
����������
�������

Citation: Shi, C.; Funabiki, N.; Huo,

Y.; Mentari, M.; Suga, K.; Toshida, T.

A Proposal of Printed Table

Digitization Algorithm with Image

Processing. Algorithms 2022, 15, 471.

https://doi.org/10.3390/a15120471

Academic Editor: Frank Werner

Received: 28 September 2022

Accepted: 9 December 2022

Published: 11 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Proposal of Printed Table Digitization Algorithm with
Image Processing

Chenrui Shi 1, Nobuo Funabiki 1,*, Yuanzhi Huo 1, Mustika Mentari 2 , Kohei Suga 3 and Takashi Toshida 3

1 Department of Information and Communication Systems, Graduate School of Natural Science and
Technology, Okayama University, Okayama 700-8530, Japan

2 Department of Information Technology, State Polytechnic of Malang, Malang 65141, Indonesia
3 Astrolab, Tokyo 107-0062, Japan
* Correspondence: funabiki@okayama-u.ac.jp

Abstract: Nowadays, digital transformation (DX) is the key concept to change and improve the
operations in governments, companies, and schools. Therefore, any data should be digitized for
processing by computers. Unfortunately, a lot of data and information are printed and handled on
paper, although they may originally come from digital sources. Data on paper can be digitized using
an optical character recognition (OCR) software. However, if the paper contains a table, it becomes
difficult because of the separated characters by rows and columns there. It is necessary to solve
the research question of “how to convert a printed table on paper into an Excel table while keeping
the relationships between the cells?” In this paper, we propose a printed table digitization algorithm
using image processing techniques and OCR software for it. First, the target paper is scanned into an
image file. Second, each table is divided into a collection of cells where the topology information is
obtained. Third, the characters in each cell are digitized by OCR software. Finally, the digitalized
data are arranged in an Excel file using the topology information. We implement the algorithm
on Python using OpenCV for the image processing library and Tesseract for the OCR software. For
evaluations, we applied the proposal to 19 scanned and 17 screenshotted table images. The results
show that for any image, the Excel file is generated with the correct structure, and some characters
are misrecognized by OCR software. The improvement will be in future works.

Keywords: digitization; printed table; OCR; Python; OpenCV; Tesseract

1. Introduction

Nowadays, digital transformation (DX) is the key concept to changing the working
styles and improving the operations in governments, companies, and schools. In [1], DX is
defined as the strategy of enabling business innovations predicated on the incorporation
of digital technologies into operational processes, products, solutions, and customer in-
teractions. DX can leverage the opportunities of new technologies and their impacts on
businesses by focusing on the creation and monetization of digital assets. Therefore, any
data should be digitized and processed by computers and networks.

Unfortunately, a lot of data and information are still handled on paper. People often
feel comfortable accessing data and managing them on paper. Actually, a lot of data
printed on paper were originally generated using computers digitally and were printed
out using software fonts. Therefore, data on paper are often digitized using an optical
character recognition (OCR) software. However, when the paper contains tables, it is difficult
to digitalize them correctly, because, in a table, the characters are usually separated by rows
and columns, called cells, and the characters in one cell are related to each other. Thus, the
recognition of the characters in a table while keeping the relationships between the cells is
far more difficult than that of normal texts.

Therefore, the research question in this paper is “how to convert a printed table on
paper into an Excel table by keeping the relationships between the cells in the table?”.
Table formats can be diverse among documents, which further increases the difficulty of

Algorithms 2022, 15, 471. https://doi.org/10.3390/a15120471 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5469-9724
https://doi.org/10.3390/a15120471
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120471?type=check_update&version=2


Algorithms 2022, 15, 471 2 of 18

the solution to this question. To control the difficulty, we limit the table layouts to two
that have been commonly used in this paper. For both layouts, it is possible to find and
keep the relationships between the left-side cells and the right-side cells in each row for
every column.

In the first layout, the table structure is a simple grid, which is the basic one. In this
layout, the number of columns is constant from the first row to the last row in the table,
and the number of rows is also constant from the leftmost column to the rightmost column,
as shown in Figure 1. In the second layout, the table structure is a little bit more complex.
The number of columns is constant from the top row to the bottom row in the table, but the
number of rows may increase at some columns from the leftmost column to the rightmost
column, as shown in Figure 2.

