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Abstract: Parathyroid scintigraphy with 99mTc-sestamibi (MIBI) is an established technique for
localising abnormal parathyroid glands (PGs). However, the identification and localisation of PGs
require much attention from medical experts and are time-consuming. Artificial intelligence methods
can offer an assisting solution. This retrospective study enrolled 632 patients who underwent
parathyroid scintigraphy with double-phase and thyroid subtraction techniques. The study proposes
a three-path approach, employing the state-of-the-art convolutional neural network called VGG19.
Images input to the model involved a set of three scintigraphic images in each case: MIBI early phase,
MIBI late phase, and 99mTcO4 thyroid scan. A medical expert’s diagnosis provided the ground
truth for positive/negative results. Moreover, the visualised suggested areas of interest produced
by the Grad-CAM algorithm are examined to evaluate the PG-level agreement between the model
and the experts. Medical experts identified 545 abnormal glands in 452 patients. On a patient basis,
the deep learning (DL) model attained an accuracy of 94.8% (sensitivity 93.8%; specificity 97.2%) in
distinguishing normal from abnormal scintigraphic images. On a PG basis and in achieving identical
positioning of the findings with the experts, the model correctly identified and localised 453/545
glands (83.1%) and yielded 101 false focal results (false positive rate 18.23%). Concerning surgical
findings, the expert’s sensitivity was 89.68% on patients and 77.6% on a PG basis, while that of
the model reached 84.5% and 67.6%, respectively. Deep learning in parathyroid scintigraphy can
potentially assist medical experts in identifying abnormal findings.

Keywords: deep learning; explainable artificial intelligence; parathyroid glands; hyperparathyroidism

1. Introduction

Parathyroid adenoma belongs to parathyroid proliferative disorders, including parathy-
roid hyperplasia, parathyroid adenoma, and parathyroid carcinoma [1]. Approximately
85 per cent of primary hyperparathyroidism (HPPT) is caused by a parathyroid adenoma,
followed by parathyroid hyperplasia with a percentage of 15. Parathyroid carcinoma is
rare [2]. However, recent evidence no longer supports the entity of hyperplasia in pri-
mary HPPT with multiple abnormal glands and, in this setting, suggests the presence
of two or more parathyroid adenomas. Therefore, according to the WHO 2022 classifica-
tion, the term “hyperplasia” should be confined to secondary HPPT, while primary HPPT
should be replaced by “primary HPPT-related multiglandular parathyroid disease” [3].
Severe secondary HPPT is caused primarily by end-stage renal failure. In this situation, all
parathyroid glands (PGs) are enlarged, each to a different degree. Tertiary HPTT denotes
the persistence of HPPT after successful renal transplantation.

Despite the current use of calcimimetic drugs, which succeed in lowering serum cal-
cium and parathyroid hormone levels, the definitive cure of HPPT is the surgical excision
of abnormal PGs. The surgical approach relies heavily on the imaging modalities’ pre-
operative localisation of enlarged glands. Preoperative localising methods include neck

Algorithms 2022, 15, 455. https://doi.org/10.3390/a15120455 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15120455
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6439-9282
https://doi.org/10.3390/a15120455
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15120455?type=check_update&version=3


Algorithms 2022, 15, 455 2 of 16

ultrasound (U/S), parathyroid scintigraphy, dynamic contrast-enhanced computerised
tomography, 4-D CT, and magnetic resonance imaging (MRI). Depending on local experi-
ence and expertise, U/S and scintigraphy are used first, while 4-D CT and MRI are usually
reserved for negative or ambiguous cases.

