivity and g-extra conditional
diagnosability of BCn,k. Next, based on the conclusion of the largest connected component
in g-extra connectivity, we study the t/k-diagnosability of BCn,k and propose a t/k diagnosis
algorithm under the MM* model for 1 ≤ k ≤ n− 1. The major contributions are as follows:

(1) The g-extra connectivity of BCn,k is (g + 1)(k − 1) + n, where n ≥ 3, k ≥ 2 and
0 ≤ g ≤ n− 1.

(2) The g-extra conditional diagnosability of BCn,k is (g + 1)k + n under the MM* model,
where n ≥ 3, k ≥ 2 and 1 ≤ g ≤ n− 1.

(3) BCn,k is [(h + 1)(k− 1) + n]/h-diagnosable under the MM* model, where n ≥ 3,
k ≥ 2 and 0 ≤ h ≤ n− 1.

(4) We give an O(N(n + k − 1)) t/h diagnosis algorithm, where N is the number of
vertices in BCn,k. Provided the number of faulty nodes |F| ≤ (h + 1)(k− 1) + n, the
algorithm can correctly identify all nodes except at most k nodes undiagnosed.

The remainder of this paper is organized as follows. Section 2 introduces the BCCC
structure and related knowledge of graph theory. Section 3 evaluates the g-extra connectiv-
ity of BCn,k; Section 4 establishes the g-extra conditional diagnosability of BCn,k under the
MM* model; Section 5 determines the t/k-diagnosability of BCn,k under the MM* model;
Section 6 presents the t/k diagnosis algorithm, analyzes its time complexity and proves its
correctness and validity; Section 7 draws a conclusion.

2. Preliminaries
2.1. Terminology and Notation

Given a simple graph G, V(G) and E(G) are denoted as the vertex set and the edge set,
respectively. The number of vertices in G is called the order, denoted by N. An edge with
end vertices u and v is denoted by (u, v). For each vertex v ∈ V(G), if (u, v) ∈ E(G), we
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say that u is a neighbor of v or u is adjacent to v. For any set S, let |S| denote the number of
vertices in S (resp. cardinality). The set of all the neighborhoods of v is called the neighbor
set of v in G, denoted by NG(v). The vertex number of the maximal independent set in G is
called the dependent number of G, denoted by α(G). The degree of u in G is denoted by
degG(u), and let δ(G) = min{degG(u)|u ∈ V(G)}. The largest connected component in G
is named mc(G).

2.2. The MM* Model

The MM model is based upon comparison. It conducts a diagnosis by comparing
the responses of processor execution testing. The set of all comparisons performed by
system G = (V(G), E(G)) can be inscribed as a multiple graph M = (V(G), P). V(G) is
the set of processors in the system. P denotes the set of edges and P = (x, y)z. (x, y)z
denotes a comparison: the comparison processor z sends the same test to the two compared
processors x and y and compares their responses. Side (x, y)z ∈ P is equivalent to (x, z) ∈ E
and (y, z) ∈ E, where x, y ∈ NG(z).

A symptom of a system is denoted by the symbol σ, defined as the set of all comparison
results in the system G. A set of all nodes are tested under a σ faulty syndrome , then the
set is called a fault set F. Two faulty sets F1, F2 are distinguishable if σ(F1) ∩ σ(F2) = ∅;
otherwise, they are indistinguishable. The following are sufficient conditions for two fault
sets F1 and F2 to be distinguishable pairs under the MM* model. Let F14 F2 denote the
symmetric difference between F1 and F2, i.e., F14 F2 = (F1 − F2) ∪ (F2 − F1).

Lemma 1 ([24]). Let G = (V(G), E(G)) be a multiprocessor system. For any two distinct sets F1,
F2 ⊆ V(G), F1 and F2 are distinguishable under the MM* model if and only if one of the following
conditions is satisfied:

(1) There are two vertices v, w ∈ V(G)− F1 ∪ F2, and there is a vertex u ∈ F14 F2 such that
(u, w) ∈ E(G) and (v, w) ∈ E(G).

(2) There are two vertices u, v ∈ F1 ∪ F2, and there is a vertex w ∈ V(G)− F1 ∪ F2 such that
(u, w) ∈ E(G) and (v, w) ∈ E(G).

(3) There are two vertices u, v ∈ F2 ∪ F1, and there is a vertex w ∈ V(G)− F1 ∪ F2 such that
(u, w) ∈ E(G) and (v, w) ∈ E(G).

Figure 1 shows an illustration for Lemma 1.

F1 F2 F2F1

u

v

u v

w
(1)

uv

w w

(2) (3)

Figure 1. An illustration for Lemma 1.