Figure 1. The first table mentioned in the text.

Figure 2. The second table mentioned in the text.

In this paper, we propose the printed table digitization algorithm for digitizing a printed
table on paper using image processing techniques and an optical character recognition (OCR)
software. The table layout is limited to either one of the abovementioned layouts. In this
algorithm, first, the printed table is divided into a collection of cells where the topology
information between the cells is extracted. Second, the characters in each cell are digitized
by applying the OCR software. Finally, the digitized data are arranged into one Excel table
using the topology information. We implement the proposed algorithm on Python using
OpenCV for the image processing library and Tesseract for the OCR software.

For evaluations, we applied the proposal to 19 scanned and 17 screenshotted table
images. The results show that for any image, the Excel file is generated with the correct
structure, and some characters are misrecognized by the adopted OCR software. The
improvement will be in future works.

The rest of this paper is organized as follows: Section 2 discusses related works in the
literature. Section 3 introduces the adopted software in this paper. Section 4 describes the
target table layout printed on paper. Section 5 presents the proposed algorithm. Section 6
evaluates the proposal. Finally, Section 7 concludes this paper with future works.

2. Related Works in the Literature

In this section, we introduce some related works in the literature.



Algorithms 2022, 15, 471 3 of 18

In [2], Ohta et al. proposed a method based on the dataset provided by the ICDAR
2013 table competition and evaluation measures based on the adjacency relations between
cells. They can be used to estimate implicitly ruled lines for recognizing the table structure.
From the results of 156 tables, they found the structure for most tables by integrating the
explicit and implicit ruled lines.

In [3], Phan et al. proposed an algorithm to digitize the tables in a document and the
articles based on Cascade R-CNN HRNet. It can be used to detect and classify tables, and
integrate image processing algorithms to improve the table data. The results show that this
algorithm can identify the table of hydrological data with an accuracy rate of 98%. The
algorithm was proved to be effective on real data of the hydrometeorological stations.

In [4], Sahoo et al. proposed an algorithm to find the tables in a document and
the articles based on machine learning. It can be used to find tables, including bordered,
borderless, or partially bordered tables in PDF files. From the results of extracted tables,
they show that the tables extracted from PDF files can be well extracted into Excel files. The
results showed that the algorithm is an efficient solution for table detection in diverse documents.

In [5], Amitha et al. proposed a web application based on optical character recognition
(OCR). It can be used to convert the attendance register image to Excel conversion. From
the results of extracted tables, they showed that this web application can capture an image,
upload it, and view the extracted text. The results showed that the web application is
helpful for literacy education under different circumstances.

In [6], Nagy et al. proposed an algorithm based on category hierarchies, which can
be used to convert the web tables into the structured collections of relational tables and
resource definition framework (RDF) triples. They found that over 1.5 million table cells
were classified into ten categories, where among the 1520 tables tested, only 16 were not
analyzed. The results showed that the formalization and exploitation of intrinsic structural
table constraints open the way for algorithmic conversions of vast amounts of tabulated
data to uniform standard data analysis formats.

In [7], Minghao Li et al. proposed a new image-based table detection and recognition
dataset built with novel weak supervision from Word and Latex documents on the internet.
They used TableBank, which contains 417K high-quality labeled tables, to build several
strong baselines using state-of-the-art models with deep neural networks. Experiments
show that image-based table detection and recognition with deep learning is a promising
research direction.

3. Adopted Technologies

In this section, we introduce two software used in this paper. First, OpenCV is used
to recognize and extract the tables from the scanned image of a paper containing them,
and separate the characters in each table into collection cells. Second, Tesseract is used to
recognize the characters in these cells. Python is used to implement the algorithm, where the
digitalized data is imported into Excel using the pandas library. The two pieces of software
must be installed by the user of the algorithm.

3.1. OpenCV

OpenCV (Open Source Computer Vision Library) is the open-source library of program-
ming functions that are mainly aimed at real-time computer vision [8]. In the algorithm
implementation, opencv-python version 4.6.0.66 is adopted to call OpenCV functions from
the Python program. The following four tasks are completed by OpenCV functions in
this algorithm:

1. Recognize every intersection of the horizontal line and the vertical line to find the
location of the cells in the table.

