
Citation: Lang, D.; Chen, D.; Huang,

J.; Li, S. A Momentum-Based Local

Face Adversarial Example

Generation Algorithm. Algorithms

2022, 15, 465. https://doi.org/

10.3390/a15120465

Academic Editors: Francesco

Bergadano and Giorgio Giacinto

Received: 24 October 2022

Accepted: 2 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Momentum-Based Local Face Adversarial Example
Generation Algorithm
Dapeng Lang 1,2 , Deyun Chen 1,*, Jinjie Huang 1 and Sizhao Li 2

1 School of Computer Science and Technology, Harbin University of Science and Technology,
Harbin 150080, China

2 College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
* Correspondence: chendeyun@hrbust.edu.cn (D.C.)

Abstract: Small perturbations can make deep models fail. Since deep models are widely used in
face recognition systems (FRS) such as surveillance and access control, adversarial examples may
introduce more subtle threats to face recognition systems. In this paper, we propose a practical
white-box adversarial attack method. The method can automatically form a local area with key
semantics on the face. The shape of the local area generated by the algorithm varies according to
the environment and light of the character. Since these regions contain major facial features, we
generated patch-like adversarial examples based on this region, which can effectively deceive FRS.
The algorithm introduced the momentum parameter to stabilize the optimization directions. We
accelerated the generation process by increasing the learning rate in segments. Compared with the
traditional adversarial algorithm, our algorithms are very inconspicuous, which is very suitable for
application in real scenes. The attack was verified on the CASIA WebFace and LFW datasets which
were also proved to have good transferability.

Keywords: adversarial examples; face recognition; mask matrix; targeted attack; non-targeted attack

1. Introduction
1.1. Introductions

In the field of computer vision, deep learning has become a major technology for
applications such as self-driving cars, surveillance, and security. Face verification [1] and
face recognition [2] have outperformed humans. The recently proposed ArcFace [3] is
an improvement on the previous face recognition model, which uses the loss function in
angle space to replace the one in the CosFace [4] model. Earlier, the loss of the Euclidean
distance space was used in the FaceNet [5] model. Furthermore, in some face recognition
competitions such as the Megaface competition, ArcFace models are comparable to those of
Microsoft and Google, and the accuracy rate reached 99.936%. Moreover, many open-source
datasets such as LFW [6], CASIA-WebFace [7], etc. are available to researchers.

Despite the extraordinary success of deep neural networks, adversarial attacks against
deep models also pose a huge threat in computer vision such as face recognition [8] and
person detecton [9]. Szegedy, C. [10] and Goodfellow, I.J. [11] proved from the principle and
experiment that the adversarial example is the inherent property of the deep model and
proposed a series of classical algorithms. Dong, Y. [12] proposed the momentum algorithm
on this basis, which is also one of the research bases of this paper.

However, the fine adversarial noise based on the whole image is not easy to realize,
yet adversarial patch is an excellent option. Adversarial patches are covered to an image
making it lead to misclassification or undetectable recognition by highlighting salient fea-
tures of the object classification [13]. In the task of detection and classification, adversarial
patches can be on the target or the background, regardless of the location [14]; a sticker
on a traffic sign may cause the misclassification of traffic signs [15]; Refs. [16,17] Make it

Algorithms 2022, 15, 465. https://doi.org/10.3390/a15120465 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120465
https://doi.org/10.3390/a15120465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7536-9764
https://orcid.org/0000-0002-6557-262X
https://doi.org/10.3390/a15120465
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120465?type=check_update&version=2

Algorithms 2022, 15, 465 2 of 17

impossible for detctor to detect the wearer by creating wearable adversarial clothing(like a
T-shirt or jacket). Ref. [18] is a very powerful attack that uses adversarial glasses to deceive
both the digital and physical face recognition system; Based on this idea, researchers turned
to the application of adversarial patches in the field of face recognition, and achieved a
high success rate [19]. Therefore, adversarial examples are a non-negligible threat in the
security field and have received a lot of attention.

1.2. Motivations

There are numerous methods for targeting face recognition models, and many of them
have been validated in real scenarios. Ref. [11] proposed that the perturbation direction
is the direction of the gradient of the predicted the target category labels; in addition, a
GAN-based AGN [1] generates an ordinary eyeglass frame sticker to attack the VGG model.
Ref. [3] proposed a new, simple, and replicable method attack the best public Face ID
system ArcFace. Adversarial patches generally have a fixed position and visible scale, and
also need to consider deformation and spatial mapping [7].

The second idea is rooted in the pixel level, which tricks the FRS with subtle pertur-
bations. As previously described, generating adversarial examples against the full image
ignores the semantic information within faces [9]. Such algorithms theoretically validate the
feasibility of the attack, but are too restrictive in terms of the environmental requirements,
making it difficult to realize. Meanwhile, existing algorithms launch undifferentiated
attacks on all the targets in the picture. In real scenes, there are multiple objects in the
complex background and foreground, and attacking multiple objects at the same time
makes it easy to attract the attention of defenders. To address the above problems, we pro-
pose an adversarial example generation algorithm that targets local areas with distinctive
facial features.

1.3. Contributions

As shown in Figure 1, our algorithm combines the advantages of adversarial patches
and perturbations, generating invisible adversarial examples in the form of a patch. We
first extracted a face from the image, and then generated the adversarial example based on
the local key features of the face. The adversarial example can be targeted or non-targeted,
which can effectively mislead FRS.

Algorithms 2022, 15, x FOR PEER REVIEW 2 of 18

patches can be on the target or the background, regardless of the location [14]; a sticker on
a traffic sign may cause the misclassification of traffic signs [15]; Refs. [16,17] Make it im-
possible for detctor to detect the wearer by creating wearable adversarial clothing(like a
T-shirt or jacket). Ref. [18] is a very powerful attack that uses adversarial glasses to deceive
both the digital and physical face recognition system; Based on this idea, researchers
turned to the application of adversarial patches in the field of face recognition, and
achieved a high success rate [19]. Therefore, adversarial examples are a non-negligible
threat in the security field and have received a lot of attention.

1.2. Motivations
There are numerous methods for targeting face recognition models, and many of

them have been validated in real scenarios. Ref. [11] proposed that the perturbation direc-
tion is the direction of the gradient of the predicted the target category labels; in addi-
tion, a GAN-based AGN [1] generates an ordinary eyeglass frame sticker to attack the
VGG model. Ref. [3] proposed a new, simple, and replicable method attack the best public
Face ID system ArcFace. Adversarial patches generally have a fixed position and visible
scale, and also need to consider deformation and spatial mapping [7].

The second idea is rooted in the pixel level, which tricks the FRS with subtle pertur-
bations. As previously described, generating adversarial examples against the full image
ignores the semantic information within faces [9]. Such algorithms theoretically validate
the feasibility of the attack, but are too restrictive in terms of the environmental require-
ments, making it difficult to realize. Meanwhile, existing algorithms launch undifferenti-
ated attacks on all the targets in the picture. In real scenes, there are multiple objects in the
complex background and foreground, and attacking multiple objects at the same time
makes it easy to attract the attention of defenders. To address the above problems, we
propose an adversarial example generation algorithm that targets local areas with distinc-
tive facial features.

1.3. Contributions
As shown in Figure 1, our algorithm combines the advantages of adversarial patches

and perturbations, generating invisible adversarial examples in the form of a patch. We
first extracted a face from the image, and then generated the adversarial example based
on the local key features of the face. The adversarial example can be targeted or non-tar-
geted, which can effectively mislead FRS.

Figure 1. Face-based targeted attack and non-targeted attack diagram. The FRS could identify the
first pair of images belonging to the same person but was unable to tell whether the face under
attack was the same as the original person.

The work in this paper is as follows.
1. We proposed a white-box adversarial example generation algorithm (AdvLocFace)

based on the local face. We circled an area with intensive features on the face to con-
struct an patch-like adversarial example within this range.

Figure 1. Face-based targeted attack and non-targeted attack diagram. The FRS could identify the
first pair of images belonging to the same person but was unable to tell whether the face under attack
was the same as the original person.

The work in this paper is as follows.

1. We proposed a white-box adversarial example generation algorithm (AdvLocFace)
based on the local face. We circled an area with intensive features on the face to
construct an patch-like adversarial example within this range.