2.3. Structure and Properties of BCCC

BCCC is a structure that recursively connects servers layer by layer. In BCCC(n,k),
n denotes the n-port server and k denotes the dimension. First, we let n servers connect
to an n-port switch as an element, denoted by BCCC(n,0). BCCC(n,k) is composed of n
BCCC(n,k-1)s connecting nk elements. Two types of switches are used in BCCC, which
are type A switch and type B switch. A type A switch has n ports for forming an element,
and a type B switch has (k + 1) ports for connecting different elements. Overall, to build
BCCC(n,k), we need (k + 1)nk+1 dual-port servers, (k + 1)nk type A switches and nk+1

type B switches.
An example of BCCC(3,2) is shown in Figure 2. The study of the connectivity and

diagnosability of the structure requires the equivalence of the network to a graph, which is
calculated using knowledge of graph theory, where the vertices represent servers and the
edges represent links. Switches are considered as transparent devices.
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Figure 2. Structure of BCCC(3,2).

Definition 1. For any integers k ≥ 0 and n ≥ 2, the k-dimensional transparent BCCC network
with n-port switches is denoted by a simple graph BCn,k = (VBCn,k , EBCn,k ) with N vertices, where
VBCn,k = ak+1akak−1...a0, where a0 ∈ [0, k] and ai ∈ [0, n− 1], 1 ≤ i ≤ k + 1. Two servers
ak+1akak−1...a0 and a′k+1a′ka′k−1...a′0 are neighbors, if and only if ∃i, i = a0 + 1 or i = 0, such that
ai 6= a′i, and ∀j, 0 ≤ j ≤ k + 1, i 6= j, such that aj = a′j. A BCn,k contains n BCn,k−1 subgraphs.

Figure 3 shows three examples of BCn,ks.

010 110 210020 120 220

000 100 200

001 011 021

101 201 111 211 211 221

0000 0010 0100 0110 1000 1010 1100 1110

0002 1002 0012 1012 0102 1102 0112 1112

0001 0101 0011 0111 1001 1101 1011 1111

10 20

30 40

Figure 3. Several transparent BCn,ks with small parameters n and k.

Lemma 2 ([1]). BCn,k has the following properties:

(1) BCn,k is (n+k-1)-regular graph. N = (k + 1)nk+1.
(2) The connectivity of BCn,k is κ(BCn,k) = n + k− 1.
(3) There are nk vertex-disjoint paths connecting different BCn,k−1 in BCn,k.

Lemma 3 ([25]). For any integers n ≥ 3, k ≥ 2 and 0 ≤ g ≤ n− 1, there exists a complete
graph C of order g + 1 in BCn,k such that |NBCn,k (V(C))| = (g + 1)(k− 1) + n, and V(BCn,k)−
NBCn,k V(C) has exactly two connected components: one is V(C) and the other is V(BCn,k) −
NBCn,k [V(C)], where δ(BCCCn,k − NBCn,k [V(C)]) ≥ g.

3. The g-Extra Connectivity of the BCCC Network

In this section, we prove the the upper and lower bounds on the g-extra connectivity
separately, and finally, obtain the g-extra connectivity of the BCn,k.

For any two vertices x and y in BCn,k, the two numbers differ only by one digit. Let
di f f p denote a different position from left to right. For example, di f f p(x, y) = 0 denotes
the different a0 number of x and y.
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Lemma 4 ([1]). For any integers n ≥ 3 and k ≥ 2, let x and y be any two distinct vertices in
BCn,k; the two have only one digit number. Then

|NBCn,k (x) ∩ NBCn,k (y)|


= k− 1, i f di f f p(x, y) = 0

= n− 2, i f 1 ≤ di f f p(x, y) ≤ k + 1

≤ 1, i f (x, y) /∈ E(BCn,k)

(1)

Lemma 5. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 0 ≤ g ≤ n− 1, if D ⊆ V(BCn,k) with
|D| = g + 1, we have |NBCn,k (D)| ≥ (g + 1)(k− 1) + n.

Proof. According to Lemma 3, when |NBCn,k (D)| = (g + 1)(k− 1) + n, BCn,k is divided
into two subgraphs, each of them has least g + 1 vertices. The lemma holds. Next, we
consider that vertices are located in different connected components.

According to Lemma 1, for any two vertices u, v and (u, v) 6∈ E(BCn,k), they have one
common neighbor at most. Similarly, for two different connected components A and B,
NBCn,k (A) ∪ NBCn,k (B) ≤ 1. Thus, g + 1 vertices can be divided into ε disjoint vertex sets,
say D1,D2,...,Dε. Suppose that |Di| = gi, where 2 ≤ i ≤ ε, we have ∑ε

i=1|Di| = |D| = g + 1
and |NBCn,k (Di)| ≥ gi(k− 1) + n− 1. Thus, we have

NBCn,k (D) ≥ |NBCn,k (D1)|+ |NBCn,k (D2)|+ ... + |NBCn,k (Dε)|
≥ [g1(k− 1) + n− 1] + [g2(k− 1) + n− 1] + ... + [gε(k− 1) + n− 1]

= ∑
1≤i≤ε

[gi(k− 1) + n− ε]

= (g + 1)(k− 1) + εn− ε

(2)

Let f (ε) = (g + 1)(k− 1) + εn− ε be a function on ε, where 2 ≤ ε ≤ g + 1, it is easy to
verify that f ′(ε) = n− 1. Since n ≥ 3 , we have f ′(ε) > 0. Therefore, f ′(ε) is an increasing
function, f (ε) ≥ f (2). We have

NBCn,k (D) ≥ (g + 1)(k− 1) + εn− ε

≥ (g + 1)(k− 1) + 2n− 2

> (g + 1)(k− 1) + n

(3)

In summary, if D ⊆ V(BCn,k) with |D| = g + 1, we have |NBCn,k (D)| ≥ (g + 1)(k− 1) + n.
The lemma holds.

