
Citation: Zhang, Y.; Hu, Y.; Lu, J.;

Shi, Z. Research on Path Planning of

Mobile Robot Based on Improved

Theta* Algorithm. Algorithms 2022,

15, 477. https://doi.org/10.3390/

a15120477

Academic Editor: Frank Werner

Received: 20 October 2022

Accepted: 13 December 2022

Published: 15 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Research on Path Planning of Mobile Robot Based on Improved
Theta* Algorithm
Yi Zhang 1, Yunchuan Hu 1,*, Jiakai Lu 2 and Zhiqiang Shi 3

1 School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications,
Chongqing 400065, China

2 Key Laboratory of Optoelectronic Information Sensing and Technology, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China

3 China Assistive Devices and Technology Center, Beijing 100050, China
* Correspondence: s202101007@stu.cqupt.edu.cn

Abstract: The Theta* algorithm is a path planning algorithm based on graph search, which gives
the optimal path with more flexibility than A* algorithm in terms of routes. The traditional Theta*
algorithm is difficult to take into account with the global and details in path planning and traverses
more nodes, which leads to a large amount of computation and is not suitable for path planning
in large scenarios directly by the Theta* algorithm. To address this problem, this paper proposes
an improved Theta* algorithm, namely the W-Theta* algorithm. The heuristic function of Theta*
is improved by introducing a weighting strategy, while the default Euclidean distance calculation
formula of Theta* is changed to a diagonal distance calculation formula, which finally achieves a
reduction in computation time while ensuring a shorter global path; the trajectory optimization
is achieved by curve fitting of the generated path points to make the motion trajectory of the
mobile robot smoother. Simulation results show that the improved algorithm can quickly plan
paths in large scenarios. Compared with other path planning algorithms, the algorithm has better
performance in terms of time and computational cost. In different scenarios, the W-Theta* algorithm
reduces the computation time of path planning by 81.65% compared with the Theta* algorithm and
79.59% compared with the A* algorithm; the W-Theta* algorithm reduces the memory occupation
during computation by 44.31% compared with the Theta* algorithm and 29.33% compared with the
A* algorithm.

Keywords: Theta* algorithm; A* algorithm; weighting strategy; path planning; mobile robots;
trajectory optimization

1. Introduction
1.1. Research Background

With the development of robotics and artificial intelligence, the application of robots
can be seen in all walks of life. The most important manifestation of mobile robot intel-
ligence is autonomous navigation, which is mainly to solve the problem of “where am
I”, “where should I go” and “how should I go” of robots. The key technology to solve
this problem is path planning, which is also a difficult technology. Path planning requires
the robot to find the best collision-free path from the starting point to the target point in
different map environments, and the quality of the path planning can directly affect the
robot’s task completion.

Nowadays, the rise of mobile robots, unmanned vehicles, and the field of UAVs has
led more and more scholars to work on path planning algorithms. Although there are
many algorithms proposed for path planning, there are still great challenges in the research
of path planning, especially about the trajectory optimization of paths, and there are still
many problems that need to be solved. The paths planned by the current mainstream path

Algorithms 2022, 15, 477. https://doi.org/10.3390/a15120477 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120477
https://doi.org/10.3390/a15120477
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15120477
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120477?type=check_update&version=3

Algorithms 2022, 15, 477 2 of 16

planning algorithms are shown in Figure 1, where path A and path B are connected by
discrete path points, so there are problems such as paths turning at acute angles and the
planned paths are not the actual shortest paths, which are not ideal for the movement of
mobile robots. In the actual application of mobile robots, it is necessary to avoid sudden
sharp turns or stops, and to ensure the continuity of posture, speed and acceleration at
the turns during the movement. For example, in unmanned driving, the discontinuity of
the planned path interruptions leads to sudden turns and sudden changes in speed and
acceleration during the driving process, which can affect the safety of passengers. Secondly,
the path planning based on grid map will restrict the robot to search the direction on the
map, so that the planned path is not the actual shortest path, which will generate many
useless inflection points, and these inflection points will affect the operation efficiency of
the robot. As shown in Figure 1 for path C, a shorter, smoother path represents less energy
loss and higher efficiency while ensuring the safety of the mobile robot. For example, in
the process of transporting goods by logistics AGVs, the efficiency of the AGVs directly
affects the overall efficiency of the logistics warehouse operation.

Figure 1. Path planning diagram.

To address the above problems, this paper will propose a solution by adding multi-
angle pathfinding idea and path smoothing technique to the existing path planning algo-
rithm. Multi-angle pathfinding is to break the constraints of the traditional path planning
algorithm in the search direction brought by the discrete grid map, so that its path can be
extended from any angle. The path smoothing process will make it easier to realize the
continuous change of position transformation, moving speed, and acceleration of the robot
in the process of motion.

1.2. Related Work

The current mainstream path planning algorithms are broadly classified into three
main categories: population intelligence-based algorithms, random sampling-based, and
graph search-based. The idea of cluster-based optimization is inspired by the process of
population evolution, and its typical algorithms include the genetic algorithm proposed by
J. Holland [1,2], the ant colony algorithm proposed by Marco Dorigo [3,4], and the particle
swarm algorithm proposed by Eberhart and Kennedy [5], etc. The random sampling-based
path planning method gradually obtains the connectivity information between different
states in the state space by random sampling and then gradually finds the feasible solution,
which greatly reduces the search complexity and improves the search efficiency, but these
methods have the problem of poor stability of the solution quality and cannot guarantee

Algorithms 2022, 15, 477 3 of 16

the optimal solution. The most studied methods are the Probabilistic Roadmap (PRM) [6]
algorithm and the Rapidly expanding Random Tree (RRT) algorithm [7]. The graph search-
based path planning method first requires the construction of graphs, i.e., the state space of
the mobile robot system is partitioned into discrete spaces (considered as graphs) according
to a certain criterion, after which graph search algorithms are applied to search for paths
in these graphs, and the commonly used algorithms are Dijkstra’s algorithm [8,9], A*
algorithm [10,11], and Theta* algorithm [12–15].