The radiotracer 99mTc-Sestamibi (MIBI) is injected to perform the dual-phase method
in parathyroid scintigraphy. This method involves early acquisition and late acquisition
image of the neck and the mediastinum. The early image is acquired 10 min after the MIBI
administration and the late image is acquired 2 h post-injection. MIBI uptake by the thyroid
gland in the early image may impede the detection of an adenoma. In many abnormal PG
cases, prolonged tracer retention is observed. False negative scans may appear due to false
clearance of MIBI from particular adenomas or hyperplastic glands. In some cases, the
thyroid subtraction method is followed. The latter involves the administration of a second
radioactive tracer 123I or 99mTc-pertechnetate for alienating the thyroid gland. The digital
subtraction of the thyroid image from the early MIBI and the late MIBI images produces the
result. Besides planar images, SPECT or SPECT/CT can increase the method’s sensitivity
and offer a more precise localisation of findings in the 3-D space [4].

Computer-aided diagnostic (CAD) assistance in parathyroid adenoma identification
could alleviate human tiredness and routine in everyday clinical practice, allowing medical
staff to concentrate on other tasks. Still, human expertise is indispensable to evaluating
computer suggestions, which is a much simpler task.

Deep learning (DL) methods have showed great performance in classification and
object detection challenges involving medical images. This is due to the encapsulation of
myriad potentially essential image features. An intuitive example of the DL implementation
is cancer detection frameworks [5–7].

Recent clinical studies report novel optical technologies that enhance PGs’ localisation
or viability assessment. These technologies could complement the surgeon’s eyes and
improve surgical outcomes in thyroidectomy and parathyroidectomy [8].

McWade et al. [9] developed an intraoperative technique with near-infrared (NIR)
fluorescence for in vivo, real-time detection of the parathyroid glands. Forty-five patients
participated in the experiment where NIR fluorescence was measured intraoperatively from
patients undergoing parathyroidectomy and thyroidectomy. NIR fluorescence detected the
parathyroid in 100% of patients.

Halicek et al. [10] investigated the precision of hyperspectral imaging (HIS) in 82 ex
vivo study cases regarding tumour detection of the thyroid and salivary glands. Tissues
were imaged with HSI in broadband reflectance and autofluorescence modes. For compari-
son, the tissues were imaged with two fluorescent dyes. Deep learning algorithms were
developed for tumour detection using histological ground truths. For the classification
of thyroid tumours, HSI-synthesized RGB images achieved the best performance with an
AUC score of 0.90.

Chen [11] applied transfer learning [12] to automatically detect HTTP from ultrasound
images annotated by senior radiologists. The authors employed three well-established
convolutional neural networks to analyse the images and suggest potential features under-
lying the presence of HPPT. As a result, they achieved the best recall of 0.956 using a Single
shot multibox detector (SSD) [13].

LeBlack [14] performed a retrospective review of patients who underwent parathy-
roidectomy for a single adenoma between 2010–2017. SPECT/CT images were inspected
by senior medical staff. The intraoperative report was used as reference for assessing the
accuracy obtained by a novel method for localisation using SPECT/CT, which operates by
determining the anterior–posterior relationship of the adenoma to a horizontal line in the
coronal plane through the tracheoesophageal groove. The study achieved 80% accuracy
and 0.706 Cohen’s Kappa score, which verifies the agreement between the method and the
original radiology report.

Most of the studies focus on developing surgeon-assisting tools for accurately detecting
PGs. Those studies’ contribution to the field is beyond question. However, little has been
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investigated regarding the non-invasive detection of the parathyroid glands using medical
image acquisition devices and before the surgery [15]. This study extends the reported
results in [16], a study conducted by the same research team.

The study proposes a multi-path DL pipeline to simultaneously process the MIBI early
phase, MIBI late phase, and the 99mTcO4 thyroid scan. To this end, the study employs the
state-of-the-art convolutional neural network (CNN) called Virtual Geometry Group (VGG)
to furnish a multi-path pipeline, which performs a per-patient classification between normal
and abnormal scans. Furthermore, the Grad-CAM algorithm is employed to visualise the
critical local areas of each image according to the model.