2. Divide the table into a collection of rectangles using the intersections.
3. Arrange the rectangles from left to right and top to bottom by recognizing the bound-

ary of the horizontal and vertical lines.



Algorithms 2022, 15, 471 4 of 18

4. Recognized rectangles sometimes are too large or too small. The rectangle will have
multiple cells if it is too large, and it will have none if it is too small. In order to
prevent both of these situations, we restrict the rectangle’s size range.

3.2. Tesseract

Tesseract is open-source software to recognize the characters in an image file. It can
be executed from the command-line interface. For this algorithm, Tesseract is imported
into Python through the pytesseract package. After using OpenCV to divide the table into
a collection of cells, Tesseract will recognize the characters in each cell and return the
digitalized result.

4. Target Table Layout

In this section, we describe the layout of the target printed table on paper.

4.1. Table Layout

The proposed algorithm assumes that the table has the following features:

• The table basically has a grid structure of multiple rows and multiple columns.
• Two adjacent horizontal lines make one row, and two adjacent vertical lines make one

column in the table.
• All the vertical lines connect the top horizontal line and the bottom horizontal line.
• Some horizontal lines including the top one and the bottom one connect the leftmost

vertical line and the rightmost vertical line.
• Other horizontal lines connect the intermediate vertical line and the rightmost verti-

cal line.
• A cell represents the rectangle area surrounded by two adjacent horizontal lines and

two adjacent vertical lines.
• The number of cells in every row is equal.
• The number of cells in one column may be different by the column.
• A cell has one or multiple cells at the right neighbor and has one cell at the top/

bottom neighbors.

4.2. Example Table

Figure 3 illustrates an example target printed table of the algorithm. This table struc-
ture is often used. Four vertical lines make three columns. Five horizontal lines connect
the leftmost vertical line and the rightmost one. Six horizontal lines connect the second
vertical line and the rightmost one. Thus, the number of cells in the second column and
third column is ten.

Figure 3. Example of a target printed table.

4.3. Topology Information

In the proposed algorithm, after dividing the printed table into a collection of cells
and recognizing the characters in each cell, the digitized data for each cell are arranged



Algorithms 2022, 15, 471 5 of 18

into one table according to the topology information of the cells. This topology information
is actually described by a tree for each row. The root node of the tree represents the cell
bounded by the leftmost vertical line and the second vertical line. Then, its child node in the
tree represents its right neighbor cell in the table. Figure 4 shows the topology information
tree for the cells at the first row of the table in Figure 3.

Figure 4. Topology tree for the first row of example table.

In order to obtain the table structure accurately, we use the cells’ position, width, and
height. The columns in this type of table are exactly the same as in a regular table, so we
can classify all the cells into columns by finding their locations. Next, start with the first
grid in the leftmost column, and find the child nodes of the grid by determining the height
of the column and the latter column of this column. In the next step, find the child nodes of
the first cell in the leftmost column by determining the height of the column and the height
of the latter column. It can be seen that if the height of the cell in the leftmost column is
fuzzy and equal to the height of the two cells in the latter column, they are the child nodes
of the cell in the leftmost column. Specific algorithms are described in the next section.

5. Proposed Algorithm

In this section, we present the proposed printed table digitization algorithm.

5.1. Symbols in Algorithm

First, we define the symbols for the algorithm.

• I: the scanned color image of the paper.
• Ibin: reversed binary image of I.
• kver: the definition of a vertical kernel for detecting all vertical lines in an image.
• khor: the definition of a horizontal kernel for detecting all horizontal lines in an image.
• Iver: the binary image with only vertical lines of I.
• Lver: the vertical lines of Iver.
• Ihor: the binary image with only horizontal lines of I.
• Lhor: the horizontal line of Ihor.
• Ivh: combine Lver and Lhor.
• Lcnts: the contours of Ivh.
• li: each contour of Lcnts.
• ri: the rectangles of li.
• R: the array of ri.
• Lcnts1: the sorting result of Lcnts.
• R1: the R after sorting.
• R2: the array of rectangular which only contains a single cell.
• ci: each Cell class.
• C: the array of ci
• xi: the horizontal coordinate of ci.
• yi: the vertical coordinates of ci.
• wi: the width of ci.
• hi: the height of ci.
• namei: the name of ci that uses pytesseract to recognize.
• row: the number of rows in I.