A* algorithm based on graph search technique has a wide range of applications in path
planning for robots. The advantage of A* algorithm is that it is better in real time and easy
to implement, but the disadvantage is that the uncertainty of the heuristic function affects
the quality of path planning [16], and the search direction of A* algorithm is limited by the
shape of the grid in the map in the process of path planning, so the planned path is not the
shortest path in the actual map shortest path in the actual map. To address this problem,
Alex Nash et al. proposed the Theta* algorithm [14]. This algorithm is an improved branch
based on the A* algorithm, which combines the respective features of the A* algorithm and
the visual map method, and searches along the grid on the grid map during path planning,
but the path is not restricted to the edges of the grid, which achieves the arbitrary turning
angle and effectively reduces the length of the path and the number of turning points. The
difference between the Theta* algorithm and the A* algorithm is that the Theta* algorithm
allows the parent of the current node to be any other node, while in the A* algorithm, the
parent of the current node can only be a visible neighbor of the node. Since the Theta*
algorithm is derived from the A* algorithm, it is still limited in operational efficiency by
the excessive number of nodes traversed in the path search process.

The optimal path proposed by path planning is not only the shortest passable path,
but also the continuous and smooth transition of the robot’s position, velocity, and ac-
celeration during the movement, which requires the optimization of the planned path.
Many scholars have proposed different path optimization schemes in previous studies. The
most commonly used methods for path smoothing optimization are Bézier curves [17,18]
and B-sample curve optimization [19]. The Bézier curve approach allows curve fitting of
the generated path points during path planning and thus achieves the role of smoothing
the path. Usually, the number of initial path points obtained by the global path planning
algorithm is small, resulting in a low fit, and therefore the smoothed path may collide with
the obstacle. In order to increase the curve fit, the path points are usually increased. How-
ever, if the number of path points is increased excessively, it increases the computational
effort of the algorithm thus leading to a decrease in the efficiency of the algorithm [20].
Another aspect of spline curve fitting is only for the geometric smoothing of the path,
and the continuity of the robot’s running speed and acceleration is not taken into account.
Qinming Hu et al. [21] proposed a polynomial interpolation-based method to improve
the continuity problem of the robot during navigation. Polynomial interpolation [22] is a
simple functional method. This method is solved by finding a polynomial containing all
path nodes and adding continuity constraints for node position, velocity, and acceleration.

To address the problems of low computational efficiency and long convergence time of
Theta* algorithm, this paper proposes a W-Theta* algorithm, which is based on the dynamic
weighted improvement of Theta* algorithm to improve the path planning efficiency of
Theta* in large scenarios, while using the polynomial optimization method based on
minimum jerk [23,24], so that the W-Theta* algorithm to satisfy smoothness and continuity
of the planned paths. Firstly, a two-dimensional grid map is constructed to provide a
simulation environment for validating the algorithm; secondly, the heuristic function of
Theta* is improved, while the diagonal distance expression is used, which finally achieves
the reduction of computation time while ensuring the shortest global path; finally, the
generated path points are curve-fitted to make the robot’s motion trajectory smoother.

Algorithms 2022, 15, 477 4 of 16

2. Algorithm Design
2.1. Theta* Algorithm

The Theta* algorithm is a variant of the A* algorithm, which is centered on the grid of
the current node and expands outward, the node expansion direction of the A* algorithm
is shown in Figure 2 and is restricted to eight directions around the current node, while the
same Theta* does not restrict the expansion direction of the node. The Theta* algorithm,
like the A* algorithm, is applicable to static grid maps and its cost function expression is:

f (n) = g(n) + h(n) (1)

where f (n) is the estimated cost from the starting point to the target point; g(n) is the
actual cost from the starting point to the current node n; and h(n) is the heuristic function,
which represents the estimated cost from the intermediate point n to the target point. In the
traditional Theta* algorithm, the calculated value of g(n) is generally characterized as the
number of nodes of the grid map through which the path passes, and the heuristic function
h(n) is the distance from node n to the target point.

Figure 2. A* algorithm node search direction.

The key difference between the Theta* algorithm and the A* algorithm is that the
parent node of a vertex in the A* algorithm can only be the node adjacent to it, while the
visibility check mechanism is added in the Theta* algorithm to break the restriction of the
raster environment, so that the parent node of a node can be any node. When extending a
new node, the A* algorithm considers only one path, while the Theta* algorithm considers
two paths, as shown in Figure 3a, when the Theta* algorithm wants to extend from point
A2 to point C3.

Figure 3. Theta* algorithm path planning schematic.

1. Path 1 has 3 path nodes: A2, B2, and C3, currently the parent node of C3 is B2 and the
parent node of B2 is A2. This is also the path considered by the A* algorithm.

2. Path 2 has 2 path nodes: A2 and C3. Currently, C3’s parent node is A2. This is an
additional path to consider with the A* algorithm.

Algorithms 2022, 15, 477 5 of 16

According to the triangle trilateral length property it is known that the distance of
path 2 must be shorter than path 1. Additionally, the need to visualize the current node
and the extended node to determine whether there are obstacles before the two nodes, as
in Figure 3a, there is no obstacle between node A2 and node C3, so path 2 can be selected,
but in Figure 3b, there is an obstacle between node A2 and node B4, the two nodes are not
visible, so path 2 cannot be selected.