Lemma 6. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 0 ≤ g ≤ n− 1, if F ⊆ V(BCn,k) with
|F| ≤ (g + 1)(k− 1) + n− 1, then BCn,k − F has one large component, and the remaining small
components have at most g vertices in total.

Proof. Let C1, C2,..., Cγ, Cγ+1 be the components of BCn,k − F, where Cγ+1 is the largest
component. Let ∑γ

i=1|Ci| = |C|. Assume that |C| ≥ g + 1. According to Lemma 5,
|NBCn,k (C)| ≥ (g + 1)(k− 1) + n, this is in contradiction to |F| ≤ (g + 1)(k− 1) + n− 1.
Hence, |C| ≤ g. The lemma holds.

Lemma 7. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 0 ≤ g ≤ n− 1, if F ⊆ V(BCn,k)
with |F| ≤ (g + 1)(k− 1) + n− 1, then BCn,k − F has one large component at least N − |F| − g
vertices.

Proof. According to Lemma 6, |C| ≤ g with |F| ≤ (g + 1)(k− 1) + n− 1. We have

|Cγ+1| = N − |F| − |C|
≥ N − |F| − g

(4)
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Thus, the lemma holds.

Lemma 8. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 0 ≤ g ≤ n− 1, the upper bound of
g-extra connectivity is κg(BCn,k) ≤ (g + 1)(k− 1) + n.

Proof. According to Lemma 3, when |NBCn,k (V(C))| = (g + 1)(k − 1) + n, V(BCn,k) −
NBCn,k V(C) has exactly two connected components: one is V(C) and the other is V(BCn,k)−
NBCn,k [V(C)], where δ(BCCCn,k − NBCn,k [V(C)]) ≥ g. Meanwhile, we have |C| = g +
1 and |V(BCn,k) − NBCn,k [V(C)]| = N − (g + 1) − [(g + 1)(k− 1) + n] > g + 1. Thus,
NBCn,k (V(C)) is an g-extra vertex cut of BCn,k. The upper bound of g-extra connectivity is
κg(BCn,k) ≤ (g + 1)(k− 1) + n.

Lemma 9. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 0 ≤ g ≤ n− 1, the lower bound of
g-extra connectivity is κg(BCn,k) ≥ (g + 1)(k− 1) + n.

Proof. For the sake of contradiction, suppose that F is an Rg−cut of BCn,k with |F| ≤
(g + 1)(k − 1) + n − 1. By Lemma 7, BCn,k − NBCn,k (V(H)) has the largest component
containing at least N − |F| − g vertices, where 0 ≤ g ≤ n− 1. After excluding the largest
connected component, the number of remaining small connected components have the most
g vertices. Hence, F is not an g-extra vertex cut of BCn,k with |F| ≤ (g + 1)(k− 1) + n− 1,
a contradiction. We have the lower bound of g-extra connectivity κg(BCn,k) ≥ (g + 1)(k−
1) + n.

According to Lemma 8 and Lemma 9, we have the following Theorem.

Theorem 1. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 0 ≤ g ≤ n − 1, the g-extra
connectivity is κg(BCn,k) = (g + 1)(k− 1) + n.

4. The g-Extra Conditional Diagnosiability of the BCCC Network under the MM* Model

In this section, we will determine the g-extra conditional diagnosability tg(BCn,k) of
BCn,k under the MM* model for 1 ≤ g ≤ n− 1.

Definition 2 ([14]). A simple undirected graph G=(V,E) is g-extra conditionally t-diagnosable if
and only if for each pair of distinct faulty g-extra vertex sets F1, F2 ⊆ V(G) such that |F1| ≤ t,
|F2| ≤ t, F1 and F2 are distinguishable. The g-extra conditional diagnosability of G, denoted as
tg(G), is the maximum value of t such that G is g-extra conditionally t-diagnosable.

Lemma 10 ([26]). Let G be a connected graph with order N ≥ 2κg(G)+ 2g+ α(G) and minimum
degree δ(G) ≥ 3, where κg(G) is the g-extra connectivity of G, α(G) is the independence number
of G and g ≥ 0. If G satisfies the following conditions:

(1) there is a connected subgraph H of G with |V(H)| = g + 1 such that NG(H) is a minimum
g-extra cut of G;

(2) κg(G) ≥ g + 2, κg+1(G) ≥ κg(G) + g;
(3) mc(G− F) ≥ N − |F| − (g + 1) for any vertex set F ⊆ V(G) with |F| ≤ κg+1(G)− 1;

then, tg(G) = κg(G) + g under the MM* model.