2. A momentum optimization module with a dynamic learning rate was proposed. By
adopting a dynamic piecewise learning rate, the optimization algorithm can acceler-

Algorithms 2022, 15, 465 3 of 17

ate convergence; the momentum parameter was introduced to avoid the algorithm
oscillating near the best point, which improved the attack efficiency.

3. By dynamically calculating the attack threshold, the optimal attack effect parameters
were estimated, which reduced the number of modifications to the pixels in the clean
images and effectively improved the transferability of the adversarial examples.

4. We compared the algorithm with several traditional algorithms. The experiments
showed that the algorithm had a high success rate in the white-box setting, and to
also obtain an ideal transferability.

2. Preliminaries
2.1. Deep Model of Face Recognition

DeepFace [1] is the first near-human accuracy model using Labeled Faces in the Wild
(LFW) [20] and applies neural networks to face recognition models with nine layers to
extract the face vectors. FaceNet [5] computes the Euclidean distance of the feature vectors
of face pairs by mapping the face images into the feature space. In addition, they introduced
triplet loss as a loss function so that after training, the distance of matched face pairs with
the same identity would be much smaller than the distance of unmatched face pairs with
different identities [4]. Sphereface [21] uses angular softmax loss to achieve the requirement
of “maximum intra-class distance” to be less than “minimum inter-class distance” in the
open-set task of face recognition. ArcFace [3] introduces additive angular margin loss,
which can effectively obtain face features with high discrimination. The main approach
is to add the angle interval m to the θ between xi and Wij to penalize the angle between
the deep features and their corresponding weights in an additive manner. The equation is
as follows:

L3 = − 1
N

N

∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m)) + ∑n
j=1,j 6=yi

es·cosθj
(1)

2.2. Classic Adversarial Attacks Algorithms

Adversarial examples are delicately designed perturbations imperceptible to humans
to the input that leads to incorrect classifications [9]. The generation principle is shown in
the following equation:

X′ = X + ε·sign(∇X L(f (x), y)) (2)

where ε is set empirically, which indicates the learning rate. L(f (x), y) is the linear loss
function with the image x and label y. Update the input data by passing back the gradient
∇xL(f (x), y), and use the sign() to calculate the update direction.

The fast gradient sign method (FGSM) is a practical algorithm for the fast generation of
the adversarial examples proposed by Goodfellow et al. [11]. To improve the transferability
of the adversarial examples, Dong et al. [12] proposed the momentum iterative fast gradient
sign method by adding the momentum term to the BIM, which prevents the model from
entering the local optima and generating overfitting. The C&W [13] attack is a popular
white-box attack algorithm that generates adversarial examples with high image quality,
and transferability, and is very difficult to defend. Lang et al. [22] proposed the use of the
attention mechanism to guide the generation of adversarial examples.

2.3. Adversarial Attacks on Face Recognition

The attack on the face not only needs to deceive the deep model but also requires the
semantic expression of the attack method. Ref. [23] studied an off-the-shelf physical attack
projected by a video camera, and project the digital adversarial mode onto the face of the
adversarial factor in the physical domain, so as to implement the attack on the system.
Komkov et al. [19] attached printed colored stickers on hats, called AdvHat, as shown
in Figure 2.

Algorithms 2022, 15, 465 4 of 17

Algorithms 2022, 15, x FOR PEER REVIEW 4 of 18

adversarial factor in the physical domain, so as to implement the attack on the system.
Komkov et al. [19] attached printed colored stickers on hats, called AdvHat, as shown in
Figure 2.

Figure 2. AdvHat can launch an attack on facial recognition systems in the form of a hat.

In the context of the COVID-19 epidemic, Zolfi et al. [24] used universal adversarial
perturbations to print scrambled patterns on medical masks and deceived face recognition
models. Yin et al. [25] proposed the face adversarial attack algorithm of the Adv-Makeup
framework, which implemented a black-box attack with imperceptible properties and
good mobility. The authors in [26] used a generation model to improve the portability of
adversarial patches in face recognition. This method not only realized the digital adver-
sarial example but also achieved success in the physical world. In [27], they generated
adversarial patches based on FGSM. The effectiveness of the attack was proven by a series
of experiments with different numbers and sizes of patches. However, the patch was still
visible and still did not take into account the feature information of the face. The study in
[28] introduced adversarial noise in the process of face attribute editing and integrated it
into the high-level semantic expression process to make the example more hidden, thus
improving the transferability of adversarial attacks.

3. Methodology and Evaluations
3.1. Face Recognition and Evaluation Matrix

We used a uniform evaluation metric to measure whether a face pair matched or not.
A positive sample pair is a matched face pair with the same identity; a negative sample
pair is a mismatched face pair. To evaluate the performance of the face recognition model,
the following concepts are introduced.

The True Positive Rate (TPR) is calculated as follows: 𝑇𝑃𝑅 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3)

where TP indicates the matching face pair and is correctly predicted as a matching face
pair, and FN means a matching face pair and is incorrectly predicted as a mismatched face
pair. TPR is the probability of correctly predicted positive samples to all positive samples,
which is the probability of correctly predicted matched face pairs to all matched face pairs.

The False Positive Rate (FPR) is calculated as follows: 𝐹𝑃𝑅 = 𝐹𝑃𝐹𝑃 + 𝑇𝑁 (4)

Figure 2. AdvHat can launch an attack on facial recognition systems in the form of a hat.

In the context of the COVID-19 epidemic, Zolfi et al. [24] used universal adversarial
perturbations to print scrambled patterns on medical masks and deceived face recognition
models. Yin et al. [25] proposed the face adversarial attack algorithm of the Adv-Makeup
framework, which implemented a black-box attack with imperceptible properties and
good mobility. The authors in [26] used a generation model to improve the portability
of adversarial patches in face recognition. This method not only realized the digital
adversarial example but also achieved success in the physical world. In [27], they generated
adversarial patches based on FGSM. The effectiveness of the attack was proven by a series
of experiments with different numbers and sizes of patches. However, the patch was still
visible and still did not take into account the feature information of the face. The study
in [28] introduced adversarial noise in the process of face attribute editing and integrated it
into the high-level semantic expression process to make the example more hidden, thus
improving the transferability of adversarial attacks.

3. Methodology and Evaluations
3.1. Face Recognition and Evaluation Matrix

We used a uniform evaluation metric to measure whether a face pair matched or not.
A positive sample pair is a matched face pair with the same identity; a negative sample
pair is a mismatched face pair. To evaluate the performance of the face recognition model,
the following concepts are introduced.

The True Positive Rate (TPR) is calculated as follows:

TPR =
TP

TP + FN
(3)

where TP indicates the matching face pair and is correctly predicted as a matching face pair,
and FN means a matching face pair and is incorrectly predicted as a mismatched face pair.
TPR is the probability of correctly predicted positive samples to all positive samples, which
is the probability of correctly predicted matched face pairs to all matched face pairs.

The False Positive Rate (FPR) is calculated as follows:

FPR =
FP

FP + TN
(4)

where FP denotes a face pair whose true label is mismatched and is incorrectly predicted
as a matched face pair. TN denotes a face pair whose true label is mismatched and is
correctly predicted as a mismatched face pair. FPR is the probability that the incorrectly
predicted negative samples account for all negative samples, and in the face recognition

Algorithms 2022, 15, 465 5 of 17

scenario is the probability that the incorrectly predicted mismatched face pairs account for
all mismatched face pairs.

Therefore, the accuracy rate (Acc) of the face recognition model is calculated as follows:

Acc =
TP + TN

TP + FN + TN + FP
(5)

That is, the accuracy of the face recognition model is the ratio of the number of
correctly predicted face pairs to the total number of face pairs. Meanwhile, we chose five
face recognition models with different network architectures for validation. These networks
are described in the following sections.

3.2. Adversarial Attacks against Faces

The adversarial attacks are classified into non-targeted attacks and targeted attacks.
An intuitive way to do this is to set a threshold. When the distance between two faces and
this threshold is compared, if the result is less than the threshold, the two faces are from
the same person and vice versa. This is obviously more difficult for the FRS to mistake the
target face for another designated one [18].