2. Materials and Methods
2.1. Dataset and Imaging Techniques

The experiment involves 632 HPPT patients subjected to parathyroid scintigraphy
in the Department of Nuclea Medicine of the University Hospital of Patras, Greece. The
participants were enrolled from January 2010 to December 2021. Biochemical HPPT evi-
dence was present in 607 participants, whilst refractory secondary of tertiary HPPT was
detected in 25 patients. The dataset is detailed in Table 1. The planar dual-phase method
was applied to all participants. However, when judged essential, the thyroid subtraction
method was applied as well (81.3% of the participants). Planar imaging was applied using
a pinhole collimator, which was placed 10 cm over the neck. Half an hour after the injection
of the radioactive tracer, a high-sensitivity parallel-hole collimator was used for SPECT/CT
imaging of the neck and the mediastinum. The present study involves only planar imaging,
performed by the Hawkey-4 system (GE Healthcare). Two senior medical experts retro-
spectively evaluated the planar scintigraphic studies. In a few ambiguous cases, the final
decision was achieved by consensus.

Table 1. Characteristics of the study’s dataset.

Information Value

Date 2010–2021
Total Number of Subjects 632
Total Number of Abnormal PGs 545
Male Subjects 19%
Female Subjects 81%
Average Age 57.8 years
Primary HPPT 607
Secondary/tertiary HPPT 25

The medical experts (DA, NP, TS, with more than 20 years of experience) assigned
the labels of this study. Instances with at least one abnormal PG are labelled as “Positive”,
whilst the rest are labelled as “Negative”. An abnormal PG may imply various diseases,
such as primary, secondary, and tertiary HPPT. Detailed information from operated cases
was available in 472 patients treated surgically at our hospital. The gender imbalance of
the dataset reflects the male–female distribution of traffic in our department. Gender, other
demographic, and even clinical attributes are not anticipated to dictate changes in the
image. Gender and age signatures are not discovered in such images.

2.2. VGG-Based Three-Path CNN (ParaNet)

CNNs are capable of portraying high-level abstract representations from non-linear
information. CNNs belong to the broader area of deep neural networks [17]. CNNs utilise
convolution layers to process and filter the input data distributions. Convolution layers
transform the input data distributions and extract many image-related features [18]. Auxil-
iary layers, such as pooling layers, aid in dimensionality reduction, overfitting prevention,
regularisation, and more [19]. In classification problems, the extracted feature maps are
commonly processed by densely connected layers that filter out the irrelevant features
based on a pre-defined desired outcome.
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The problem of abnormal PG identification is addressed by cross-examining three
images, as presented earlier. To this end, a three-path CNN is suggested. The MIBI
early phase image, MIBI late phase image, and the 99mTcO4 thyroid image are processed
independently by the three paths of the network, and the extracted features from each path
are fused at the later processing stages. Each path is responsible for extracting meaningful
information from a single input image. Therefore, the overall approach contains three
independent CNN components.

For each CNN component, the VGG architecture with 19 convolutional layers (VGG19)
is suggested (Figure 1). VGG19 is a very consistent and successful CNN for relevant medical
imaging tasks. Initially, this network is designed to perform multi-class classification on
non-medical images. However, its uniform architecture and feature extraction capabilities
have also made it suitable for medical imaging tasks.
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VGG19 has been employed, with the final layer being trainable. The rest of the layers
utilise pre-defined weights defined by initial training on non-medical images [20]. We
argue that this conception can reduce the number of trainable parameters significantly.
The Triple-VGG19, called ParaNet, contains 3,079,628 trainable parameters and 52,999,836
non-trainable. At the top (the last convolutional layer) of each VGG19 component, a
global average pooling layer has been applied. The input image size (350 × 350 × 1) is
incrementally reduced to (21 × 21 × 512), where 512 represents the number of filters of
the last convolutional layer. The output of the average max pooling layer is connected to a
dense layer of 750 nodes, which is followed by a dropout layer that randomly disconnects
half of the nodes. Next, a dense layer of 256 nodes is connected to the previous layer,
and a final densely connected layer of two nodes (as many as the output classes) follows.
The entire Python 3.6+ code is available on GitHub (https://github.com/apjohndim/
Parathyroid-Initiative/blob/main/3P-VGG19-Paper.py accessed on 11 August 2022). The
parameters and the hyperparameters of ParaNet are summarised in Table 2. A visual
overview of ParaNet is presented in Figure 1.

https://github.com/apjohndim/Parathyroid-Initiative/blob/main/3P-VGG19-Paper.py
https://github.com/apjohndim/Parathyroid-Initiative/blob/main/3P-VGG19-Paper.py
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Table 2. Parameters and hyperparameters of ParaNet.