Lemma 11. The vertex number of the maximal independent set α(BCn,k) = 0 in BCn,k.

Proof. We first prove that V(BCn,k)− (F1 ∪ F2) 6= ∅. If F1 ∪ F2 = ∅, there are no isolated
vertices in the graph and α(BCn,k) = 0. According to Lemma 10, we suppose two g-extra
fault sets F1 and F2 exist with |F1| ≤ κg(G) + g = (g + 1)k + n and |F2| ≤ κg(G) + g =
(g + 1)k + n. Thus, F1 and F2 are not satisfied with any one condition in Lemma 1. Assume
that F1 ∩ F2 = ∅, we have |V(BCn,k)| − |F1 ∪ F2|≥ (k + 1)nk+1 − 2[(g + 1)k + n]. Let
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f (g) = (k + 1)nk+1 − 2[(g + 1)k + n]. Since k ≥ 2, we have f ′(g) < 0. Therefore, f (g) is a
decreasing function. f (g) ≥ f (n− 1) > 0. Thus, V(BCn,k)− F1 ∪ F2 6= ∅.

Next, prove the conclusion in V(BCn,k)− F1 ∪ F2 6= ∅. We prove that α(BCn,k) = 0 is
equivalent to proving that V(BCn,k)− F1 ∪ F2 has no isolated vertices.

Suppose there is at least one isolated vertex s in V(BCn,k)− F1 ∪ F2. Suppose F1 ⊂ F2,
since F2 is a g-extra fault set and s is an isolated vertex; we obtain g = 0, which contradicts
g ≥ 1. Thus, F1 6⊆ F2. Similarly, we have F2 6⊆ F1. Let S be a maximum independent set of
BCn,k− F1 ∪ F2, and let H be the induced subgraph by the vertex set V(BCn,k)− (F1 ∪ F2 ∪ S).

Since F1 and F2 are two indistinguishable g-extra fault sets of BCn,k, there exists one
vertex u ∈ F2 − F1 at most, such that u is connected to w, according to Lemma 1(2). If
NBCn,k (s) ∩ (F2 − F1) = ∅, then s is an isolated vertex in BCn,k − F1, which is contradictory
to g 6= 0. Thus, there exists only one vertex u such that u and s are adjacent to each other.
Similarly, we infer that there exists only one vertex v ∈ F1 − F2 such that v is adjacent to s.
According to Lemma 2(2), κ(BCn,k) = n + k− 1. We have

|F1 ∩ F2| ≥ |NBCn,k (s) ∩ (F1 ∩ F2)|
= |NBCn,k (s)| − |NBCn,k (s) ∩ (F1 − F2)| − |NBCn,k (s) ∩ (F2 − F1)|
= n + k− 1− 2

= n + k− 3

(5)

Let S be the set of all isolated vertices. Since |F2| = (g + 1)k + n, we have

∑
s∈S
|NBCn,k [F1∩F2](s)| = |S|(n + k− 3)

≤ ∑
v∈F1∩F2

degBCn,k (v)

≤ |F1 ∩ F2|(n + k− 1)

≤ (|F2| − 1)(n + k− 1)

= [(g + 1)k + n− 2](n + k− 1)

(6)

Thus, |S| ≤ [(g+1)k+n−2](n+k−1)
n+k−3 , noting that |F1∪ F2| = |F1|+ |F2|− |F1∩ F2| ≤ 2κg(BCn,k)+

g. Let H = V(BCn,k)− (F1 ∪ F2)− S. Suppose V(H) = ∅; when 0 ≤ g ≤ n− 1, we have

|F1 ∪ F2|+ |S| = |F1|+ |F2| − |F1 ∩ F2|+ |S|

≤ 2κg(BCn,k) + g +
[(g + 1)k + n− 2](n + k− 1)

n + k− 3
< (k + 1)nk+1

(7)

Since |V(BCn,k)| = (k + 1)nk+1, V(BCn,k)− (F1 ∪ F2)− S > 0. Hence, V(H) 6= ∅.
Since F1 and F2 are undistinguishable, they do not comply with Lemma 1(1). Thus, for

any vertex h in H, we have NF14F2(h) = ∅. We infer that NBCn,k (H) ⊆ F1 ∩ F2. Since F1 is a
g-extra fault set, it can be obtained that every component Ji ∈ S∪ [F2 − (F1 ∩ F2)] has |V(Ji)| ≥
g + 1. Similarly, F2 is a g-extra fault set, and every component Ki ∈ S ∪ [F1 − (F1 ∩ F2)] has
|V(Ki)| ≥ g + 1. In summary, every component Gi ∈ S ∪ [F2 − (F1 ∩ F2)] ∪ [F1 − (F1 ∩ F2)]
has |V(Gi)| ≥ g + 1. Since F1 is a g-extra fault set, we have |V(Hi)| ≥ g + 1. Therefore, F1 ∩ F2
is a g-extra vertex cut (see Figure 4).
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Figure 4. Illustration of F1 ∩ F2 is a g-extra vertex cut.