Suppose that for input x, the true label f (x) = y is output by the classification model
f . The purpose of the adversarial attack is to generate an adversarial example xadv by
adding a small perturbation, and there exists

∣∣∣∣∣∣xadv − x
∣∣∣∣∣∣

p
≤ ε, where p can be 0, 1, 2, ∞.

For the non-targeted attack, the generated adversarial example makes f
(

xadv
)
6= y and

the results of the classifier were different from the original label; for the targeted attack, it
makes f

(
xadv

)
6= y∗, where y∗ 6= y, a previously defined specific class.

3.3. Evaluation Indices of Attack

Our goal is to generate adversarial patches to deceive FRS within a small area of the
human face. The patch is generated by optimizing the pixels in the area, changing the
distance between pairs of faces. The smaller the patch, the less likely it is to be detected by
defenders. We explain the process of generating these patches.

1. Cosine Similarity is calculated by the cosine of the angle between two vectors, given
as vector X and vector Y, and their cosine similarity is calculated as follows.

cos(X, Y) =
X ·Y

‖ X ‖‖ Y ‖ =
∑n

i=1 XiYi√
∑n

i=1 X2
i

√
∑n

i=1 Y2
i

(6)

where Xi and Yi are the individual elements of vector X and vector Y, respectively.
The cosine similarity takes values in the range [–1, 1], and the closer the value is to 1,
the closer the orientation of these two vectors (i.e., the more similar the face feature
vectors). Cosine similarity can visually measure the similarity between the adversarial
example and the clean image.

2. Total variation (TV) [19], as a regular term loss function, reduces the variability
of neighboring pixels and makes the perturbation smoother. Additionally, since
perturbation smoothness is a prerequisite property for physical realizability against
attacks, this lays some groundwork for future physical realizability [18]. Given a
perturbation noise r, ri,j is the pixel where the perturbation r is located at coordinate
(i, j). The TV(r) value is smaller when the neighboring pixels are closer (i.e., the
smoother the perturbation, and vice versa). The TV is calculated as follows:

TV(r) = ∑
i,j

((
ri,j − ri+1,j

)2
+
(
ri,j − ri,j+1

)2
) 1

2 (7)

Algorithms 2022, 15, 465 6 of 17

3. We used the L2 constraints to measure the difference between the original image and
the adversarial example. L2 is used as a loss function to control the range of perturbed
noise. In the application scenario of attacking, it can be intuitively interpreted as
whether the modified pixels will attract human attention.

Given vector X and vector Y, their L2 distances (i.e., Euclidean distances) can be
calculated as follows:

‖ X, Y ‖2=

√
n

∑
i
(xi − yi)

2 (8)

where xi and yi are the elements of the input vector X and the output vector Y, respectively.
The larger the L2 distance between the two vectors, the greater their difference.

4. Our Method
4.1. Configurations for Face Adversarial Attack

After the image preprocessing, we extracted the features from the two face images and
calculated their distance. For the input face image x, the face recognition model f extracted
the features. For the input face pairs {x1, x2}, the face feature vector f (x1) and f (x2) were
mapped to 512-dimensional feature vectors, respectively.

Therefore, we compared the distance of f (x1) and f (x2) with the specified threshold
to determine whether the face pair matched or not. We calculated the angular distance by
cosine similarity, which is as follows.

Similarity = cos(f (x1), f (x2)) (9)

D(f (x1), f (x2)) =
arccos(Similarity)

π
(10)

where cos(·, ·) is the cosine similarity of the feature vector of the face pair in the range of
[−1, 1]. Therefore, D(f (x1), f (x2)), based on the cosine similarity, ranged from [0, 1]. The
closer the distance is to 0, the more similar the face feature vector and the more likely the
face pair is matched, and vice versa. Equation (11) is used to predict the matching result of
the face pair.

C(x1, x2) = I(D(f (x1), f (x2)) < threshold) (11)

where I(·) is the indicator function; the threshold is the baseline of the detection model
that is different depending on the model used. C(·, ·) outputs the matching result, if C = 1,
the face pair is matched; if C = 0, the face pair is not matched. A unified attack model is
established based on the I(·) indicator function to implement targeted and non-targeted
attacks. The flow of face pair recognition based on the threshold comparison is shown
in Figure 3.

Algorithms 2022, 15, x FOR PEER REVIEW 7 of 18

Figure 3. Schematic diagram of the face feature vector and threshold comparison.

4.2. Local Area Mask Generation
The human eye region contains critical semantic information despite its small area

[23]. The local region matrix is generated according to the human eye position as the range
of constraint against adversarial perturbance. Due to various poses, illumination, and oc-
clusions, we applied a deeply cascaded multitasking framework to integrate face detec-
tion and alignment through multitasking learning. First, since images have different sizes,
the key points of the extracted face were affined to the unit space using affine transfor-
mation to unify the size and coordinate system. The detection and alignment of faces were
accomplished by building a multi-level CNN structure containing three stages. Candidate
windows will be quickly generated by a shallow CNN. Then, the windows were opti-
mized by more complex CNNs to discard a large number of non-facial windows. Finally,
it refines the results. by using a more powerful CNN and outputs the facial marker posi-
tions.

The algorithm flow is shown in Figure 4. In Figure 4b, for a given image, we first
adjusted it to different scales to construct the image pyramid. In Figure 4c, we referred to
the method in [29] to obtain the candidate windows and their bounding box regression
vectors. The estimated bounding box regression vectors were then used to calibrate the
candidate boxes; in Figure 4d, we used non-maximal suppression (NMS) to merge the
highly overlapping candidate objects. In Figure 4e, all candidate frames were used as in-
put to the CNN of the optimization network, which further discarded a large number of
incorrect candidate frames, calibrated them using bounding box regression, and merged
the NMS candidate frames. Finally, Figure 4f shows the CNN-based classification network
that generated a more detailed description of the faces and outputs the critical facial posi-
tions.

Figure 3. Schematic diagram of the face feature vector and threshold comparison.

Algorithms 2022, 15, 465 7 of 17

4.2. Local Area Mask Generation

The human eye region contains critical semantic information despite its small area [23].
The local region matrix is generated according to the human eye position as the range of
constraint against adversarial perturbance. Due to various poses, illumination, and occlu-
sions, we applied a deeply cascaded multitasking framework to integrate face detection
and alignment through multitasking learning. First, since images have different sizes, the
key points of the extracted face were affined to the unit space using affine transformation
to unify the size and coordinate system. The detection and alignment of faces were ac-
complished by building a multi-level CNN structure containing three stages. Candidate
windows will be quickly generated by a shallow CNN. Then, the windows were optimized
by more complex CNNs to discard a large number of non-facial windows. Finally, it refines
the results. by using a more powerful CNN and outputs the facial marker positions.

The algorithm flow is shown in Figure 4. In Figure 4b, for a given image, we first
adjusted it to different scales to construct the image pyramid. In Figure 4c, we referred to
the method in [29] to obtain the candidate windows and their bounding box regression
vectors. The estimated bounding box regression vectors were then used to calibrate the
candidate boxes; in Figure 4d, we used non-maximal suppression (NMS) to merge the
highly overlapping candidate objects. In Figure 4e, all candidate frames were used as
input to the CNN of the optimization network, which further discarded a large number of
incorrect candidate frames, calibrated them using bounding box regression, and merged the
NMS candidate frames. Finally, Figure 4f shows the CNN-based classification network that
generated a more detailed description of the faces and outputs the critical facial positions.

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 18

(a) (b) (c)

(d) (e) (f)

Figure 4. The process of face recognition and face alignment. (a) Clean image of a child. (b) Image
pyramid. (c) Bounding box regression. (d) Merging the candidate objects. (e) Face location. (f) Key
point location.

Pixels are randomly sampled within the range of key points as the corresponding
feature pixel [29]. The feature pixels select the closest initial key point as the anchor and
calculate the deviation. The coordinate system of the current pixel after rotation, transfor-
mation, and scaling should be close to the initial key point. It acts on the deviation and
adds its own position information to obtain the feature pixel of the current key point.
Then, we constructed the residual tree and calculated the deviation of the current key
point from the target key point. We split the sample and updated the current key point
position based on the average residual of the sample. Back to the previous step, it rese-
lected the feature key points, fit the next residual tree, and finally combined the results of
all residual trees to obtain the key point locations. According to the default settings, the
coordinates of the points 0, 28, 16, 26–17 in the image for the human eye area are shown
in Figure 5.