The specific steps of the Theta* algorithm are as follows:

1. Initialize the starting point and target point, create a new open table and a new close
table, and add the starting point to the open table.

2. Determine whether the open table is empty, if it is empty, the path planning fails and
the search stops; if it is not empty, the node with the lowest evaluation cost in the open
table is taken as the current node to be expanded and set to n. Go to the next step.

3. Determine whether the current node n is the target point, if yes, it means the path
finding is successful, backtrack the parent node of n until the starting point is the path,
and the search is terminated; otherwise, go to the next step.

4. Extend node n. Iterate over all neighboring nodes of node n (set to s) and perform the
following operations.

• If node s is an obstacle or is already in the close table, do not process it; instead
proceed to the next step.

• If node s is not in the open list, initialize the actual cost g(s) from the starting
point to node s to infinity, set its parent node to NULL, and insert node s into the
open table. If node s is in the open list, proceed directly to the next step.

• Update the information of the node. Check if the parent node (set to p) of the
current node n exists. If it exists, check whether node s and node p are visible by
line of sight (LOS) function [13]. If the two nodes are visible and the g(p) of node
p plus the generation value from node p to node s is less than the g(s) of node s,
the parent of node s is updated to node p, and the g(s) of node s is updated to
the g(p) of node p, plus the generation value from node p to node s. If the two
nodes are not visible and the g(n) of node n plus the cost from node n to node
s is less than the g(s), then the parent node of node s is updated to node n and
g(s) of node s is updated to g(n) of node n plus the generation value from node
n to node s.

• The original g(s) of node s is compared with the updated actual generation
value, and if the updated actual cost is smaller than the original actual cost, the
estimated cost of node s is recalculated and the information related to node s in
the open table is updated.

5. Remove the already traversed node n from the open table and add it to the close table,
then return to step 2.

Based on the description of the steps of the Theta* algorithm above, its pseudo-code
can be written as shown in Algorithm 1.

Algorithms 2022, 15, 477 6 of 16

Algorithm 1. Theta* algorithm.

Input: start point:{sstart}, map arrays:{map}, goal point:{sgoal}
Output: algorithm planning path: {path}

1: Initialize the open and close tables : {open := closed := ∅ }
2: Initializing the cost function: {g(sstart) :=0}
3: Set the start node as the parent node: {parent(sstart) :=sstart}
4: open.Insert(sstart, g(sstart)+h(sstart))
5: while open 6= ∅ do
6: s :=open.Pop()
7: if s = sgoal then
8: return path
9: end if
10: closed := closed := ∪ {s}
11: for s’ ∈ nghbrvis(s) do
12: if s’ /∈ closed then
13: if s’ /∈ open then
14: g(s’) := ∞
15: parent(s’) :=NULL
16: end if
17: gold :=g(s’)
18: if lineofsight(parent(s), s’) then
19: if g(parent(s)) + cost(parent(s), s’) < g(s’) then
20: g(parent(s’)) :=parent(s)
21: g(s’) :=g(parent(s)) + cost(parent(s), s’)
22: end if
23: else
24: if g(s) + c(s, s’) < g(s’) then
25: parent(s’) :=s
26: g(s’) :=g(s) + cost(s, s’)
27: end if
28: end if
29: if g(s’) < gold then
30: if s’ ∈ open then
31: open.Remove(s’)
32: end if
33: open.Insert(s’, g(s’) + h(s’))
34: end if
35: end if
36: end for
37: end while

2.2. Improvement of Heuristic Function

The heuristic function h(n) of Theta* is mainly to estimate the cost of the robot’s
current position node to the target point, and different h(n) will have different effects on
the operation efficiency of the algorithm. When the value of h(n) is 0, the Theta* algorithm
will degenerate into Dijkstra algorithm, which can guarantee that the output path is optimal,
but the number of nodes diffused in the process of calculation is large, resulting in low
efficiency in path planning in a large scene environment and cannot meet the demand of
real-time; when the value of h(n) is very large, Theta* can quickly plan at a path, but cannot
guarantee that the path is the shortest path, so it defeats the purpose of the path planning
algorithm. Therefore, in order to ensure that the path planning algorithm meets the two
conditions of shortest path and low computational cost, it is necessary to choose a suitable
heuristic function for the algorithm.

The heuristic function of the improved algorithm is mainly to find the shortest path.
Using the traditional method of expanding nodes will generate many useless expansion
nodes and increase the computational cost. To address this problem, the following improve-
ments are made in this paper:

Algorithms 2022, 15, 477 7 of 16

1. To get the optimal path, the predicted cost calculated by the heuristic function must
be less than or equal to the actual minimum cost and the closer the two are, the more
efficient the search is. In addition, the cost between two points in two-dimensional
space usually refers to the Euclidean distance between the two, so this paper uses
the Euclidean distance to express the distance between the current node and the end
point, and its formula can be expressed as follows:

d(n) =
√
(xn − xgoal)

2 + (yn − ygoal)
2 (2)

where (xn, yn) are the coordinates of the current node n and (xgoal , ygoal) are the
coordinates of the target point.

2. If the cost function f (n) of the current node n corresponds to more than one path,
all of these paths will be searched, but only one of them is actually needed. This
situation occurs very frequently in maps with few obstacles. To solve this problem,
in this paper, we will add additional values to the heuristic function h(n), the size of
which is the vector fork product of the initial point-to-target vector and the current
point-to-target vector, and then change the value of h(n) to make it more inclined to
the connection from the initial point to the target point in selecting the path, to ensure
uniqueness in planning the path and reduce unnecessary computation. The functional
expression is:

c = Vc_e ×Vs_e (3)

where c denotes the vector fork product of the start-point-to-target-point vector Vs_e
and the current node-to-target-point vector Vc_e.