Parameter/Hyper-Parameter Value

Activation function Rectified Linear Unit
Final layer activation Softmax
Loss function Categorical cross-entropy
Batch Normalisation Yes
Dropout 50%
Epochs 400
Early-stopping At 98% validation accuracy
Batch size 50
Input-image size 3 × 350 × 350 × 1 (images, height, width, channels)
Trainable parameters 3,079,628
Feature fusion method Concatenation
Optimisation Adam [21]

2.3. Data Pre-Processing

The image acquisition device software output is an image containing five sub-figures.
Sensitive information is included in two of the images, which are discarded. The scintigra-
phy details appear in the rest figures, which correspond to the early MIBI, Late MIBI, and
thyroid TcO4 image. Figure 2 illustrates the data processing steps for the creation of the
dataset. In the first step, the three images are delineated and the area of interest is extracted.
Each new image is of 350 × 350 pixel size in jpeg format. Data pre-processing has been
performed using the OpenCV library, written for the Python programming language.
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2.4. Data Augmentation

CNNs can learn to ignore spatial, geometrical, and texture variations and focus on
revealing more critical information in tasks where such characteristics are irrelevant [17].
In addition, noise can be harmful to network training. CNNs can benefit from augmented
data on this front. Moreover, data augmentation is the dominant strategy for circumventing
class imbalance issues [22]. For the above reasons, data augmentation is essential in
DL applications.

The present experiments are conducted using online data augmentation. In essence,
synthetic image examples are produced during the training phase for each training fold.
The synthetic data is used solely for training purposes and is discarded after the training.
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Each three-image group of the training set is randomly augmented using a function that
allows horizontal flips, random rotations (by a maximum of 20 degrees), height and width
image shifts, and Gaussian noise additions.

2.5. Visualising the Model’s Suggested Areas of Interest

CNNs are notorious for acting as black boxes [23]. This characteristic is unavoidable in
situations where several layers of processing are involved. Moreover, such deep networks
reveal and analyse millions of features. Recently, the Grad-CAM algorithm [24] has been
introduced to circumvent this issue and offer a glimpse of explainability. Grad-CAM
algorithm tracks the decision process of the trained CNN and visualises the most crucial
image areas, as suggested by the feature weights. Unfortunately, CNNs are susceptible to
learning irrelevant features from the input data. On some occasions, this disadvantage may
not be reflected in the metrics. Hence, evaluating the efficiency of such methods based on
performance metrics may obscure the reality. The experiments of this work are presented
in Figure 3.
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2.6. Experiment Setup and Network Training

Training and evaluating the proposed DL method is performed under a 10-fold strati-
fied cross-validation. An early stopping function is applied during training, which lasts for
a maximum of 400 epochs. Early stopping occurs if the validation accuracy has reached
0.94. The batch size has been selected according to the computational resources of the
infrastructure as is 50.

During each fold, we record the total number of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN). Based on these metrics, we compute the
accuracy, which reflects the agreement between the model and the labels assigned by the
experts. We also record sensitivity, specificity, positive predicting value (PPV), negative
predicting value (NPV), F1 score, and area under curve score (AUC). The overall metrics
are an aggregation of the folds’ metrics.