Algorithms 2022, 15, 471 6 of 18

• Root: the root node of the cardinal tree.
• rowci: the ci of each column, for example, when row = 1, we have row1ci, when

row = 2, we have row2ci
• rowci+1: the ci of each column, for example, row1ci+1 is the next class of row1ci.
• Tree: the structure of I’s table.
• E: the output Excel table.

5.2. Procedure in Algorithm

Next, we describe the procedure of the algorithm.

(1) Make the color image I of each table by scanning the paper.
(2) Transform the color image I into the black-and-white binary image Ibin by applying

the thresholds function in OpenCV to I.
(3) Reference [9], obtain the vertical kernel kver and the horizontal kernel khor by applying

the getStructuringElement function in OpenCV to Ibin.
(4) Obtain the binary image Iver that only has vertical lines by applying the erode function

in OpenCV to Ibin. Figure 5 shows the binary image with only vertical lines for the
printed table in Figure 3.

(5) Extract the vertical lines Lver by applying the dilate function in OpenCV to Iver.
(6) Reference [9], obtain the binary image Ihor that only has horizontal lines by applying

the erode function in OpenCV to Ibin. Figure 6 shows the binary image with only
horizontal lines for the printed table in Figure 3.

(7) Extract the horizontal lines Lhor by applying the dilate function in OpenCV to Ihor.
(8) Make the binary image Ivh that represents the table frame by combining the vertical

lines Lver and the horizontal lines Lhor into one image, applying the addWeighted
function in OpenCV to Lver and Lhor. Figure 7 shows the table frame image.

(9) Obtain the contour information of each cell in the table and store them in the array
Lcnts by applying the findContours function in OpenCV to Ivh.

(10) Find the rectangular ri for each contour li of Lcnts by applying the boundingRect function
in OpenCV to every contour of Lcnts, and make the array R of ri.

(11) Sort ri in R from the leftmost one to the rightmost one according to the coordinates of
ri by applying the zip method and the sort method in Python to R, and make the array
Lcnts1 and the array R1.

(12) Remove all excessively large or small rectangles in R1, to avoid rectangles that contain
multiple cells or have no cells. Produce the R2 with every rectangle containing a cell.

(13) Create Cell. Create class ci for each rectangle in R2, collect xi, yi, and wi of each
rectangle in R2, and put them into ci as member variables.

(14) Obtain the character recognition result namei by applying the imagetostring function in
pytesseract to each cell.

(15) Sort the ci, in which the xi and yi of each ci are arranged from left to right and from
top to bottom. Arrange ci with similar xi into a column in the order of yi from small to
large to output rowci

(16) Create the multi-tree class Tree to describe the structure of the table with the root node
Root. The child nodes of this root node are all ci with a row equal to 1.

(17) Confirm the child node of row2ci, if row1ci’s hi is approximately equal to row2ci’s hi,
the child node of row1ci is row2ci. Otherwise, let row2ci’s hi plus row2ci+1’s hi+1, and
make the sum of row2ci’s hi and row2ci+1’s hi+1 compare with row1ci’s hi. If the two
are approximately equal, the child node of row1ci is row2ci and row2ci+1. If the two
are not approximately equal, it can be done again in the above way.

(18) Follow the previous step to get the child node of row2ci, the child node of row2ci, up to
the last column, and obtain the tree Tree composed of ci, which represents the structure
of the table cell structure. Figure 8 shows the tree.

(19) Preorder the Tree and put each ci’s namei in the leaf node’s namei in the order from
the root node to the leaf node. Each leaf node’s namei contains one row of the table,
and then output each leaf node’s namei in order to get the list of table information.



Algorithms 2022, 15, 471 7 of 18

(20) Convert the list to the Excel table E using openpyxl package and output it. Figure 9
shows this Excel file.

(21) Merge the cells corresponding to the same node in the tree in step (18) into one cell in
the Excel table E using the openpyxl package, and output it. Figure 10 shows the final
output Excel file.

Figure 5. Binary image with vertical lines.

Figure 6. Binary image with horizontal lines.

Figure 7. Table frame image.



Algorithms 2022, 15, 471 8 of 18

Figure 8. Tree structure of the table.

Figure 9. Excel table before merging the same cells.

Figure 10. Excel table after merging the same cells.