3. By adding a weight w to the heuristic function h(n) and then dynamically adjusting
this weight according to the progress of the algorithm, the importance of the heuristic
function is reduced by decreasing the weight as the path planned by the algorithm
approaches the target point, while increasing the relative importance of the true cost of
the path. According to the above three improvements, the expression of the heuristic
function is:

h(n) = w
[

d(n) +
c

d(s)

]
(4)

where w is the weight and its size is set to w = 1 + d(n)
d(s) ; c is the crossover operator

that breaks the path balance; d(n) is the distance from the current node n to the target
point, expressed using the Euclidean distance; d(s) is the Euclidean distance from the
starting point to the target point.

2.3. Trajectory Optimization

The output of the Theta* algorithm is a global optimal path point based on a 2D grid
map, and these path points may be sparse and unsmooth, which can lead to problems
such as spinning in place and poor movement of the robot during motion. Therefore,
the generated paths need to be optimized so that the robot can achieve smooth steering
during operation.

The three objectives of path length, steering smoothness and steering safety need to be
considered when smoothing the path. The optimization method proposed in this paper
represents the trajectory by nth order polynomial as shown in Equation (6).

f (t) = p0 + p1t + p2t2 + . . . + pntn =
n

∑
i=0

piti (5)

where p0 ∼ pn are the trajectory parameters, which can be set as a parameter vector as
shown in Equation (7).

p = [p0, p1, . . . , pn]
T (6)

Algorithms 2022, 15, 477 8 of 16

Thus, with Equations (6) and (7), the trajectory function f can be expressed in vector
form as:

f (t) = [1, t, t2, . . . , tn] · p (7)

By deriving the trajectory function, the position, velocity, acceleration, jerk, snap, etc.
of the trajectory at any moment can be obtained, and the specific function expressions are
as follows.

v(t) = f ′(t) = [0, 1, 2t, 3t2, 4t3, . . . , ntn−1] · p (8)

a(t) = f ′′ (t) = [0, 0, 2, 6t, 12t2, . . . , n(n− 1)tn−2] · p (9)

jerk(t) = f (3)(t) = [0, 0, 0, 6, 24t, . . . ,
n!

(n− 3!)
tn−3] · p (10)

snap(t) = f (4)(t) = [0, 0, 0, 0, 24, . . . ,
n!

(n− 4!)
tn−4] · p (11)

Since a complex trajectory cannot be represented by a polynomial, it is necessary to
divide the trajectory into multiple local trajectories in time, and then represent the local
trajectories by a polynomial each.

f (t) =


[1, t, t2, . . . , tn]p1 t0 ≤ t < t1

[1, t, t2, . . . , tn]p2 t1 ≤ t < t2

.

[1, t, t2, . . . , tn]pk tk−1 ≤ t < tk

(12)

where k is the number of segments of the trajectory and pi is the parameter vector of the ith
segment of the trajectory.

The objective function of the minimum jerk is to solve the parameter vector of each
trajectory to minimize the value of the jerk function, and it also needs to satisfy the
constraints. The objective function of minimum jerk can be obtained from the above:

min(jerk(t)) = min
∫ T

0
(f (3)(t))

2
dt = min

k

∑
i=1

∫ ti

ti−1

(f (3)(t))
2
dt (13)

According to the optimization function to add constraints, there are mainly two kinds
of constraints without considering obstacles, one is equation constraint, which mainly
constrains the initial state and termination state of the trajectory, as well as the start and end
position of each section of the trajectory; the other is continuity constraint, which can make
the adjacent trajectories smoothly transition. The optimized effect is shown in Figure 4.

Figure 4. Trajectory optimization effect figure.

Algorithms 2022, 15, 477 9 of 16

3. Simulation

In order to verify the feasibility and search efficiency of the algorithm proposed in this
paper, this validation experiment is divided into two parts. The first part mainly tests the
effectiveness and stability of the W-Theta* algorithm in an environment with randomly
generated obstacles of different densities under maps of different sizes. The second part
mainly compares the W-Theta* algorithm with the original Theta* algorithm, A* algorithm
and Dijkstra algorithm mainstream path algorithms in different scenarios, respectively. The
second part of the experiments compares the time cost, the number of path nodes traversed,
the path length, and the search computation cost of the algorithms using the average data of
10 experiments as the experimental results. The experiments were conducted on a computer
with Intel Core i7-10875H, 2.3 GHz CPU, and 16G RAM, and the algorithm experimental
platform used Matlab software, whose version number is 2022a.

3.1. W-Theta* Algorithm Stability Test Experiment

This part of the experiment was designed with 3 groups of maps, each with dimensions
of 40 × 40 m, 80 × 80 m, and 100 × 100 m, respectively, where each group of the same size
map has an obstacle coverage of 10, 30, and 50%. As shown in Figure 5, the green point is
the starting point, the red point is the ending point, and the black grid is the obstacle. The
solid blue line is the path planned by Theta* algorithm, and the dashed orange line is the
path planned by W-Theta* algorithm.