3. Results

According to medical experts’ decisions, 180 cases were classified as negative (28.48%).
In the remaining 452 patients, 545 abnormal PGs were identified in various positions.
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3.1. Assessment on a Patient-Level Basis

The model has been evaluated on a patient-level basis following 10-fold stratified
cross-validation. In this section, the model’s metrics are presented. It is highlighted that
the present evaluation takes place by opposing the predicted labels to the actual labels.
It does not refer to cross-examination using the resulting suggested areas, as illustrated
by Grad-CAM.

The results demonstrate significant agreement between the model and the human
experts. More specifically, the DL model obtains 94.8% accuracy and an F1 score of 0.96.
The model achieves high sensitivity and specificity rates (93.8% and 97.2%, respectively).
PPV and NPV values are 98.8% and 86.2%, respectively. Cohen’s Kappa statistic score is
found to be 0.91. Those results are presented in Table 3. The significantly low false positives
(5) indicate the model’s efficiency regarding the parathyroid-positive prediction. The lower
sensitivity rate suggests that a parathyroid-negative prediction is not that reliable. The
complete confusion matrix is visualised in Figure 4.

Table 3. Metrics for the three-path DL framework utilising various CNN components. The text in
bold highlights the best observed metric scores. ACC: Accuracy, SEN: Sensitivity, SPE: Specificity,
PPV: Positive Predictive Value, NPV: Negative Predictive Value, F1: F1 score.

Type CNN Component ACC SEN SPE PPV NPV F1

Three-path VGG19 94.8 93.8 97.2 98.8 86.2 96.3
Three-path VGG16 93.8 93.1 95.6 98.1 84.7 95.6
Three-path InceptionV3 92.7 92.5 93.3 97.2 83.2 94.8
Three-path Xception 88.9 90.5 85.0 93.8 78.1 92.1
Three-path DenseNet 86.9 85.8 89.4 95.3 71.6 90.3
Three-path ResNet v151 87.5 85.4 92.8 96.7 71.7 90.7
Three-path EfficientNet 87.2 88.3 84.4 93.4 74.2 90.8
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In Table 3, the metric results of ParaNet are accompanied by results from alternative
experimental Triple-CNNs. It is verified that VGG19 is superior to other state-of-the-art
pre-trained CNNs when serving as the main component of the three-path network. The
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results are summarised in Figure 5. The reader should notice that the deployment of the
rest of the networks shares the same parametrisation with VGG19. The last convolutional
layer is trainable, and a global average pooling layer is added. The densely connected
layers at the top of each network are the same.
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Figure 5. Metrics for various ParaNet components. The column bar plot showcases the performance
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the performance of each component in terms of ACC and SEN.

3.2. Grad-CAM Visualisation Results

During the stratified 10-fold cross-validation, the ten test sets are used to evaluate the
model’s accuracy. The Grad-CAM algorithm integration ensures that the model identifies
each test image group’s suggested areas of interest. At the end of the ten iterations, each
fold participated in the evaluation set only once. In this section, selected samples from the
Grad-CAM results are visually provided and discussed.

In Figure 6, confirmed abnormal PGs are presented. The arrows point to positive
scintigraphic findings. As observed from case 1b, the visualisation reveals irrelevant
areas suggested by the model, even in cases where the model’s predicted class is correct
(“Normal” class). The model correctly identifies multiple positive findings in cases 1a–1c.
In case 2a, which corresponds to positive cases, the model predicts them as normal. Still,
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the model identifies some PGs (e.g., case 2b). However, those findings of the model are not
correctly characterised as abnormal. Therefore, the overall effectiveness of the model has to
be re-assessed following the inspection of the Grad-CAM results. Nevertheless, the model
demonstrates some promising visualisation results, as observed from 1a and 1c.
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Figure 6. Grad-CAM results in some cases with positive scintigraphic results.