(a) (b) (c)

Figure 5. Schematic diagram of key point detection for human face. (a) Sixty-eight key points on a
human face. (b) Face that needs to be matched. (c) Key points and face fitting.

We located the human eye region based on the key points of the detected eye in the
image and drew the mask against the attacked region. The range of pixel values in the
generated mask image was normalized to [0.0, 1.0] to generate a binary-valued mask ma-
trix. This is shown in Figure 6.

Figure 4. The process of face recognition and face alignment. (a) Clean image of a child. (b) Image
pyramid. (c) Bounding box regression. (d) Merging the candidate objects. (e) Face location. (f) Key
point location.

Pixels are randomly sampled within the range of key points as the corresponding
feature pixel [29]. The feature pixels select the closest initial key point as the anchor
and calculate the deviation. The coordinate system of the current pixel after rotation,
transformation, and scaling should be close to the initial key point. It acts on the deviation
and adds its own position information to obtain the feature pixel of the current key point.
Then, we constructed the residual tree and calculated the deviation of the current key point
from the target key point. We split the sample and updated the current key point position
based on the average residual of the sample. Back to the previous step, it reselected the
feature key points, fit the next residual tree, and finally combined the results of all residual
trees to obtain the key point locations. According to the default settings, the coordinates of
the points 0, 28, 16, 26–17 in the image for the human eye area are shown in Figure 5.

Algorithms 2022, 15, 465 8 of 17

Algorithms 2022, 15, x FOR PEER REVIEW 8 of 18

(a) (b) (c)

(d) (e) (f)

Figure 4. The process of face recognition and face alignment. (a) Clean image of a child. (b) Image
pyramid. (c) Bounding box regression. (d) Merging the candidate objects. (e) Face location. (f) Key
point location.

Pixels are randomly sampled within the range of key points as the corresponding
feature pixel [29]. The feature pixels select the closest initial key point as the anchor and
calculate the deviation. The coordinate system of the current pixel after rotation, transfor-
mation, and scaling should be close to the initial key point. It acts on the deviation and
adds its own position information to obtain the feature pixel of the current key point.
Then, we constructed the residual tree and calculated the deviation of the current key
point from the target key point. We split the sample and updated the current key point
position based on the average residual of the sample. Back to the previous step, it rese-
lected the feature key points, fit the next residual tree, and finally combined the results of
all residual trees to obtain the key point locations. According to the default settings, the
coordinates of the points 0, 28, 16, 26–17 in the image for the human eye area are shown
in Figure 5.

(a) (b) (c)

Figure 5. Schematic diagram of key point detection for human face. (a) Sixty-eight key points on a
human face. (b) Face that needs to be matched. (c) Key points and face fitting.

We located the human eye region based on the key points of the detected eye in the
image and drew the mask against the attacked region. The range of pixel values in the
generated mask image was normalized to [0.0, 1.0] to generate a binary-valued mask ma-
trix. This is shown in Figure 6.

Figure 5. Schematic diagram of key point detection for human face. (a) Sixty-eight key points on a
human face. (b) Face that needs to be matched. (c) Key points and face fitting.

We located the human eye region based on the key points of the detected eye in the
image and drew the mask against the attacked region. The range of pixel values in the
generated mask image was normalized to [0.0, 1.0] to generate a binary-valued mask matrix.
This is shown in Figure 6.

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 18

(a) (b)

Figure 6. Schematic diagram of eye area matrix generation. (a) Locating key areas of the human eye.
(b) Generating a human eye area mask.

We generated adversarial examples combining the eye region matrix and full face
region, respectively, to test the effect of the attacks. Figure 7a shows the clean image used
for testing while Figure 7b shows the visualization of the perturbation based on the eye
region and the full-face region. Figure 7c is the adversarial example. After testing, both
images could successfully deceive the face detector. The adversarial perturbation gener-
ated based on the human eye region accounted for 17.8% of the total pixels, while the
number of pixels of the adversarial perturbation generated based on the whole face ac-
counted for 81.3% of the image.

(a) (b) (c)

Figure 7. Schematic diagram of key point generation matrix based on eye detection. (a) Clean image
of a child. (b) Adversarial perturbation based on the human eye and full face. (c) Adversarial exam-
ples based on the human eye and full face.

4.3. Loss Functions
As above-mentioned, this algorithm optimizes the 𝐶(𝑥, 𝑥) function in the local

region. For the targeted attack and non-targeted attack, the relationship between the clean
face image 𝑥 and the three target images 𝑥 and the adversarial example image 𝑥
was compared.
(1) For the non-targeted attack, an adversarial example 𝑥 was generated for the in-

put image 𝑥 so that the difference between them was as large as possible. When the
difference was larger than the threshold value calculated by the deep detection
model, the attack was successful; on the other hand, for the targeted attack, the gen-
erated adversarial example 𝑥 needed to be as similar as possible to the target im-
age 𝑥 . The loss function ℒ𝑜𝑠𝑠1 is shown as Equation (12). ℒ𝑜𝑠𝑠1 = 𝛼 ∙ cos 𝑓(𝑥), 𝑓(𝑥) − (1 − α) ∙ cos 𝑓(𝑥), 𝑓(𝑥) (12)

Figure 6. Schematic diagram of eye area matrix generation. (a) Locating key areas of the human eye.
(b) Generating a human eye area mask.

We generated adversarial examples combining the eye region matrix and full face
region, respectively, to test the effect of the attacks. Figure 7a shows the clean image used
for testing while Figure 7b shows the visualization of the perturbation based on the eye
region and the full-face region. Figure 7c is the adversarial example. After testing, both
images could successfully deceive the face detector. The adversarial perturbation generated
based on the human eye region accounted for 17.8% of the total pixels, while the number
of pixels of the adversarial perturbation generated based on the whole face accounted for
81.3% of the image.

Algorithms 2022, 15, x FOR PEER REVIEW 9 of 18

(a) (b)

Figure 6. Schematic diagram of eye area matrix generation. (a) Locating key areas of the human eye.
(b) Generating a human eye area mask.

We generated adversarial examples combining the eye region matrix and full face
region, respectively, to test the effect of the attacks. Figure 7a shows the clean image used
for testing while Figure 7b shows the visualization of the perturbation based on the eye
region and the full-face region. Figure 7c is the adversarial example. After testing, both
images could successfully deceive the face detector. The adversarial perturbation gener-
ated based on the human eye region accounted for 17.8% of the total pixels, while the
number of pixels of the adversarial perturbation generated based on the whole face ac-
counted for 81.3% of the image.

(a) (b) (c)

Figure 7. Schematic diagram of key point generation matrix based on eye detection. (a) Clean image
of a child. (b) Adversarial perturbation based on the human eye and full face. (c) Adversarial exam-
ples based on the human eye and full face.

4.3. Loss Functions
As above-mentioned, this algorithm optimizes the 𝐶(𝑥, 𝑥) function in the local

region. For the targeted attack and non-targeted attack, the relationship between the clean
face image 𝑥 and the three target images 𝑥 and the adversarial example image 𝑥
was compared.
(1) For the non-targeted attack, an adversarial example 𝑥 was generated for the in-

put image 𝑥 so that the difference between them was as large as possible. When the
difference was larger than the threshold value calculated by the deep detection
model, the attack was successful; on the other hand, for the targeted attack, the gen-
erated adversarial example 𝑥 needed to be as similar as possible to the target im-
age 𝑥 . The loss function ℒ𝑜𝑠𝑠1 is shown as Equation (12). ℒ𝑜𝑠𝑠1 = 𝛼 ∙ cos 𝑓(𝑥), 𝑓(𝑥) − (1 − α) ∙ cos 𝑓(𝑥), 𝑓(𝑥) (12)

Figure 7. Schematic diagram of key point generation matrix based on eye detection. (a) Clean image
of a child. (b) Adversarial perturbation based on the human eye and full face. (c) Adversarial
examples based on the human eye and full face.

Algorithms 2022, 15, 465 9 of 17

4.3. Loss Functions

As above-mentioned, this algorithm optimizes the C
(

x, xadv
)

function in the local
region. For the targeted attack and non-targeted attack, the relationship between the clean
face image x and the three target images xtar and the adversarial example image xadv

was compared.