The data of the W-Theta* algorithm and Theta* algorithm run on each map are shown
in Table 1. The data in the table shows that the pathfinding time of the W-Theta* algo-
rithm is shorter than that of the Theta* algorithm for maps of different sizes and obstacle
densities, and the W-Theta* algorithm reduces the pathfinding time compared with the
Theta* algorithm for maps of 40 × 40 m, 80 × 80 m, and 120 × 120 m by 47.12%, 84.77%,
and 92.56%, respectively. The difference is more obvious for larger maps. Usually, the
time spent by an algorithm can visually reflect the time complexity of the algorithm, and
it can be concluded that the time complexity of the W-Theta* algorithm is less than that
of the original Theta* algorithm. In this paper, the heuristic function was optimized to
achieve the control algorithm in planning the path to traverse the path nodes. This reduced
the computation time and computation cost of the algorithm. Through this experiment, it
can be seen that the W-Theta* algorithm calculates a different number of traversed map
nodes than the Theta* algorithm; in the same size of the map, the greater the density of
obstacles, the greater the gap between the two in the map size of the larger the gap. The
larger the map size, the greater the difference between the W-Theta* algorithm and Theta*
algorithm. In the maps of 40 × 40 m, 80 × 80 m and 120 × 120 m, respectively, the number
of traversed nodes is reduced by 36.32, 72.58, and 82.83%. W-Theta* in these three groups
of experiments calculates the number of traversed map nodes to remain below 600, while
the Theta* algorithm calculates that the the highest number of nodes is 3658. In terms of
path length, the difference in the length of the paths planned by the two algorithms is not
significant, and the paths planned by the Theta* algorithm are on average 1.60% shorter
than those planned by the W-Theta* algorithm in the three groups of maps, and the Theta*
algorithm has a slight advantage in the path length. Theta* algorithm is better than the
W-Theta* algorithm in terms of spatial complexity. The memory consumed by W-Theta*
algorithm is reduced by 15.02, 32.32, and 35.96% compared with Theta* algorithm in maps
of 40 × 40 m, 80 × 80 m, and 120 × 120 m, respectively. It can be seen that the difference
between the performance of W-Theta* algorithm and Theta* algorithm is more obvious in
the larger size of the map environment.

Algorithms 2022, 15, 477 10 of 16

Figure 5. Comparison between W-Theta* algorithm and Theta* algorithm for maps with three sizes
and different obstacle densities.

Algorithms 2022, 15, 477 11 of 16

Table 1. Experimental data table of W-Theta* algorithm and Theta* algorithm for maps with three
sizes and different obstacle densities.

Map Size/m2 Obstacle
Density Algorithm Pathfinding

Time/s

Number of
Traversal

Nodes

Path
Length/m

Memory
Consumption/Bit

40 × 40

10%
W-Theta* 0.017162 181 56.2899 39,483

Theta* 0.030727 199 56.2899 40,971

30%
W-Theta* 0.013585 190 58.7589 55,331

Theta* 0.020874 314 57.7190 65,555

50%
W-Theta* 0.025756 205 63.0570 71,531

Theta* 0.068320 518 62.2417 96,451

80 × 80

10%
W-Theta* 0.031979 378 114.4009 121,179

Theta* 0.229164 1045 115.6518 183,179

30%
W-Theta* 0.029807 343 118.3512 177,675

Theta* 0.199758 1344 115.8627 258,171

50%
W-Theta* 0.037211 356 130.7473 234,675

Theta* 0.221151 1731 123.3626 344,867

120 × 120

10%
W-Theta* 0.054977 570 170.3327 246,419

Theta* 0.707187 2385 170.1267 391,355

30%
W-Theta* 0.053313 487 176.7601 371,787

Theta* 0.983099 3658 175.7588 625,867

50%
W-Theta* 0.060754 444 186.6482 492,251

Theta* 0.666634 3104 180.2422 705,835

3.2. Experiment of Comparing W-Theta* Algorithm with Other Algorithms

This part of the experiment uses the Moving AI lab public dataset on three types of
maps to compare various path algorithms, the maps are Baldurs Gate II map, urban map
and Warcraft III map, and the details of each map are shown in Table 2.

Table 2. Map related information table.

Map Type Map Size/m2 Map Name Number of
Obstacles

Max Length Problem
in Scenario

Baldurs Gate II 80 × 80

AR0304SR 1734 79.42640686

AR0513SR 2073 78.15432892

AR0709SR 2048 75.01219330

City maps 256 × 256

Boston 47,768 379.5290039

Shanghai 48,005 359.75945129

Berlin 47,540 363.33304443

Warcaft III 512 × 512

Harvest moon 114,594 567.93311615

Scorched basin 80,848 507.51175995

Dusk wood 127,229 615.9625534

The Dijkstra algorithm, A* algorithm, Theta* algorithm, and W-Theta* algorithm were
applied on each map for comparative experiments in terms of pathfinding time, number
of traversed nodes, path length, and memory usage, and the visualization results of their
path planning are shown in Figure 6. The solid purple line in the figure is the path planned
by the Dijkstra algorithm, the solid red line is the path planned by the A* algorithm, the
solid blue line is the path planned by the Theta* algorithm, the dashed yellow line is the
path planned by the W-Theta* algorithm, the green dot in each map indicates the starting
point, the red dot indicates the end point. The white area is the passable area, and the other
color grids represent different obstacles. The relevant data of this part of the experiment
are shown in Tables 3–5. The performance of the proposed W-Theta* algorithm and other

Algorithms 2022, 15, 477 12 of 16

mainstream algorithms is analyzed by comparing the path planning time, the number
of grids in the traversed map, the length of the planned path, the computer resources
consumed, and the turning angle of the path of each algorithm.

Figure 6. Comparative experimental results of various algorithms on public dataset maps.

Algorithms 2022, 15, 477 13 of 16

Table 3. Experimental data sheet for various algorithms on Baldurs Gate II map.