Algorithms 2022, 15, 471 9 of 18

6. Evaluations

In this section, we evaluate the proposed algorithm by applying it to 19 scanned table
images and 17 screenshotted table images that are obtained from websites. They satisfy the
table layout features in Section 4.1.

6.1. Accuracy Index

To evaluate the accuracy of the proposal, we consider the rate of correctly recognizing
the table cell structure and the rate of correctly recognizing the characters in each cell.

For the former index of recognizing table structure, the proposed algorithm achieved
the 100% accuracy. It recognized the cell structure correctly for any image.

For the latter index of recognizing characters, the rate p is calculated by the follow-
ing equation:

p =
ch1

ch2
× 100% (1)

where ch1 represents the total number of characters in the tested table images except for
spaces and tabs, and ch2 does the total number of correctly recognized characters.

Because it is a very fuzzy concept to identify the quality of a table, a core comparison
value is needed to determine the quality of the table identified by the algorithm.

In this paper, the evaluation standard of our algorithm is p. The closer p is to 100%,
the better the recognition result is. The closer p is to 0%, the worse the recognition result is.
In this paper, we believe that forms with p ≥ 80% have a qualified recognition effect.

The output result of the algorithm is only related to the algorithm itself and the input
table. Therefore, we control the algorithm unchanged, only change the input table, and
observe the relationship between the input table and p.

6.2. Character Recognition Accuracy Results

Figures 11 and 12 show the character recognition rates for the 19 scanned table images
and the 17 screenshotted table images, respectively. From them, the rates for the scanned
table images at 2, 5, 10, 16, 18, and 19 are lower than 90%. We will analyze the reasons.

Version September 28, 2022 submitted to Journal Not Specified 8 of 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

85

90

95

100

ac
cu

ra
cy

(%
)

Figure 9. Character recognition rates for scanned table images.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

90

92

94

96

98

100

ac
cu

ra
cy

(%
)

Figure 10. Character recognition rates for screenshot table images.

Figure 11. Character recognition rates for scanned table images.



Algorithms 2022, 15, 471 10 of 18

Version September 28, 2022 submitted to Journal Not Specified 8 of 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

85

90

95

100

ac
cu

ra
cy

(%
)

Figure .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

90

92

94

96

98

100

ac
cu

ra
cy

(%
)

Figure 10. Character recognition rates for screenshot table images.Figure 12. Character recognition rates for screenshotted table images.

Here, we discuss reasons why the character recognition rates for the scanned table
images at 2, 5, 10, 16, and 18 are lower than 90%.

6.2.1. Table Image at 2

Figures 13–15 show the scanned table image, the table structure by the algorithm, and
the output Excel table. The character recognition rate is given by:

p =
10
10 + 1

2 + 0
1 + 1

1 + 1
1 + 1

1 + 5
5 + 5

5 + 4
4 + 3

3 + 4
4 + 2

3
12

× 100% =≈ 84.66%. (2)

Figure 13. Printed table of scanned table image 1.

Figure 14. Tree for scanned table image 1.

Figure 15. Excel output for scanned table image 1 by our algorithm.

This table contains several subscripts, decimal points, and Greek letters, which are not
correctly recognized by Tesseract OCR software.



Algorithms 2022, 15, 471 11 of 18

6.2.2. Reasons for Table Image at 5

Figures 16–18 show the scanned table image, the table structure by the algorithm, and
the output Excel table.

The character recognition rate is given by:

p =
10
10 + 1

2 + 0
1 + 1

2 + 1
2 + 1

2 + 1
2 + 1

2 + 1
4 + · · ·+ 3

3 + 2
2 + 3

3
36

× 100% (3)

p ≈ 82.13% (4)

Figure 16. Printed table of scanned table image 2.

Figure 17. Tree for scanned table image 2.

Figure 18. Excel output for scanned table image 2 by our algorithm.

This table contains several subscripts, decimal points, and Greek letters, which are not
correctly recognized by Tesseract OCR software.

6.2.3. Reasons for Table Image at 10

Figures 19–21 show the scanned table image, the table structure by the algorithm, and
the output Excel table. The character recognition rate is given by:

p =
8
8 + 8

8 + 9
9 + 7

7 + 11
11 + 1

2 + 2
2 + 1

2 + 12
12 + 0

2 + 2
2 + 2

2
12

× 100% (5)

p ≈ 83.33% (6)

Figure 19. Printed table of scanned table image 3.