(1) For the non-targeted attack, an adversarial example xadv was generated for the input
image x so that the difference between them was as large as possible. When the
difference was larger than the threshold value calculated by the deep detection model,
the attack was successful; on the other hand, for the targeted attack, the generated
adversarial example xadv needed to be as similar as possible to the target image xtar.
The loss function Loss1 is shown as Equation (12).

Loss1 = α· cos
(

f (x), f
(

xadv
))
− (1− α)· cos

(
f
(

xadv
)

, f
(
xtar)) (12)

where cos(·, ·) is the cosine similarity of the feature vector calculated by Equation (10);
α takes the value of 0 or 1, representing the non-targeted attack and targeted attack,
respectively.

(2) The perturbation size is constrained by the L2 norm, thus ensuring that the visi-
bility of the perturbation is kept within a certain range when an effective attack is
implemented. The loss function in this section constrains the perturbation after the
restriction as follows.

Loss2 = L2(mask� r) (13)

where r is the perturbation. The mask is that generated from the first face image
of the face pair to restrict the perturbation region. It is a [0, 1] matrix scaled to the
same size as the image. The � symbol indicates the dot product operation between
the elements.

(3) The TV is used to improve the smoothness of the perturbation through Equation (14),
and the loss function of this part also deals with the perturbation after restriction,
as follows.

Loss3 = TV(mask� r) (14)

In summary, for the above targeted and non-targeted attacks, the loss function is
minimized by solving the following optimization problem of Equation (15), which can
generate the final adversarial perturbation r :

min
r
Loss = min

r
(λ1Loss1 + λ2Loss2 + λ3Loss3) (15)

The hyperparameters λ1, λ2, and λ3 are used to control the relative weights of the
perturbation losses. The correlation coefficients of the two regular term loss functions Loss2
and Loss3 are gradually reduced as the number of iterations increases.

4.4. Momentum-Based Optimization Algorithms

To solve the optimization problem above, the adversarial perturbation is optimized
by using an iterative gradient descent method to minimize the objective function. A
momentum parameter superimposes in the gradient direction and dynamically stabilizes
update directions in each iteration step [12].

In the updating process, due to the different iterations of updating for different scenes,
we divided the updating process into several stages, and the learning rate of different

Algorithms 2022, 15, 465 10 of 17

stages gradually decreased. The gradient is calculated as follows.Meanwhile, the learning
rate α∆t is changed according to the number of iterations it and stages st.

grad = β·mi +
∇xLoss(xadv ,y)
||∇xLoss(xadv ,y)||1

mi+1 = grad
rt+1 = rt − α∆i ∗ grad

α∆i =
(

it
st

)i
a∆(i−1) + a∆(i−1)

(16)

where
∣∣∣∣∣∣∇xLoss

(
xadv, y

)∣∣∣∣∣∣
1

is the regularized representation of the gradient of∇xLoss
(

xadv, y
)

.
The parameter β is the decay factor, adjusting for the influence of momentum on the gradi-
ent calculation. rt is the adversarial perturbation generated in the t iteration. The parameter
α∆t is dynamically adjusted and is related to the iterations it and the current stages st. If it
is high, then * can be set bigger. As it increases, st will become smaller.

xadv
t+1 = clipx,ε(x + mask� rt+1) (17)

where clipx,ε(·) serves to restrict the adversarial examples after superimposed perturbation
to a reasonable range (after normalization) of [−1, 1] at the end of each iteration.

The final elaborate perturbation is processed and added to the original face image
so that the final adversarial example is generated by restricting the perturbation to a
reasonable range of [0, 255] using clipx,ε(·). The process is shown in Figure 8.

Algorithms 2022, 15, x FOR PEER REVIEW 11 of 18

The final elaborate perturbation is processed and added to the original face image so
that the final adversarial example is generated by restricting the perturbation to a reason-
able range of [0, 255] using 𝑐𝑙𝑖𝑝𝒙, (∙). The process is shown in Figure 8.

Figure 8. Flowchart of the adversarial attack based on the eye area.

Figure 8 shows that the feature vectors are first extracted from the aligned faces. The
attack region is mapped by keypoint detection and the adversarial perturbation infor-
mation is generated based on this region. The local aggressive perturbation is obtained
through the optimization of the loss functions. This perturbation information can effec-
tively mislead FRS.

5. Experiments
5.1. Datasets

In this paper, we used CASIA WebFace [7] as the training dataset. All of the pictures
are from movie websites and vary in light and angle. In order to verify the effect of the
algorithm on different datasets, we choose LFW [22] as our test dataset. It provides 6000
test face pairs, of which 3000 are matched pairs and 3000 are mismatched pairs.

For face detection and alignment, MTCNN [30–34] was used to uniformly crop the
images to 112 × 112. Experimentally, there were 500 pairs of matched faces with the same
identity for non-targeted attacks and 500 pairs of unmatched faces with different identities
for targeted attacks.

5.2. Performance Evaluation for Face Recognition Models
Five mainstream pre-trained face recognition models were used for comparison,

namely ResNet50-IR (IR50) [31], ResNet101-IR (IR101) [32], SEResNet50-IR (IR-SE50) [33],
MobileFaceNet [8], and ResNet50 [33]. In order to show the success rate of adversarial
attacks more intuitively, the metrics were the True Accept Rate (TAR) and False Accept
Rate (FAR) [20]. Given a face pair (𝑥 , 𝑥), let the matched face pair be 𝑃 and the un-
matched face pair be 𝑃 . Given a threshold, the calculation of TAR and FAR is as follows. 𝑇𝐴 = (𝒙 , 𝒙) ∈ 𝑃 ,

with 𝐷 𝑓(𝒙), 𝑓(𝒙) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (18)

Figure 8. Flowchart of the adversarial attack based on the eye area.

Figure 8 shows that the feature vectors are first extracted from the aligned faces. The
attack region is mapped by keypoint detection and the adversarial perturbation infor-
mation is generated based on this region. The local aggressive perturbation is obtained
through the optimization of the loss functions. This perturbation information can effectively
mislead FRS.

5. Experiments
5.1. Datasets

In this paper, we used CASIA WebFace [7] as the training dataset. All of the pictures
are from movie websites and vary in light and angle. In order to verify the effect of the

Algorithms 2022, 15, 465 11 of 17

algorithm on different datasets, we choose LFW [22] as our test dataset. It provides 6000 test
face pairs, of which 3000 are matched pairs and 3000 are mismatched pairs.

For face detection and alignment, MTCNN [30–34] was used to uniformly crop the
images to 112 × 112. Experimentally, there were 500 pairs of matched faces with the same
identity for non-targeted attacks and 500 pairs of unmatched faces with different identities
for targeted attacks.

5.2. Performance Evaluation for Face Recognition Models

Five mainstream pre-trained face recognition models were used for comparison,
namely ResNet50-IR (IR50) [31], ResNet101-IR (IR101) [32], SEResNet50-IR (IR-SE50) [33],
MobileFaceNet [8], and ResNet50 [33]. In order to show the success rate of adversarial
attacks more intuitively, the metrics were the True Accept Rate (TAR) and False Accept Rate
(FAR) [20]. Given a face pair (x1, x2), let the matched face pair be Ps and the unmatched
face pair be Pd. Given a threshold, the calculation of TAR and FAR is as follows.

TA =

{
(x1, x2) ∈ Ps,

with D(f (x1), f (x2)) < threshold

}
(18)

FA =

{
(x1, x2) ∈ Pd,

with D(f (x1), f (x2)) < threshold

}
(19)

TAR =
|TA|
|Ps|

(20)

FAR =
|FA|
|Pd|

(21)

where |TA| is the number of all matched pairs whose distance is less than the threshold;
|Ps| is the number of all matched pairs; |FA| is the number of all unmatched pairs whose
distance is less than the threshold; and |Pd| is the number of all unmatched face pairs.

Different models will have different thresholds that can objectively reflect the success
rate of the attack. Accordingly, the threshold was determined according to different values
of FAR, and was chosen when FAR = 1× 10−2 or 1× 10−3. We traversed the range of
thresholds and used the 10-fold cross-validation method to find the threshold closest to the
target FAR.