Map Name Algorithm Pathfinding
Time/s

Number of
Traversal Nodes

Path
Length/m

Memory
Consumption/bit

Total Path
Turning
Angle/◦

AR0304SR

A* 0.053776 611 85.4975 249,720 405.00

Dijkstra 0.172302 1720 97.0955 252,208 450.00

Theta* 0.065306 611 81.3935 335,867 140.95

W-Theta* 0.033788 290 82.6155 222,792 140.95

AR0513SR

A* 0.199933 1473 86.1543 307,264 1170.00

Dijkstra 0.217634 2067 96.0955 356,432 540.00

Theta* 0.213901 1473 82.3920 387,939 183.73

W-Theta* 0.060505 448 90.7401 223,744 121.00

AR0709SR

A* 0.077469 730 70.3553 248,408 1035.00

Dijkstra 0.223962 2026 82.7817 353,456 270.00

Theta* 0.087235 730 67.0026 329,115 198.43

W-Theta* 0.030227 253 68.0747 210,064 131.55

Table 4. Experimental data sheet for various algorithms on City maps.

Map Name Algorithm Pathfinding
Time/s

Number of
Traversal

Nodes

Path
Length/m

Memory
Consumption/Bit

Total Path
Turning
Angle/◦

Boston

A* 15.296216 16,573 365.8721 2,425,264 1035.00

Dijkstra 42.924916 47,688 393.2102 4,925,416 2250.00

Theta* 15.504178 16,573 354.5103 2,792,580 280.83

W-Theta* 0.892018 1576 358.4090 1,225,072 126.34

Shanghai

A* 8.034565 11,632 344.5290 2,026,280 2205.00

Dijkstra 41.337722 47,792 354.4701 4,928,472 2160.00

Theta* 8.226009 11,632 332.0240 2,390,588 488.93

W-Theta* 0.535700 1260 333.6091 1,193,528 268.15

Berlin

A* 18.947835 22,984 401.0732 2,948,536 5985.00

Dijkstra 42.740184 47,043 415.1564 4,882,776 2250.00

Theta* 19.215597 22,984 381.4792 3,320,892 389.47

W-Theta* 0.580014 1251 384.7610 1,205,720 266.51

Table 5. Experimental data sheet for various algorithms on Warcaft III maps.

Map Name Algorithm Pathfinding
Time/s

Number of
Traversal

Nodes

Path
Length/m

Memory
Consumption/Bit

Total Path
Turning
Angle/◦

Harvest moon

A* 49.332874 18,542 506.6194 8,333,752 2205.00

Dijkstra 350.203546 111,916 515.7321 15,813,992 810.00

Theta* 50.735335 18,542 498.0176 10,988,924 383.65

W-Theta* 6.665620 1812 500.4910 6,990,296 223.22

Scorched
basin

A* 74.824937 25,722 470.9382 9,983,080 3015.00

Dijkstra 221.051927 79,414 490.8204 14,297,848 1350.00

Theta* 76.241743 25,722 452.9727 13,177,868 466.23

W-Theta* 8.908404 1684 456.8308 8,061,688 318.81

Dusk wood

A* 84.910705 31,517 521.4234 8,925,456 2250.00

Dijkstra 373.709195 123,031 556.2174 16,260,704 1170.00

Theta* 86.4172151 31,517 501.8894 11,362,259 329.87

W-Theta* 8.642783 3077 509.5698 6,645,664 204.20

Algorithms 2022, 15, 477 14 of 16

The data in Tables 3–5 gives the following information: the pathfinding time W-
Theta* algorithm is the shortest, while the longest time consuming algorithm is Dijkstra
algorithm. In Baldurs Gate II, W-Theta* reduces the pathfinding time by an average of
55.96% compared to the A* algorithm, 61.78% compared to the Theta* algorithm, and
79.70% compared to the Dijkstra algorithm; in City maps, W-Theta* reduces the pathfinding
time by an average of 94.81%, 94.91% compared to Theta* and 98.24% compared to Dijkstra;
in Warcaft III, W-Theta* reduced the pathfinding time by 88.13%, 88.39% compared to
Theta* and 97.97% compared to Dijkstra. The number of nodes traversed by the W-Theta*
algorithm is also the lowest, because Theta* is based on the A* algorithm, so both algorithms
traverse the same number of nodes, and the highest number of nodes traversed by the
Dijkstra algorithm, and the number of nodes traversed by the W-Theta* algorithm relative
to the A* algorithm and the original Theta* algorithm is the highest. The nodes traversed
by the W-Theta* algorithm are reduced by 62.49%, 91.41%, and 91.31% in Baldurs Gate II,
City maps, and Warcaft III maps, respectively; compared to the original Theta* algorithm,
the nodes traversed by the W-Theta* algorithm are reduced by 82.99, 97.13, and 97.13% in
Baldurs Gate II, City maps, and Warcaft III maps, respectively, and 82.99%, 97.13%, and
97.92%, respectively. In terms of the length of the planned paths, the Theta* algorithm plans
the shortest paths, but the path lengths planned by the W-theta* algorithm do not differ
much from those planned by the Theta* algorithm, and the path lengths planned by the
W-theta* algorithm relative to the Theta* algorithm increase by 1 in Baldurs Gate II, City
maps, and Warcaft The path lengths planned by the W-Theta* algorithm compared to the
Theta* algorithm increased by 1.98%, 0.81%, and 0.96% in Baldurs Gate II, City maps, and
Warcaft III maps, respectively, which shows that the difference between the two algorithms
is smaller in the larger environment; the path lengths planned by the W-Theta* algorithm
compared to the A* algorithm decreased by 2.48 and 3.09%. The path lengths planned
by the W-Theta* algorithm compared to the Dijkstra algorithm are reduced by 14.83, 7.35,
and 6.09% for Baldurs Gate II, City maps, and Warcaft III maps, respectively. In terms of
memory consumption, the least memory resources are used by the W-Theta* algorithm.
Memory resources used by the W-Theta* algorithm compared to the A* algorithm are
reduced by 17.80, 49.90, and 20.30% for the maps of Baldurs Gate II, City maps, and Warcaft
III, respectively. Memory resources usage by the W-Theta* algorithm compared to the
Compared to the Theta* algorithm is reduced by 37.39, 56.63, and 38.90% for Baldurs Gate
II, City maps, and Warcaft III maps, respectively. The W-Theta* algorithm is compared to
the Dijkstra algorithm, and memory resource usage is reduced by 17.80, 49.90, and 20.30%
for Baldurs Gate II, City maps, and Warcaft III maps, respectively. Maps and Warcaft III by
29.82%, 75.41%, and 52.85%, respectively. In the three sets of maps, the paths planned by
the W-Theta* algorithm have the smallest turning angles, and the paths planned by the A*
algorithm have the largest turning angles. The W-Theta* algorithm reduces the turning
angles by 87.06, 77.67, and 34.57% on average compared to the A* algorithm, Dijkstra
algorithm, and Theta* algorithm.