Since F1 and F2 are two distinguishable faulty sets, F1 6⊆ F2 and F2 6⊆ F1, we can induce
that |F1 − F2| ≥ 1 and |F2 − F1| ≥ 1. Since F1 is a g-extra vertex cut and (F14 F2) ∩ H = ∅,
we have |(F2 − F1) ∪ S| ≥ g + 1. Combining this with |F1 − F2| ≥ 1, |(F2 − F1) ∪ S|+ |F1 −
F2| = |(F14 F2)∪ S| ≥ g+ 2. Let s′ be any node in S′ and S′ = (F14 F2)∪ S. Recall that the
vertex set pair (F1, F2) is not satisfied with any one condition in Lemma 1, V(S′) ∩V(H) =
∅, we have NBCn,k (s

′) ⊆ F1 ∪ F2. Let NBCn,k (S
′) = D. Thus, |F1 ∪ F2| ≥ |D|. According to

Theorem 1, κg+1(BCn,k) = (g + 2)(k− 1) + n ≥ κg(BCn,k) + g. Thus, |D| ≥ κg(BCn,k) + g.
It can be obtained that |F2| = |F2 − F1|+ |F1 ∩ F2| ≥ κg(BCn,k) + g + 1, a contradicition
to |F2| ≤ κg(BCn,k) + g. We can conclude that S = ∅. There are no isolated nodes in
V(BCn,k)− F1 ∪ F2. α(BCn,k) = 0. The lemma holds.

Theorem 2. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 1 ≤ g ≤ n− 1, the g-extra conditional
diagnosability of BCn,k under the MM* model is tg(BCn,k) = (g + 1)k + n.

Proof. According to Lemma 11, the maximal independent set α(BCn,k) = 0. Let f (g) =
N − 2κg(BCn,k)− 2g = (k + 1)nk+1 − 2[(g + 1)(k− 1)]− 2n− 2g. Thus, f ′(g) = −2k < 0
when k ≥ 2. So, f (g) is a decreasing function. f (g) ≥ f (1) ≥ 0. The graph BCn,k satisfies
with N ≥ 2κg(BCn,k) + 2g + α(BCn,k) and δ(BCn,k) ≥ 3 when n ≥ 3, k ≥ 2, n ≥ k + 1 and
1 ≤ g ≤ n− 1.

According to Theorem 1, κg(BCn,k) = NBCn,k (H), where |V(H)| = g + 1, satisfying
condition (1) of Lemma 10. Meanwhile, since κg(BCn,k) ≥ g + 2 and κg+1(BCn,k) ≥
κg(BCn,k) + g, this satisfies condition (2) of Lemma 10. According to Lemma 7, mc(BCn,k −
F) ≥ N − |F| − (g + 1), where |F| ≤ κg(BCn,k)− 1 ≤ κg+1(BCn,k)− 1, satisfying condition
(3) of Lemma 10.

Therefore, tg(BCn,k) = κg(BCn,k) + g = (g + 1)k + n. The theorem holds.

5. The t/k-Diagnosability of the BCCC Network under the MM* Model

In this section, we will calculate the t/k-diagnosability of BCn,k under the MM* model
for 1 ≤ k ≤ n− 1. In the t/k diagnosis strategy, we represent the number of misdiagnosed
nodes with k. Meanwhile, in BCCC(n,k), different dimensions are represented with k.
Hence, in order to differentiate them, we replace k with h to represent the number of
misdiagnosed nodes in the t/k diagnosis.

Definition 3 ([27]). Given a graph G = (V(G), E(G)) and a syndrome σ on G produced by a
faulty set, let x ⊆ V(G); the 0-test subset of node x is denoted as C0(x) = {c ∈ V(G)|∃a ∈ V(G),
σ(x, a)c = 0}. The 0-test subgraph of G, denoted T0(G), is a subgraph of G defined by V(T0(G)) ⊆
V(G) and E(T0(G)) = {(x, c) ∈ E(G)|c ∈ C0(x), x ∈ C0(c)}.
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Lemma 12. Assume a system G = (V(G), E(G)) includes at most t failure nodes and symptom
σ caused by failure sets in G. We come up with the following conclusions:

1. If for any node x, there are y ∈ V(G) and (x, y) ∈ E(G) that makes x ∈ C0(y) and
y ∈ C0(x), then x and y share the same state (fault or fault-free).

2. For any random connected component R ∈ T0(G), all nodes
3. If in T0(G) the connected component R meets condition |V(R)| ≥ t + 1, then all the nodes in

R are fault-free.

Proof. (1) Given a proof by contradiction, suppose that node x is faulty and y is fault-free.
Select a node z ∈ NG(x) and z 6= y, then σ(y, z)x 6= 0. Based on the MM* model, we
have y /∈ C0(x); then, there is a contradiction.