As shown in Figure 9, the TPR of each model (i.e., the proportion of correctly pre-
dicted matched face pairs to all unmatched face pairs) was maintained above 96.5% when
FAR = 1× 10−6. When FAR = 1× 10−2, the TPR reached more than 98.5%. This indicates
that the performance of these backbone network models had excellent performance.

Algorithms 2022, 15, x FOR PEER REVIEW 12 of 18

𝐹𝐴 = (𝒙 , 𝒙) ∈ 𝑃 ,
with 𝐷 𝑓(𝒙), 𝑓(𝒙) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (19)

𝑇𝐴𝑅 = |𝑇𝐴||𝑃 | (20)

𝐹𝐴𝑅 = |𝐹𝐴||𝑃 | (21)

where |𝑇𝐴| is the number of all matched pairs whose distance is less than the threshold; |𝑃 | is the number of all matched pairs; |𝐹𝐴| is the number of all unmatched pairs whose
distance is less than the threshold; and |𝑃 | is the number of all unmatched face pairs.

Different models will have different thresholds that can objectively reflect the success
rate of the attack. Accordingly, the threshold was determined according to different val-
ues of FAR, and was chosen when FAR = 1 10 or 1 10 . We traversed the range
of thresholds and used the 10-fold cross-validation method to find the threshold closest
to the target FAR.

As shown in Figure 9, the TPR of each model (i.e., the proportion of correctly pre-
dicted matched face pairs to all unmatched face pairs) was maintained above 96.5% when FAR = 1 10 . When FAR = 1 10 , the TPR reached more than 98.5%. This indicates
that the performance of these backbone network models had excellent performance.

Figure 9. The ROC curve of FPR in the range of 1 10 to 1.

The test results of the five models on the LFW at a FAR of about 0.01 are shown in
Table 1. The value of TAR@FAR = 0.01 (i.e., the probability of correctly identifying match-
ing face pairs when the FAR is close to 0.01) was maintained at more than 98.9%.

Table 1. The TAR and corresponding thresholds for different models.

Models TAR (%) FAR Threshold Sim-Threshold
IR50 99.596 0.00995 0.43326 0.20814

IR101 98.984 0.01259 0.41311 0.26960
IR-SE50 99.396 0.01025 0.42920 0.22060

ResNet50 99.596 0.00836 0.45207 0.15001
MobileFaceNet 99.196 0.01076 0.43763 0.19469

5.3. Attack Method Evaluation Indicators
The accuracy of a face recognition model intuitively reflects the predictive ability of

the model. The attack success rate (ASR) is calculated as follows: 𝐴𝑆𝑅 = 1 − 𝐴𝑐𝑐 (22)

Figure 9. The ROC curve of FPR in the range of 1× 10−6 to 1.

The test results of the five models on the LFW at a FAR of about 0.01 are shown in
Table 1. The value of TAR@FAR = 0.01 (i.e., the probability of correctly identifying matching
face pairs when the FAR is close to 0.01) was maintained at more than 98.9%.

Algorithms 2022, 15, 465 12 of 17

Table 1. The TAR and corresponding thresholds for different models.

Models TAR (%) FAR Threshold Sim-Threshold

IR50 99.596 0.00995 0.43326 0.20814
IR101 98.984 0.01259 0.41311 0.26960

IR-SE50 99.396 0.01025 0.42920 0.22060
ResNet50 99.596 0.00836 0.45207 0.15001

MobileFaceNet 99.196 0.01076 0.43763 0.19469

5.3. Attack Method Evaluation Indicators

The accuracy of a face recognition model intuitively reflects the predictive ability of
the model. The attack success rate (ASR) is calculated as follows:

ASR = 1− Acc (22)

The higher the ASR, the more vulnerable the model is to adversarial attacks; the lower
the ASR, the more robust the model is to adversarial attacks and is able to withstand a
certain degree of adversarial attacks.

In order to evaluate the magnitude of the difference between the generated adversarial
example and the original face image after the attack, this experiment used the peak signal-to-
noise ratio (PSNR), and structural similarity (SSIM) [34], which are two metrics to measure
the image quality of the adversarial example.

The PSNR is defined and calculated by the mean squared error (MSE). The following
equation calculates the PSNR for a given image I.

PSNR = 20 · log10(MAXI)− 10 · log10(MSE) (23)

where MAXI is the maximum pixel value of the image; MSE is the mean square error. The
larger the PSNR, the less distortion and the better quality of the adversarial example [3].

Considering human intuition, we adopted the evaluation index of structural similarity
(SSIM), which takes into account the three factors of brightness, contrast, and structure.
Given images x and y with the same dimensions, the structural similarity is calculated
as follows.

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (24)

Among them, µx, µy are the mean values of image x, y; σ2
x , σ2

y are the variance of
image x, y; σxy is the covariance, and c1 and c2 are used to maintain stability. SSIM takes
values in the range of [−1, 1], and the closer the value is to 1, the higher the structural
similarity between the adversarial example and the original image. To a certain extent, it
can indicate the more imperceptible the perturbation applied to the adversarial example is
to humans.

5.4. Adversarial Attack within Human Eye Area
5.4.1. Non-Targeted Attacks based on Eye Area

A schematic diagram of the non-targeted attack is shown in Figure 10. The first
column shows the face pair before the attack. To the human eye, there is no difference
between the second image in Figure 10a,b, and the second image in Figure 10b is the
adversarial example.

Algorithms 2022, 15, 465 13 of 17

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 18

The higher the ASR, the more vulnerable the model is to adversarial attacks; the
lower the ASR, the more robust the model is to adversarial attacks and is able to withstand
a certain degree of adversarial attacks.

In order to evaluate the magnitude of the difference between the generated adversar-
ial example and the original face image after the attack, this experiment used the peak
signal-to-noise ratio (PSNR), and structural similarity (SSIM) [34], which are two metrics
to measure the image quality of the adversarial example.

The PSNR is defined and calculated by the mean squared error (MSE). The following
equation calculates the PSNR for a given image 𝐼. 𝑃𝑆𝑁𝑅 = 20 ⋅ 𝑙𝑜𝑔 (𝑀𝐴𝑋) − 10 ⋅ 𝑙𝑜𝑔 (𝑀𝑆𝐸) (23)

where 𝑀𝐴𝑋 is the maximum pixel value of the image; 𝑀𝑆𝐸 is the mean square error.
The larger the PSNR, the less distortion and the better quality of the adversarial example
[3].

Considering human intuition, we adopted the evaluation index of structural similar-
ity (SSIM) , which takes into account the three factors of brightness, contrast, and struc-
ture. Given images 𝑥 and 𝑦 with the same dimensions, the structural similarity is calcu-
lated as follows. 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 2𝜇 𝜇 + 𝑐 2𝜎 + 𝑐𝜇 + 𝜇 + 𝑐 𝜎 + 𝜎 + 𝑐 (24)

Among them, 𝜇 , 𝜇 are the mean values of image 𝑥, 𝑦; 𝜎 , 𝜎 are the variance of
image 𝑥, 𝑦; 𝜎 is the covariance, and 𝑐 and 𝑐 are used to maintain stability. SSIM
takes values in the range of [−1, 1], and the closer the value is to 1, the higher the structural
similarity between the adversarial example and the original image. To a certain extent, it
can indicate the more imperceptible the perturbation applied to the adversarial example
is to humans.

5.4. Adversarial Attack within Human Eye Area
5.4.1 Non-Targeted Attacks based on Eye Area

A schematic diagram of the non-targeted attack is shown in Figure 10. The first col-
umn shows the face pair before the attack. To the human eye, there is no difference be-
tween the second image in Figure 10a,b, and the second image in Figure 10b is the adver-
sarial example.

(a)

(b)

Figure 10. Before and after eye-based non-targeted attack. (a) Visualization of facial features of the
same person from different angles. (b) Visualization of face features after being attacked.

weightattetion in the fourth column indicates the attention of the model, where the
darker color indicates that the model paid more attention to the area. It can be seen that
there was no significant change in the attention hotspots before and after the attack. In the
third column, the xCos [35] module visualizes the face pairs before and after the attack and
visualizes the changes in the images from the perspective of the neural network parameters.
The bluer color in the similarity plot cospatch indicates that they are more similar, and the
redder color indicates that they are less similar. It can be seen that the face pairs changed
dramatically after the attack.