From the results of this comparison experiment, we can conclude that the W-Theta*
algorithm proposed in this paper is substantially optimized in terms of time complexity
and space complexity compared with the A* algorithm, Dijkstra algorithm, and Theta*
algorithm, and can achieve fast planning of high-quality paths in various complex envi-
ronments. The W-Theta* algorithm plans paths with a smaller total turn angle and better
overall path smoothing. In general, W-Theta* has significantly improved the efficiency
of the algorithm while guaranteeing the resultant path, and the path smoothing process
makes it more consistent with the motion of the robot in real situations.

4. Conclusions

To address the problem of slow path planning by traditional A* algorithm and Theta*
algorithm in a large scene environment, a W-Theta* algorithm is proposed, and its genera-
tion of discrete path points is optimized for trajectory processing. The following conclusions
can be drawn from two comparison experiments:

Algorithms 2022, 15, 477 15 of 16

1. Compared with the traditional A* algorithm and the improved A*-based Theta*
algorithm, the W-Theta* algorithm enables fast path planning in various complex
environments by introducing a dynamic weighting strategy. Especially, the advantage
is more obvious in the environment with larger map size, which solves the problem of
slow path planning by traditional A* algorithm and Theta* algorithm in large scene
environment. It is experimentally concluded that the W-Theta* algorithm reduces the
path planning time by 81.65% on average compared with the Theta* algorithm, and
by 79.59% on average compared with the A* algorithm.

2. To reduce unnecessary computations, the W-Theta* algorithm improves the algorithm
performance by adding an additional value to the heuristic function to ensure unique-
ness in planning the path, which allows it to control the traversal of nodes when
planning the path and reduces the memory consumption during computation. Ac-
cording to the experimental data, it can be seen that the W-Theta* algorithm consumes
an average of 44.31% less computer memory resources during computation than the
Theta* algorithm, and an average of 29.33% less than the A* algorithm.

3. This is because the smaller the turn angle of the path is, the better the smoothing
process is. In this paper, by using Euclidean distance for distance calculation, the
total turn angle of the paths planned by the W-Theta* algorithm is reduced by 87.06,
77.67, and 34.57% on average with respect to the A* algorithm, Dijkstra algorithm, and
Theta* algorithm. The paths planned by the W-Theta* algorithm are smoothed using
the differential flattening method to fit the path points, which connects the sparse
path points into smooth curves or dense trajectory points, ensuring the final paths are
continuously smooth.

4. The paths planned by the W-Theta* algorithm are slightly longer than those of the
original Theta* algorithm, so further optimization of the planned path length of the
W-Theta* algorithm can be done.

Author Contributions: Conceptualization, Z.S.; methodology, Y.H.; software, Y.H. and J.L.; vali-
dation, Y.H., J.L. and Y.Z.; formal analysis, Y.Z.; investigation, Z.S.; resources, J.L.; data curation,
Y.H.; writing—original draft preparation, Y.H.; writing—review and editing, Y.H.; visualization, J.L.;
supervision, Y.Z.; project administration, Y.Z.; funding acquisition, Y.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Research Project of China Disabled Persons’ Federation—on
assistive technology: 2022CDPFAT-01.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://movingai.com/.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-objective multi-robot path planning in continuous environment using an

enhanced genetic algorithm. Expert Syst. Appl. 2019, 115, 106–120. [CrossRef]
2. Zhai, L.Z.; Feng, S.H. A novel evacuation path planning method based on improved genetic algorithm. J. Intell. Fuzzy Syst. 2022,

42, 1813–1823. [CrossRef]
3. Miao, C.W.; Chen, G.Z.; Yan, C.L.; Wu, Y.Y. Path planning optimization of indoor mobile robot based on adaptive ant colony

algorithm. Comput. Ind. Eng. 2021, 156, 107230. [CrossRef]
4. Tan, Y.S.; Ouyang, J.; Zhang, Z.; Lao, Y.L.; Wen, P.J. Path planning for spot welding robots based on improved ant colony algorithm.

Robotica 2022. [CrossRef]
5. Liu, X.H.; Zhang, D.G.; Zhang, T.; Zhang, J.; Wang, J.X. A new path plan method based on hybrid algorithm of reinforcement

learning and particle swarm optimization. Eng. Comput. 2022, 39, 993–1019. [CrossRef]
6. Liu, C.G.; Chang, J.A.; Liu, C.Y. Path Planning for Mobile Robot Based on an Improved Probabilistic Roadmap Method. Chin. J.