In Figure 7, cases with negative scintigraphic results are presented. The visualisation
results in Figure 7, cases 1a–1c reveal that the model identifies these negative cases
correctly and does not suggest any areas of the image for potential findings. The above
reliably highlights the model’s ability to identify negative cases. However, the model
suggests some potential findings in irrelevant areas in cases 2a–2c. For example, in case
2c, the highlighted area does not even border the area where positive findings could
hypothetically exist, i.e., roughly in the centre of the image. The same issue applies to
case 2b. An interesting observation is that particular cases do not belong to ambiguous
examples. Identifying abnormal PG would be considered a trivial task for most nuclear
medicine experts. However, the model yielded unexpected results in the particular
examples. This matter and a large number of false positives shall be investigated further
in future studies.

In Figure 7, case 2a, the model’s suggestion, though incorrect, is at least referring to a
location where a potential finding could be. Therefore, such mistakes are acceptable.
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3.3. Assessment on a PG-Level Basis

The authors of the study have evaluated the Grad-CAM visualisations. It is highlighted
that the initial agreement of 94.8%, as presented in the earlier sections, has decreased to
76.5% on a PG-level basis. In addition, the visualisations revealed cases wherein the
model yielded correct predictions, and the suggested area of interest was irrelevant. Re-
assessment of the agreement rating between the experts and the model’s suggestions
has been performed following this observation. The reader shall recall that the PG level
assessment involves a case-to-case examination of the 545 PGs in the images. The results
are compared to the patient-level assessment outcomes in Table 4.

Table 4. Agreement with the experts after the inspection of the suggested areas. The agreement rating
is reflected in the accuracy score. ACC: Accuracy, SEN: Sensitivity, SPE: Specificity, PPV: Positive
Predictive Value, NPV: Negative Predictive Value, F1: F1 score.

Agreement Based On ACC
(%)

SEN
(%)

SPE
(%)

PPV
(%)

NPV
(%)

F1
(%)

Patient-level
(632 subjects) 94.8 93.8 97.2 98.8 86.2 96.3

PG level (545 PGs) 76.5 83.1 63.5 81.8 65.7 82.4

ParaNet identified 453 TP findings, localising the exact PG location in agreement with
the expert annotations. However, a total of 92 PGs are overlooked by the model, which
decreases its specificity significantly. The model also exhibits 101 FP findings, distributed
in many locations of the image.

3.4. Parametrisation of ParaNet

This section benchmarks various ParaNet modifications to verify the correct selection
of its parameters and hyperparameters. The overall results are summarised in Figure 8.
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3.4.1. Fine-Tuning the Trainable Layers of the VGG19 Component

Learning is incrementally allowed starting from the final convolutional layer. It is
observed that allowing the last convolutional layer to be trainable is preferable (Table 5,
because more trainable layers cause underfitting.

Table 5. Accuracy of ParaNet variations in distinguishing between normal and abnormal scans when
altering the total number of trainable convolutional layers.

Total Trainable Convolutional Layers ACC
(%)

0 (transfer learning) 87.0
1 94.8
2 93.2
3 75.0
4 67.6
5 67.7
6 57.6

All (training from scratch) 55.7

The reader should note that the number of trainable layers can also depend on the
size of the training dataset. Hence, this experiment defines the optimal number of trainable
convolutional layers under specific data availability.

Training the entire network from scratch led to an apparent underfitting problem, as
observed by the obtained accuracy (55.7%). On the other side, performing a pure transfer
learning procedure by freezing the entire network and letting it work with predefined
weights yielded an accuracy of 87%. The latter results imply that the initial training on the
ImageNet [20] challenge was beneficial. The learned features from non-medical images
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were adequate to distinguish 87% of the thyroid dataset, whilst the last convolutional layer
played a vital role in increasing this accuracy to 94.8% when becoming trainable.

This behaviour is expected because the particular medical imaging problem does not
involve any underlying and nontrivial features contributing to the outcome. Therefore,
DL is not expected to discover new knowledge but to extract standard image features and
perform the classification. In this particular problem, the changes in distinct features in
shape, texture, and volume of findings between the three images determine the outcome.