5.4.2. Targeted Attacks Based on Eye Area

The purpose of the targeted attack is to deceive the deep detection model into misiden-
tifying another specific face from the original image. As shown in Figure 11a, the similarity
graph of the face pair before the attack had a large number of red grids, indicating that
this pair was very dissimilar and was a mismatched face pair, while the model’s attention
focused on the eye area in the middle of the face. The first image in Figure 11b is the gener-
ated adversarial example; the second image is the target image. Intuitively, the first images
in Figure 11a,b are exactly the same. This is also reflected in the attention map. However,
for the face recognition model, the grid of the eye region in cospatch mostly changed to blue,
and 43% of the regions changed from yellow to blue. This indicates that the image change
affected the classification of deep model.

5.4.3. Quantitative Comparison of Different Attack Models

To verify the effectiveness of the algorithm, we selected 500 faces for targeted and
non-targeted attacks. Furthermore, each model has a different threshold for the best
performance. The attack success rates of different attack models are shown in Table 2.

Table 2. The accuracy and success rates of different models under the specified thresholds.

Models ACC (%) Targeted-ASR (%) Non-Targeted-ASR (%) Threshold

IR50 98.2 90.4 99.2 0.43326
IR101 94.7 96.2 98.6 0.41311

IR-SE50 92.6 92.2 98.8 0.42920
ResNet50 94.5 93.8 99.4 0.45207

MobileFaceNet 96.6 91.4 99.2 0.43763

Algorithms 2022, 15, 465 14 of 17

Algorithms 2022, 15, x FOR PEER REVIEW 14 of 18

Figure 10. Before and after eye-based non-targeted attack. (a) Visualization of facial features of the
same person from different angles. (b) Visualization of face features after being attacked. 𝑤𝑒𝑖𝑔ℎ𝑡 in the fourth column indicates the attention of the model, where the
darker color indicates that the model paid more attention to the area. It can be seen that
there was no significant change in the attention hotspots before and after the attack. In the
third column, the xCos [35] module visualizes the face pairs before and after the attack
and visualizes the changes in the images from the perspective of the neural network pa-
rameters. The bluer color in the similarity plot 𝑐𝑜𝑠 indicates that they are more sim-
ilar, and the redder color indicates that they are less similar. It can be seen that the face
pairs changed dramatically after the attack.
5.4.2 Targeted Attacks based on Eye Area

The purpose of the targeted attack is to deceive the deep detection model into misi-
dentifying another specific face from the original image. As shown in Figure 11a, the sim-
ilarity graph of the face pair before the attack had a large number of red grids, indicating
that this pair was very dissimilar and was a mismatched face pair, while the model’s at-
tention focused on the eye area in the middle of the face. The first image in Figure 11b is
the generated adversarial example; the second image is the target image. Intuitively, the
first images in Figure 11-(a) and (b) are exactly the same. This is also reflected in the at-
tention map. However, for the face recognition model, the grid of the eye region in 𝑐𝑜𝑠 mostly changed to blue, and 43% of the regions changed from yellow to blue.
This indicates that the image change affected the classification of deep model.

(a)

(b)

Figure 11. Before and after the eye-based targeted attack. (a) Visualization of the features of different
faces. (b) Feature visualization of different faces after the targeted attack.

5.4.3 Quantitative Comparison of Different Attack Models
To verify the effectiveness of the algorithm, we selected 500 faces for targeted and

non-targeted attacks. Furthermore, each model has a different threshold for the best per-
formance. The attack success rates of different attack models are shown in Table 2.

Table 2. The accuracy and success rates of different models under the specified thresholds.

Models ACC (%) Targeted-ASR (%) Non-Targeted-ASR (%) Threshold
IR50 98.2 90.4 99.2 0.43326

IR101 94.7 96.2 98.6 0.41311
IR-SE50 92.6 92.2 98.8 0.42920

Figure 11. Before and after the eye-based targeted attack. (a) Visualization of the features of different
faces. (b) Feature visualization of different faces after the targeted attack.

Our method was compared with the traditional adversarial algorithms. With a high
success rate, we compared the differences between the adversarial examples and the
original images, and the evaluated metrics included the image quality of the adversarial
examples, the calculated average PSNR and SSIM. The perturbations of the adversarial
examples generated by our algorithm for different deep detection models were counted. A
PSNR greater than 40 indicates that the image distortion was small; the closer the SSIM
takes the value of 1, the closer the adversarial example is to the original image. The
comparison results are shown in Table 3.

Table 3. Average PSNR, SSIN, and the perturbed parameters for different models.

Models Targeted-PSNR Targeted-SSIM Targeted-L2 Non-Targeted-PSNR Non-Targeted-SSIM Non-Targeted-L2

IR50 43.69864 0.99358 0.71112 39.19224 0.98557 1.29420
IR101 43.68891 0.99379 0.71556 42.37390 0.99232 0.84162

IR-SE50 43.46344 0.99345 0.76280 39.95576 0.98470 1.22338
ResNet50 45.51955 0.99531 0.58352 40.89765 0.98938 1.09996

MobileFaceNet 43.82034 0.99395 0.72392 41.36429 0.98954 1.04512

As shown in Table 3, for different attacks, the PSNR of all models was above 40 dB
and the SSIM was above 0.98, indicating that the image distortion was very small and
the perturbations were imperceptible to humans; on the other hand, the perturbations
generated by the targeted attack was much lower than that of the non-targeted attack. The
momentum in this algorithm was updated toward the target image due to the directed
output of the image. Therefore, the adversarial example generation algorithm was also
guided to optimize in the direction of the specific objects.

5.4.4. Comparison of Adversarial Example Algorithms

In this paper, the validation dataset covered 40 different categories. These categories
can be correctly classified by the MobileFaceNet model (Top-1 correct); we also selected
ArcFace [3] and SphereFace [21] face recognition models for testing. ArcFace uses IR101 as
the network structure and has 99.8% accuracy in the LFW test set; SphereFace’s network
structure removes the BN module, which differs significantly from the ResNet50 residual
network, with 99.5% accuracy in the LFW test set. We selected a variety of typical adver-
sarial example algorithms FGSM [10], I-FGSM [11] algorithms, and the face-specific attack

Algorithms 2022, 15, 465 15 of 17

method AdvGlasses [18], AdvHat [19], and our algorithm (AdvLocFace) for cross-testing.
The comparison results are shown in Table 4.

Table 4. Accuracy and success rates of different algorithms.

Models Attack Method ResNet50 MobileFaceNet SphereFace ArcFace

ResNet50

FGSM 77.00% 34.81% 31.88% 30.26%
I-FGSM 100.00% 24.41% 21.76% 18.82%

AdvGlasses 100.00% 51.05% 48.02% 40.58%
AdvHat 97.80% 52.92% 44.87% 44.24%

AdvLocFace 99.10% 57.15% 51.35% 59.00%

MobileFaceNet

FGSM 39.99% 67.67% 27.83% 29.04%
I-FGSM 38.86% 100.00% 24.59% 20.75%

AdvGlasses 69.39% 100.00% 46.06% 45.64%
AdvHat 77.61% 97.90% 46.29% 37.38%

AdvLocFace 61.62% 99.20% 52.76% 40.92%

SphereFace

FGSM 38.55% 32.34% 59.20% 28.74%
I-FGSM 41.94% 33.37% 99.88% 25.91%

AdvGlasses 76.59% 65.61% 99.58% 53.53%
AdvHat 68.03% 54.06% 93.91% 64.16%

AdvLocFace 62.96% 58.90% 96.65% 67.91%

ArcFace

FGSM 37.01% 33.58% 30.76% 75.19%
I-FGSM 31.56% 25.65% 21.96% 98.67%

AdvGlasses 57.88% 52.43% 50.20% 97.35%
AdvHat 68.61% 65.90% 63.19% 100.00%

AdvLocFace 73.24% 70.64% 70.57% 100.00%

In Table 4, the diagonal lines are white-box attack settings. I-FGSM improved the
success rate of white-box attacks by increasing the iterative process, but reduced the
mobility of the attack method due to the overfitting of the perturbation. The AdvHat
algorithm is an advanced physical attack method that attacks realistic attacks by pasting
stickers on the hat, and it is easy to replicate this attack. The optimization process, based
on the consideration of pixel smoothing and color printability, limits the effect of mobility
in digital attacks. AdvLocFace, with the best threshold for similar models based on the
base model of training, obtained a more stable success rate of black-box attacks. For
network models with different structures and different training data, the attack success rate
decreased significantly.