(2) When |V(R)| = 1, the result clearly holds. Next, we consider the situation of |V(R)| ≥
2. Let x ∈ V(R) and for any y ∈ NR(x). It can be obtained that y ∈ C0(x) and
x ∈ C0(y). According to Conclusion 1 of this Lemma, x and y share the same state. In
other words, in NR(x), all the nodes share the same state as x. Similarly, all nodes in
R share the same state. That is to say, all nodes in R are faulty, or all nodes in R are
fault-free.

(3) Since system G contains at most t fault nodes, it follows from the conclusion 2 of this
Lemma that all nodes in R have the same state. Assuming that all nodes in R are
faulty, then |V(R)| ≤ t, there is a contradiction. Then, all nodes in R are fault-free.

Theorem 3. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 1 ≤ h ≤ n − 1, BCn,k is
[(h + 1)(k− 1) + n]/h-diagnosable under the MM* model.

Proof. Case 1: |F| ≤ (h + 1)(k− 1) + n− 1.
According to Lemma 7, BCn,k− F has one large component S and |V(S)| ≥ N− |F| − h.

Meanwhile, |V(S)| = mc(BCn,k − F) = mc(T′0(BCn,k)). Thus, we have

|V(S)| = mc(BCn,k − F)

≥ N − |F| − h

≥ N − [(h + 1)(k− 1) + n− 1]− h

≥ (k + 1)nk+1 − [(h + 1)(k− 1) + n− 1]− h

≥ (k + 1)nk+1 − n(k + 1) + 2

> |F|

(8)

According to Lemma 12, all nodes in S are fault free where |V(S)| ≥ |F|. Then,

|F′| = N − |V(S)|
≤ N − (N − |F| − h)

= |F|+ h

(9)

F′ contains at most h fault-free nodes.
Case 2: |F| = (h + 1)(k− 1) + n.
Let H be a set of suspicious nodes and H ⊆ F′. Therefore, NBCn,k (H) ⊆ F. If |H| ≤ h,

|F′| = |F|+ h, the theorem holds. Then, we consider that |H| ≥ h + 1.
If |H| ≥ h + 1, we need to prove |NBCn,k (H)| ≥ t. Suppose that |NBCn,k (H)| ≤ t− 1.

According to Lemma 6, the remaining small components C have the most h vertices in total
and |H| ≤ h. This is in contradiction to |H| ≥ h + 1. By Lemma 5, NBCn,k (H) ≥ (h + 1)(k−
1) + n and H ∩ F = ∅. According to a t/h diagnosis, there are mostly (h + 1)(k− 1) + n
fault nodes. Obviously, all nodes in H are fault-free, and no nodes were misdiagnosed.

In summary, BCn,k is [(h + 1)(k− 1) + n]/h-diagnosable under the MM* model.
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6. A Fault Diagnosis Algorithm

In this section, we propose a t/k diagnosis algorithm and calculate the time complexity
of the algorithm. Then, two examples are given to illustrate the implementation process of
the algorithm. Finally, we analyzed the experimental results.

6.1. Formal Description of the t/k Diagnosis Algorithm under the MM* Model

According to Lemma 8, we obtain important information that there exists a largest
component with at least N − |F| − h with |F| ≤ (h + 1)(k− 1) + n− 1. Meanwhile, BCn,k
is [(h + 1)(k− 1) + n]/h-diagnosable under the MM* model. The algorithm can correctly
diagnose all faulty nodes, provided that the upper bound on the number of faulty nodes
are (h + 1)(k− 1) + n, which contains most h fault-free nodes that are misdiagnosed as
faulty nodes.

The algorithm t/h-Diag first repeatedly calls algorithm C-UC(u) choosing the largest
connected component. When the case appears that |F| ≤ (h + 1)(k− 1) + n and |U| > 0,
UDiag(C,UC,U) is called. t/h-Diag will output C,UC,U. The C set is fault-free, UC are
faulty and U is undetermined. Algorithm t/h-Diag is shown in Algorithm 1.

Algorithm 1 t/h-Diag

Input: A syndrome σ on BCn,k produced by a faulty node set F ⊂ V(BCn,k) with |F| ≤
(h + 1)(k− 1) + n, where n ≥ 3, k ≥ 2, n ≥ k + 1 and 1 ≤ h ≤ n− 1.

Output: C,UC,U.
1: U ← φ, C1 ← φ, R← V(BCn,k)
2: while R 6= φ do
3: choose a node u in R, call algorithm C-UC(u) and return C,UC
4: if |C| > |F| and |C| > |C1| then
5: C1 ← φ, C1 ← C1 ∪ C
6: UC1 ← φ, UC1 ← UC1 ∪UC
7: R← R− u
8: C ← φ, C ← C ∪ C1
9: UC ← φ, UC ← UC ∪UC1

10: identify all nodes in C as fault-free
11: identify all nodes in UC as faulty
12: U ← V(BCn,k)− C−UC
13: if |U| > h then
14: identify all nodes in U as fault-free
15: if |UC| = t− 1 and |U| > 0 then
16: call algorithm UDiag(C,UC,U) and return C,UC,U
17: return C,UC,U

Algorithm C-UC(u) uses breadth-first search (BFS) to traverse from the selected node,
using the Q.push() and Q.pop() operations. If u is fault-free, then the C set is all fault-free
nodes and the UC set is all faulty nodes. If u is faulty, then the C set is full of faulty nodes
and the UC set is full of fault-free nodes. Algorithm C-UC(u) is shown in Algorithm 2.
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Algorithm 2 C-UC(u)

Input: A node u ∈ V(BCn,k) and a syndrome σ on BCn,k.
Output: C,UC.