Algorithms 2022, 15, 471 12 of 18

Figure 20. Tree for scanned table image 3.

Figure 21. Excel output for scanned table image 3 by our algorithm.

This table contains several cells which contain characters that are very close to the cell
edge, which are not correctly recognized by Tesseract OCR software.

6.2.4. Reasons for Table Image at 16

Figures 22–24 show the scanned table image, the table structure by the algorithm, and
the output Excel table. The character recognition rate is given by:

p =
0

20 + 6
6 + 6

6 + 6
6 + 6

6 + 6
6 + · · ·+ 11

12 + 6
6 + 6

6 + 6
6 + 6

6 + 6
6

19
× 100% (7)

p ≈ 83.73% (8)

Figure 22. Printed table of scanned table image 4.

Figure 23. Tree for scanned table image 4.



Algorithms 2022, 15, 471 13 of 18

Figure 24. Excel output for scanned table image 4 by our algorithm.

This table contains several subscripts and vertical characters, which are not correctly
recognized by Tesseract OCR software.

6.2.5. Reasons for Table Image at 18

Figures 25–27 show the scanned table image, the table structure by the algorithm, and
the output Excel table. The character recognition rate is given by:

p =
1
1 + 42

42 + 2
3 + 41

41 + 6
6 + 1

1 + 24
24 + 2

3 + · · ·+ 1
1 + 29

29 + 39
39 + 1

1
15

× 100% (9)

p ≈ 86.53% (10)

Figure 25. Printed table of scanned table image 5.

Figure 26. Tree for scanned table image 5.



Algorithms 2022, 15, 471 14 of 18

Figure 27. Excel output for scanned table image 5 by our algorithm.

This table contains several cells which contain characters that are very close to the cell
edge, which are not correctly recognized by Tesseract OCR software.

6.3. Conclusion of This Section

Through applications, we found the following weakness of the adopted OCR soft-
ware Tesseract:

• When a cell size is small, it often recognizes the border as a character.
• It is difficult to correctly recognize vertical texts, subscripts, and Greek letters.
• It is more difficult to recognize a scanned image than a screenshot because it is usually

blurry and has more noise.

6.4. Comparison with Microsoft Software

Microsoft offers software for the same purpose as our algorithm for Excel users [10,11].
Therefore, we applied this software to the same set of table images. Then, we found that
the table cell structure was not correctly recognized in some images. For example, for the
image in Figure 28 it obtains the result in Figure 29, which is the regular grid structure and
has unnecessary cells. On the other hand, our algorithm obtains the correct structure in
Figure 30.

When using the Office application, we also found that the software could not recognize
tables as complex as in Figure 31. In the future, we will also try to make this algorithm
directly identify this type of table.

Figure 28. Printed table of scanned table image 6.



Algorithms 2022, 15, 471 15 of 18

Figure 29. Excel output for scanned table image 6 by Microsoft Office.

Figure 30. Excel output for scanned table image 6 by our algorithm.

Figure 31. Printed table of the scanned table that Microsoft Office cannot recognize.

• Too many dotted lines are generated as in Figure 32.
• The location of the generated box is different from the original as in Figures 33–35.
• The dotted line is generated around the center of a cell as in Figure 36.



Algorithms 2022, 15, 471 16 of 18

Figure 32. Result with too many dotted lines.

Figure 33. Result with wrong box locations (1).

Figure 34. Result with wrong box locations (2).



Algorithms 2022, 15, 471 17 of 18

Figure 35. Result with wrong box locations (3).

Figure 36. Unnecessary dotted line around the cell center.

6.5. Comparison with Nanonets Software

Here, we considered another table recognition software by Nanonets in [12]. This
software generates the dotted lines from the lines in the table images and recognizes the
cell boxes from them. We applied it to the same table images. Then, we found that the
accuracy of this software is not sufficient, and the following problems appeared:

7. Conclusions

This paper presented the printed table digitization algorithm using image processing
techniques and an optical character recognition (OCR) software. For evaluations, the proposal
was applied to 19 scanned and 17 screenshotted table images. It was confirmed that
the table structure was correctly recognized for all of them, whereas some characters
were misrecognized by the adopted OCT software. In future works, we will improve the
character recognition accuracy by refining the OCR software, extending the proposal to
printed tables that have more complex structures, and applying it to various table images.