Electron. 2009, 18, 395–399.
7. Tahir, Z.; Qureshi, A.H.; Ayaz, Y.; Nawaz, R. Potentially guided bidirectionalized RRT* for fast optimal path planning in cluttered

environments. Robot. Auton. Syst. 2018, 108, 13–27. [CrossRef]
8. Luo, M.; Hou, X.R.; Yang, J. Surface Optimal Path Planning Using an Extended Dijkstra Algorithm. IEEE Access 2020,

8, 147827–147838. [CrossRef]

https://movingai.com/
http://doi.org/10.1016/j.eswa.2018.08.008
http://doi.org/10.3233/JIFS-211214
http://doi.org/10.1016/j.cie.2021.107230
http://doi.org/10.1017/S026357472200114X
http://doi.org/10.1108/EC-09-2020-0500
http://doi.org/10.1016/j.robot.2018.06.013
http://doi.org/10.1109/ACCESS.2020.3015976

Algorithms 2022, 15, 477 16 of 16

9. Zhou, Y.L.; Huang, N.N. Airport AGV path optimization model based on ant colony algorithm to optimize Dijkstra algorithm in
urban systems. Sustain. Comput. -Inform. Syst. 2022, 35, 100716. [CrossRef]

10. Hong, Z.H.; Sun, P.F.; Tong, X.H.; Pan, H.Y.; Zhou, R.Y.; Zhang, Y.; Han, Y.L.; Wang, J.; Yang, S.H.; Xu, L.J. Improved A-Star
Algorithm for Long-Distance Off-Road Path Planning Using Terrain Data Map. Isprs Int. J. Geo-Inf. 2021, 10, 785. [CrossRef]

11. Zhang, Y.; Li, L.L.; Lin, H.C.; Ma, Z.W.; Zhao, J. Development of Path Planning Approach Using Improved A-star Algorithm in
AGV System. J. Internet Technol. 2019, 20, 915–924. [CrossRef]

12. Zhang, C.W.; Tang, Y.C.; Liu, H.Z. Late line-of-sight check and partially updating for faster any-angle path planning on grid
maps. Electron. Lett. 2019, 55, 690–691. [CrossRef]

13. Luo, Y.; Lu, J.; Qin, Q.; Liu, Y. Improved JPS Path Optimization for Mobile Robots Based on Angle-Propagation Theta* Algorithm.
Algorithms 2022, 15, 198. [CrossRef]

14. Daniel, K.; Nash, A.; Koenig, S.; Felner, A. Theta*: Any-Angle Path Planning on Grids. J. Artif. Intell. Res. 2010, 39, 533–579.
[CrossRef]

15. Han, X.; Zhang, X.K. Multi-scale theta* algorithm for the path planning of unmanned surface vehicle. Proc. Inst. Mech. Eng. Part
M-J. Eng. Marit. Environ. 2022, 236, 427–435. [CrossRef]

16. Shang, E.K.; Bin, D.; Nie, Y.M.; Qi, Z.; Liang, X.; Zhao, D.W. An improved A-Star based path planning algorithm for autonomous
land vehicles. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420962263. [CrossRef]

17. Li, F.F.; Du, Y.; Jia, K.J. Path planning and smoothing of mobile robot based on improved artificial fish swarm algorithm. Sci. Rep.
2022, 12, 659. [CrossRef]

18. Li, Q.Q.; Xu, Y.Q.; Bu, S.Q.; Yang, J.F. Smart Vehicle Path Planning Based on Modified PRM Algorithm. Sensors 2022, 22, 6581.
[CrossRef]

19. Sun, J.; Han, X.Y.; Zuo, Y.M.; Tian, S.Q.; Song, J.W.; Li, S.H. Trajectory Planning in Joint Space for a Pointing Mechanism Based on
a Novel Hybrid Interpolation Algorithm and NSGA-II Algorithm. IEEE Access 2020, 8, 228628–228638. [CrossRef]

20. Zhang, Y.; Xue, Q.; Ji, S. Continuous path smoothing method of B-spline curve satisfying curvature constraint B. Huazhong Keji
Daxue Xuebao Ziran Kexue Ban/J. Huazhong Univ. Sci. Technol. Nat. Sci. Ed. 2022, 50, 59–65. [CrossRef]

21. Qinming, H.; Jingang, W.; Xiaojun, Z. Optimized Parallel Parking Path Planning Based on Quintic Polynomial. Comput. Eng.
Appl. 2022, 58, 8.

22. Pu, Y.S.; Shi, Y.Y.; Lin, X.J.; Zhang, W.B.; Zhao, P. Joint Motion Planning of Industrial Robot Based on Modified Cubic Hermite
Interpolation with Velocity Constraint. Appl. Sci. 2021, 11, 8879. [CrossRef]

23. Oliveira, P.W.; Barreto, G.A.; The, G.A.P. A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk
Robotic Trajectories. J. Intell. Robot. Syst. 2020, 99, 467–486. [CrossRef]

24. Huang, P.F.; Xu, Y.S.; Liang, B. Global minimum-jerk trajectory planning of space manipulator. Int. J. Control Autom. Syst. 2006,
4, 405–413.

http://doi.org/10.1016/j.suscom.2022.100716
http://doi.org/10.3390/ijgi10110785
http://doi.org/10.3966/160792642019052003023
http://doi.org/10.1049/el.2019.0553
http://doi.org/10.3390/a15060198
http://doi.org/10.1613/jair.2994
http://doi.org/10.1177/14750902211039650
http://doi.org/10.1177/1729881420962263
http://doi.org/10.1038/s41598-021-04506-y
http://doi.org/10.3390/s22176581
http://doi.org/10.1109/ACCESS.2020.3042890
http://doi.org/10.13245/j.hust.220511
http://doi.org/10.3390/app11198879
http://doi.org/10.1007/s10846-019-01121-y

	Introduction
	Research Background
	Related Work

	Algorithm Design
	Theta* Algorithm
	Improvement of Heuristic Function
	Trajectory Optimization

	Simulation
	W-Theta* Algorithm Stability Test Experiment
	Experiment of Comparing W-Theta* Algorithm with Other Algorithms

	Conclusions
	References