1: C← φ, UC← φ, Q is empty
2: C← {u}, Q.push(u)
3: label all nodes with "unvisited"
4: while len(Q)>0 do
5: y=Q.pop(0)
6: for each unvisited node x in NBCn,k (y) do
7: for each node z in NBCn,k (x) do
8: if σ(y, z)x = 0 then
9: Q.push(x)

10: C← C ∪ {x} and label x with “visited”
11: else
12: UC← UC ∪ {x}
13: return C,UC

For |F| = (h + 1)(k − 1) + n− 1, when |U| > 0, UDiag is called. Since |F| = (h +
1)(k− 1) + n− 1, U has at most one fault node. Select one node in the U set to test the
other two nodes; if the symptom is 1, this indicates that one of the three nodes is a faulty
node. At this point, the U set is a fault-free node, except for these three nodes. Select a
node to test two of the three nodes, and if the symptom is 0, the two nodes being tested
are fault-free. Then, the remaining node is the faulty node. With the exception of this fault
node, all nodes in U are fault-free and all nodes are tested out. Algorithm UDiag(C,UC,U)
is shown in Algorithm 3.

Algorithm 3 UDiag(C,UC,U)

Input: C,UC,U and a syndrome σ on BCn,k.
Output: C,UC,U.

1: For any node u ∈ U such that σ(v, w)u = 1, where {v, w} ∈ NU(u).
2: if σ(v, w)x = 0, where x ∈ (NU(v)− {u}) ∪ (NU(w)− {u}) then
3: UC ← UC ∪ u, U ← U − u
4: if σ(u, w)x = 0, where x ∈ (NU(u)− {v, w}) ∪ (NU(w)− {u}) then
5: UC ← UC ∪ v, U ← U − v
6: if σ(u, v)x = 0, where x ∈ (NU(u)− {v, w}) ∪ (NU(w)− {u}) then
7: UC ← UC ∪ w, U ← U − w
8: C ← C ∪U, U ← φ
9: return C,UC,U.

Theorem 4. For any integers n ≥ 3, k ≥ 2, n ≥ k + 1 and 0 ≤ h ≤ n− 1, the time complexity of
algorithm t/h-Diag is O(N(n + k− 1)), where N is the total number of nodes in BCn,k.

Proof. In the algorithm t/h-Diag, the largest connected component is first obtained by
calling the C-UC(u) algorithm N times each time the C-UC(u) algorithm traverses all the
neighbours of node u, that is, (n+k-1) times. Therefore, the Nth C-UC(u) algorithm has the
most O(N(n + k− 1)) time. Next, the time complexity of the algorithm UDiag(C,UC,U)
is O (2|U|). The other steps of t/h-Diag algorithm takes at most O(N) time. Therefore,
the total time complexity of the algorithm t/h-Diag is O(N(n + k − 1) + 2|U| + N) =
O(N(n + k− 1)).

6.2. Application Example

Example 1. Given the network BC2,2 (see Figure 5), first execute the C-UC(u) algorithm. Based
on |F| ≤ (h + 1)(k− 1) + n, the algorithm randomly generates four faulty nodes, including 1110,
1100, 0012 and 1011. When the algorithm executes Nth times, the largest connected component is



Algorithms 2022, 15, 480 12 of 16

chosen to start from the node 0000. Breadth-first Search is used to put it in the set C. The largest
connected component is shown in Figure 6. C = 0000, 0001, 0002, 0010, 0101, 1002, 0011, 0100,
0102, 1000, 1001, 0111, 0110, 1102, 1010, 1101, 0112, 1012, 1112, 1111. Meanwhile, UC = 1110,
1100, 0012, 1011. So, all faulty nodes have been diagnosed. There are no undiagnosed nodes.

Example 2. Given the network BC5,2, we let h = 4, at which point |F| = (h+ 1)(k− 1)+ n = 10.
The selected fault nodes are 0000, 0001, 0011, 0002, 0012, 0021, 0031, 0022, 0032, 0040. Figure 7
shows the largest connected component obtained after the breadth-first search. Figure 8 shows the
faulty nodes from the breadth-first search. It can be obtained that all the faulty nodes are tested
except 0000. At this point, it satisfies |F| = (h + 1)(k− 1) + n− 1 and |U| > 0. After calling the
UDiag(C,UC,U) algorithm, 0000 is diagnosed as the faulty node (Figure 9 shows the set of fault
nodes). So, all faulty nodes have been diagnosed. There are no undiagnosed nodes.
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Algorithms 2022, 15, 480 13 of 16

0040

0001

0011

0021

0031

0002

0012

0022

0032
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Figure 9. Fault nodes obtained after calling the UDiag algorithm.