Author Contributions: Conceptualization, C.S. and N.F.; methodology, C.S.; software, C.S.; valida-
tion, N.F., C.S. and Y.H.; formal analysis, C.S. and M.M.; investigation, N.F., K.S. and T.T.; resources,
C.S.; data curation, C.S.; writing—original draft preparation, C.S.; writing—review and editing, N.F.;
visualization, C.S.; supervision, N.F.; project administration, N.F. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data available on request from the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. What is Digital Transformation (DX)? Available online: https://www.netapp.com/devops-solutions/what-is-digital-transformation/

(accessed on 2 July 2022).
2. Ohta, M.; Yamada, R.; Kanazawa, T.; Takasu, A. A cell-detection-based table-structure recognition method. In Proceedings of the

ACM Symposium on Document Engineering 2019, Berlin, Germany, 23–26 September 2019.
3. Phan, H.H.; Dai Duong, N. An Integrated Approach for Table Detection and Structure Recognition. J. Inf. Technol. Commun. 2021,

1, 41–50. [CrossRef]
4. Sahoo, R.; Kathale, C.; Kubal, M.; Malik, S. Auto-Table-Extract: A System To Identify And Extract Tables From PDF To Excel. Int.

J. Sci. Technol. Res. 2020, 9, 217 .
5. Amitha, S.; Mithun, M.; Chandana, P.C.; Borkakoty, M.; Adithya, U. Conversion of Image To Excel Using Ocr Technique. Int. Res.

J. Mod. Eng. Technol. Sci. 2020, 4, 3743–3747.

https://www.netapp.com/devops-solutions/what-is-digital-transformation/
http://doi.org/10.32913/mic-ict-research.v2021.n1.974


Algorithms 2022, 15, 471 18 of 18

6. Nagy, G.; Seth, S. Table headers: An entrance to the data mine. In Proceedings of the 2016 IEEE 23rd International Conference on
Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016.

7. Li, M.; Cui, L.; Huang, S.; Wei, F.; Zhou, M.; Li, Z. Tablebank: A benchmark dataset for table detection and recognition. arXiv
2019, arXiv:1903.01949.

8. Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Realtime Computer Vision with OpenCV. Queue 2012, 10, 40–56. [CrossRef]
9. A Table Detection, Cell Recognition and Text Extraction Algorithm to Convert Tables in Images to Excel Files. Available online:

https://towardsdatascience.com/ (accessed on 10 July 2022).
10. How to Convert a Table of Paper Data to Excel Data? We Can Scan Tables by Use Office Application in Smartphone. Available

online: https://dekiru.net/article/21950/ (accessed on 10 September 2022).
11. Scan and Edit a Document. Available online: https://support.microsoft.com/en-us/office/scan-and-edit-a-document-7a07a4bd-

aca5-4ec5-ba73-4589ac8b9eed (accessed on 10 September 2022).
12. Table Detection, Table Extraction & Information Extraction Using DL. Available online: https://nanonets.com/blog/table-

extraction-deep-learning/ (accessed on 10 September 2022).

http://dx.doi.org/10.1145/2181796.2206309
https://towardsdatascience.com/
https://dekiru.net/article/21950/
https://support.microsoft.com/en-us/office/scan-and-edit-a-document-7a07a4bd-aca5-4ec5-ba73-4589ac8b9eed
https://support.microsoft.com/en-us/office/scan-and-edit-a-document-7a07a4bd-aca5-4ec5-ba73-4589ac8b9eed
https://nanonets.com/blog/table-extraction-deep-learning/
https://nanonets.com/blog/table-extraction-deep-learning/

	Introduction
	Related Works in the Literature
	Adopted Technologies
	OpenCV
	Tesseract

	Target Table Layout
	Table Layout
	Example Table
	Topology Information

	Proposed Algorithm
	Symbols in Algorithm
	Procedure in Algorithm

	Evaluations
	Accuracy Index
	Character Recognition Accuracy Results
	Table Image at 2
	Reasons for Table Image at 5
	 Reasons for Table Image at 10
	Reasons for Table Image at 16
	Reasons for Table Image at 18

	Conclusion of This Section
	Comparison with Microsoft Software
	Comparison with Nanonets Software

	Conclusions
	References