3.4.2. Optimisation

The previous comparisons define the total number of trainable layers in this exper-
iment. Various optimisation algorithms are evaluated. The Adam optimiser stands out,
exhibiting the best accuracy (Table 6). However, the stochastic gradient descent (SGD)
algorithm yields similar results. Statistical significance tests are required to define if the
selection between Adam and SGD is essential. However, this test is beyond the scope of
this work.

Table 6. When experimenting with alternative optimisation algorithms, ParaNet variations’ accuracy
in distinguishing between normal and abnormal scans.

Optimiser ACC
(%)

Adam 94.8
SGD 94.3

NAdam 69.6
RMSprop 88.6
AdaGrad 88.8

3.4.3. Other

In this experiment, ParaNet is optimised using the Adam algorithm, whilst the last
convolutional layer is trainable. The current setup evaluates various parameters, such as
the batch size and the image size. It is observed that the optimal batch size is 50, while the
best image input size is that of 350 × 350 (width × height). Therefore, an early stopping
strategy is preferable, as Table 7 suggests. The reader shall note that experimenting with
batch sizes larger than 50 is not allowed due to computational capability constraints.

Table 7. The accuracy of ParaNet variations in distinguishing between normal and abnormal scans
when altering the total number of trainable convolutional layers.

Optimiser ACC (%)

Without early stopping 87.0
Batch size: 32 92.1
Batch size: 64 GPU limit exceeded
Batch size: 16 91.9
Batch size: 50 94.8

Image size: 350 × 350 94.8
Image size: 200 × 200 90.0
Image size: 100 × 100 82.9

3.5. Investigation of the Impact of Each of the Three Images

The MIBI early phase image, MIBI late phase image, and the 99mTcO4 thyroid image
have been processed independently by the three paths of the network in the previous
experiments. In this section, the impact of each image on the outcome is investigated.

For this experiment, ParaNet is employed using the optimal parameter and hyperpa-
rameter selection, as determined from the previous sections. However, ParaNet is deployed
using two paths to process the image pair. Table 8 showcases the results.
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Table 8. Results when supplying ParaNet with image pairs.

Input ACC
(%)

SEN
(%)

SPE
(%)

PPV
(%)

NPV
(%)

F1
(%)

E-L 90.0 88.7 93.3 97.0 76.7 92.7
L-TcO4 89.0 87.8 92.2 96.6 75.1 92.0
E-TcO4 41.1 48.0 23.9 61.3 15.5 53.9

E-L-TcO4 94.8 93.8 97.2 98.8 86.2 96.3

ParaNet performs better when trained with the MIBI early phase image, MIBI late
phase image, and the 99mTcO4 thyroid image (94.8%). The MIBI early phase image and
the 99mTcO4 thyroid image are enough for the network to obtain an accuracy of 90%. A
similar result (accuracy of 89%) is observed when training with the MIBI Late phase and the
99mTcO4 thyroid image. As expected, training with the MIBI Early phase image and the
99mTcO4 thyroid image produces sub-optimal results (41.1% accuracy). This performance
is anticipated because the MIBI Late phase image visualises the response of the PG to the
administered drug.

3.6. Results Are from Surgically Confirmed Cases

Detailed information from operated cases was available in 472 patients treated surgi-
cally at our hospital. According to surgical and histopathological findings, 372 patients had
solitary parathyroid neoplasms (369 adenomas and three carcinomas), whereas 97 patients
(17 with secondary or tertiary and 80 with primary HPPT) carried two or more abnormal
PGs. In three cases, no abnormal PG could be identified during surgery. In four patients,
the parathyroid adenoma was located in the mediastinum. These cases were excluded
from further evaluation because, with a pinhole collimator, only a small or no part of
the mediastinum was included in the imaging field of planar scintigraphy. The results of
Nuclear Medicine experts’ diagnosis and the ParaNet model in 465 patients with positive
surgical findings in the neck are listed in Table 9. Only the sensitivity and the false positive
rate of tested methods could be examined in this group.