6.3. Experiments’ Results Analysis

Next, we give experimental results for the execution of the t/h-Diag algorithm. Sim-
ulation experiments were performed on computers with Intel Core i7-11800H, 2.3 GHz,
16 GB DRAM, 64 bit Windows and x64 processor. The programming language was Python.
Let BCn,k be the target network, with k = 2, 3 ≤ n ≤ 7 and 1 ≤ h ≤ 3. In addition, we
randomly selected (h + 1)(k − 1) + n faulty nodes in BCn,k by executing the algorithm
500 times and then calculating the single average time.

Figure 10 gives the average execution time of the t/h-Diag algorithm in the simulation
experiments. We chose k = 2 and 3 ≤ n ≤ 6. The three lines show the average execution
time for h = 1, 2, 3, respectively. It can be seen that the average execution time increases
when more normal nodes are allowed to be faulty nodes and the simulation results are
consistent with the time complexity of the t/h-Diag algorithm. According to the results of
simulation, the execution time of the algorithm and nk+1 are directly proportional because
the time complexity of the t/h-Diag algorithm is O(N(n + k− 1)) and N = (k + 1)nk+1.
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Figure 10. The average execution cost of the t/h-Diag algorithm.

Table 1 summarizes the number of fault nodes diagnosed by the t/h-Diag algorithm
in simulation experiments. It can be seen that the algorithm can effectively diagnose all the
faulty nodes. This demonstrates the accuracy and effectiveness of our algorithms. Table 2
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shows one of the experimental results of 500 simulation experiments of the algorithm. The
order of the faulty nodes is the order in which the algorithm obtains them.

Table 1. Number of fault nodes executing algorithm t/h-diag diagnosis.

BC3,2 BC4,2 BC4,3 BC5,3 BC5,4

h = 1
Number of fault nodes 5 6 8 9 11

Number of fault nodes diagnosed 5 6 8 9 11

h = 2
Number of fault nodes 6 7 10 11 14

Number of fault nodes diagnosed 6 7 10 11 14

h = 3
Number of fault nodes 7 8 12 13 17

Number of fault nodes diagnosed 7 8 12 13 17

Table 2. The experimental results obtained by executing the t/h-diag algorithm.

Randomly Generated Fault Nodes Fault Node Diagnosed

BC3,2
h = 1 0202, 1112, 2021, 1101, 2211 0202, 1101, 2021, 1112, 2211

h = 2 0211, 2011, 0121, 2120, 0212, 0120 0211, 0121, 0120, 2011, 0212, 2120

BC4,2

h = 1 0210, 0331, 1032, 0312, 1110, 2032 0331, 1032, 2032, 0210, 0312, 1110

h = 2 0012, 1230, 3312, 2231, 2331, 0131, 3202 0012, 0131, 3202, 3312, 2231, 2331, 2130

h = 3 1321, 3200, 0210, 0130, 2320, 1211, 1000, 0100 0100, 1000, 0210, 0130, 3200, 1211, 1321, 2320

BC4,3 h = 1 03132, 01322, 31033, 10200, 13003, 13220, 32322, 30210 13003, 10200, 01322, 03132, 31033, 30210, 32322, 13220

7. Conclusions

The diagnosability is the maximum number of fault processors that the system can
guarantee to be diagnosed irreplaceably. It plays an important role in measuring the
reliability and fault tolerance of the network. Meanwhile, a good fault diagnosis algorithm
can effectively diagnose and exclude the fault nodes in the network. In this paper, we
first prove that the g-extra connectivity of BCn,k is κg(BCn,k) = (g + 1)(k− 1) + n, where
0 ≤ g ≤ n− 1. Next, we establish the g-extra connectivity of BCn,k under the MM* model.
We obtain that tg(BCn,k) = (g + 1)k + n, where 1 ≤ g ≤ n− 1. Based on the results of
extra connectivity and the properties of the largest connectivity component, we study
the t/k-diagnosability of BCCC network equal to the g-extra connectivity under the MM*
model where 1 ≤ k ≤ n− 1. Furthermore, we give a t/k diagnosis algorithm, which can
correctly identify all nodes except most k nodes undiagnosed under the MM* model. The
time complexity of the algorithm is (N(n + k− 1)). Finally, we have proven the accuracy
and reliability of the algorithm through experiments. So far, t/k diagnosis algorithms for
most interconnection networks under the MM* model have not been studied. We hope to
give you some enlightenment with our proof.

What is more, the restricted edge connectivity and g-good-neighbor local diagnos-
ability were studied in [28,29]. These new diagnostic strategies can divide large networks
into smaller networks and analyze the diagnostic degree one by one. By proposing new
diagnostic algorithms based on this strategy, the entire network can be diagnosed with
more faulty nodes based on the new algorithms. The local diagnosability of BCCC networks
can be investigated in the future.
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