6. Conclusions

This paper proposed a face adversarial example generation algorithm based on local
regions. The algorithm uses the principle of a face recognition system to build a local
area containing key features and generates momentum-based adversarial examples. This
algorithm is a typical white-box attack method but still achieves good results in the black-
box attack scenario.

Compared with the traditional adversarial attack method, the adversarial perturbance
generated by our method only needs to cover a small part of the original image. Because the
region contains the key features of the face, it can successfully mislead the face recognition
system. In addition, the generated adversarial example is patch-like, which is highly similar
to the original image and therefore more inconspicuous. Our algorithm can selectively
attack any target in the image, so it can be extended to attack other types of images. the
experiments show that the proposed algorithm can effectively balance the modified pixel
area and attack successfully, achieving good transferability.

Algorithms 2022, 15, 465 16 of 17

Author Contributions: Investigation, J.H.; Methodology, D.L.; Software, S.L.; Writing—Original
draft, D.C.; Writing—Review & editing, J.H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the State Administration of Science, Technology and Industry
for National Defense, PRC, Grant No. JCKY2021206B102.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data and used models during the study are available in a repository
or online. The datasets were CASIA WebFace [7], LFW [6], and MTCNN [30].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. DeepFace: Closing the gap to human-level performance in face verification. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.
2. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. Web-scale training for face identification. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.
3. Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4690–4699.
4. Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li, Z.; Liu, W. Cosface: Large margin cosine loss for deep face recognition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018.
5. Florian, S.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.
6. Tianyue, Z.; Deng, W.; Hu, J. Cross-age lfw: A database for studying cross-age face recognition in unconstrained environments.

arXiv 2017, arXiv:1708.08197.
7. Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning Face Representation from Scratch. arXiv 2014, arXiv:1411.7923.
8. Chen, S.; Liu, Y.; Gao, X.; Han, Z. MobileFaceNets: Efficient CNNs for Accurate Real-time Face Verification on Mobile Devices. In

Proceedings of the Chinese Conference on Biometric Recognition, Beijing, China, 3–4 December 2018; pp. 428–438.
9. Thys, S.; Van Ranst, W.; Goedeme, T. Fooling automated surveillance cameras: Adversarial patches to attack person detection. In

Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach,
CA, USA, 16–17 June 2019; pp. 49–55.

10. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2014, arXiv:1312.6199.

11. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. Available
online: https://arxiv.org/abs/1412.6572 (accessed on 23 October 2022).

12. Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; Li, J. Boosting Adversarial Attacks with Momentum. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 9185–9193.

13. Carlini, N.; Wagner, D.A. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium
on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 39–57.

14. Liu, X.; Yang, H.; Liu, Z.; Song, L.; Chen, Y.; Li, H. DPATCH: An Adversarial Patch Attack on Object Detectors. arXiv 2019,
arXiv:1806.02299.

15. Kevin, E.; Ivan, E.; Earlence, F.; Bo, L.; Amir, R.; Florian, T.; Atul, P.; Tadayoshi, K.; Dawn, S. Physical Adversarial Examples for
Object Detectors. arXiv 2018, arXiv:1807.07769.

16. Wu, Z.; Lim, S.; Davis, L.; Goldstein, T. Making an Invisibility Cloak: Real World Adversarial Attacks on Object Detectors. In
Proceedings of the 16th European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020.

17. Xu, K.; Zhang, G.; Liu, S.; Fan, Q.; Sun, M.; Chen, H.; Chen, P.; Wang, Y.; Lin, X. Evading Real-Time Person Detectors by
Adversarial T-shirt. arXiv 2019, arXiv:1910.11099v1.

18. Sharif, M.; Bhagavatula, S.; Bauer, L.; Reiter, M.K. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-Art Face
Recognition. In Proceedings of the CCS’16: 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 24–28 October 2016.

19. Komkov, S.; Petiushko, A. AdvHat: Real-world adversarial attack on ArcFace Face ID system. In Proceedings of the 2020 25th
International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021.

20. Huang, G.B.; Mattar, M.; Berg, T.; Learned-Miller, E. Labeled faces in the wild: A database for studying face recognition in
unconstrained environments. In Proceedings of the Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and
Recognition, Marseille, France, 17 October 2008; pp. 1–11.

21. Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 212–220.

https://arxiv.org/abs/1412.6572

Algorithms 2022, 15, 465 17 of 17

22. Lang, D.; Chen, D.; Shi, R.; He, Y. Attention-Guided Digital Adversarial Patches On Visual Detection. Secur. Commun. Netw. 2021,
2021, 6637936:1–6637936:11. [CrossRef]

23. Nguyen, D.; Arora, S.S.; Wu, Y.; Yang, H. Adversarial Light Projection Attacks on Face Recognition Systems: A Feasibility Study.
Available online: https://arxiv.org/abs/2003.11145 (accessed on 23 October 2022).

24. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015.

25. Zolfi, A.; Avidan, S.; Elovici, Y.; Shabtai, A. Adversarial Mask: Real-World Adversarial Attack Against Face Recognition Models.
arXiv 2021, arXiv:2111.10759.

26. Yin, B.; Wang, W.; Yao, T.; Guo, J.; Kong, Z.; Ding, S.; Li, J.; Liu, C. Adv-Makeup—A New Imperceptible and Transferable Attack
on Face Recognition. In Proceedings of the International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 19–27
August 2021; pp. 1252–1258.

27. Xiao, Z.; Gao, X.; Fu, C.; Dong, Y.; Gao, W.; Zhang, X.; Zhou, J.; Zhu, J. Improving transferability of adversarial patches on face
recognition with generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Virtual, 19–25 June 2021; pp. 11845–11854.

28. Parmar, R.; Kuribayashi, M.; Takiwaki, H.; Raval, M.S. On Fooling Facial Recognition Systems using Adversarial Patches. In
Proceedings of the 2022 International Joint Conference on Neural Networks, Padova, Italy, 18–23 July 2022; pp. 1–8.

29. Jia, S.; Yin, B.; Yao, T.; Ding, S.; Shen, C.; Yang, X.; Ma, C. Adv-Attribute: Inconspicuous and Transferable Adversarial Attack on
Face Recognition. arXiv 2022, arXiv:2210.06871.

30. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE
Signal Process. Lett. 2016, 23, 1499–1503. [CrossRef]

31. Farfade, S.S.; Saberian, M.J.; Li, L.J. Multi-view Face Detection Using Deep Convolutional Neural Networks. In Proceedings of
the 5th ACM on International Conference on Multimedia Retrieval, Shanghai, China, 23–26 June 2015; pp. 643–650.

32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

33. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.

34. Huynh-Thu, Q.; Ghanbari, M. Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 2008, 44, 800–801.
[CrossRef]

35. Lin, Y.S.; Liu, Z.Y.; Chen, Y.A.; Wang, Y.S.; Chang, Y.L.; Hsu, W.H. xCos: An Explainable Cosine Metric for Face Verification Task.
ACM Trans. Multimed. Comput. Commun. Appl. 2021, 17, 1–16.

http://doi.org/10.1155/2021/6637936
https://arxiv.org/abs/2003.11145
http://doi.org/10.1109/LSP.2016.2603342
http://doi.org/10.1049/el:20080522

	Introduction
	Introductions
	Motivations
	Contributions

	Preliminaries
	Deep Model of Face Recognition
	Classic Adversarial Attacks Algorithms
	Adversarial Attacks on Face Recognition

	Methodology and Evaluations
	Face Recognition and Evaluation Matrix
	Adversarial Attacks against Faces
	Evaluation Indices of Attack

	Our Method
	Configurations for Face Adversarial Attack
	Local Area Mask Generation
	Loss Functions
	Momentum-Based Optimization Algorithms

	Experiments
	Datasets
	Performance Evaluation for Face Recognition Models
	Attack Method Evaluation Indicators
	Adversarial Attack within Human Eye Area
	Non-Targeted Attacks based on Eye Area
	Targeted Attacks Based on Eye Area
	Quantitative Comparison of Different Attack Models
	Comparison of Adversarial Example Algorithms

	Conclusions
	References