Table 9. Scintigraphic results according to the medical experts’ diagnosis and the ParaNet model in
256 operated patients with positive surgical findings in the neck.

Medical Experts ParaNet

Patients No TP FN FP SEN FPR
(%) TP FN FP SEN FPR

(%)
Primary HPPT 448 400 48 0 89.3 0 376 72 0 83.9 0

Secondary/tertiary HPPT 17 17 0 0 100 0 17 0 0 100 0
Total 465 417 48 0 89.7 0 393 72 0 84.5 0

Abnormal PGs
Solitary Neoplasm 368 324 44 19 88.0 5.5 291 77 79 79.1 21.4

Multi-glandular disease 256 160 96 4 62.5 2.4 131 125 7 51.2 5.1
Total 624 484 140 23 77.6 4.5 422 202 86 67.6 16.7

TP: true positive; FN: false negative; FP: false positive; SEN: sensitivity (%); FPR: false positive rate.

On a patient basis, the sensitivity of the ParaNet model is close to that of medical
experts. However, concerning abnormal PGs, ParaNet sensitivity is falling behind experts
by about 10% in both solitary neoplasm and multi-glandular disease subgroups. Similar
to the findings in the study cohort of 632 patients, the ParaNet’s false positive rate in the
operated group is also high.

4. Discussion

The contributions of this study are two-fold. Firstly, a practical DL framework has been
proposed to detect abnormal parathyroid scintigraphy images of patients with suspected
HTTP. The efficiency of the presented ParaNet topology reached approximately 95% in
detecting images with abnormal PGs.
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Secondly, the Grad-CAM algorithm is successfully employed to assist human experts
in explaining the model’s decisions. However, an extensive evaluation on a PG-level basis
revealed that the model could not correctly identify the factual findings’ actual location
while producing several false positive findings. Furthermore, an extensive evaluation on a
PG level basis revealed that the model exhibited lower sensitivity than the experts in the
whole study cohort (83.1%) and surgically confirmed cases (67.6% vs. 77.6% of the experts)
while producing several false positive findings (18.2% and 16.9% vs. 4.5% of the experts).

The findings of this study revealed that deep networks might yield remarkable
accuracy and minimum losses in terms of metrics, but their proper understanding may
be limited. False positive reduction is necessary to improve the diagnostic efficiency
of the model and is a matter of future research. The sub-optimal specificity caused
by the overwhelming number of FP findings can be explained by two decisive factors
constraining the model’s learning capacity. Firstly, there is a substantial data imbalance
issue. Normal scans are under-represented (28.48%) in the dataset, thereby introduc-
ing susceptibility to biased training and results. Data augmentation has reduced the
effect of this issue in model training. However, the imbalance issue remains and may
not be circumvented entirely. Secondly, the efficiency of the Grad-CAM algorithm is
questionable in a variety of cases, as reported in the literature [25]. More specifically,
Grad-CAM may fail to recognise multiple findings of the same class in the same image.
In addition, grad-CAM may poorly visualise the exact location of the important features
on some occasions. Therefore, future research involves employing more sophisticated
approaches, such as the Grad-CAM++ algorithm [25].

Nevertheless, the actual agreement with the human expertise reached an acceptable
rate (76.5% agreement on a PG level and roughly 95% on a patient level).

The study suffers some limitations. Firstly, the study employed state-of-the-art models
solely. Though such models are of undeniable robustness, designing task-specific DL
topologies and training them from scratch would potentially exhibit better results and
reveal more significant regions of interest. For example, integrating an attention mech-
anism may enhance the model’s ability to seek important features in vital areas of the
image. Moreover, designing a three-component Siamese network [26], which aggregates
the distances of the three input images and computes the gradients based on a carefully
designed loss function, may improve the results further.

Moreover, extensive fine-tuning has not been performed for all networks. The selection
of VGG19 was based on the performance of all networks under the same setup (i.e., with
approximately 3–4 million trainable parameters). Some networks, however, may perform
better under more in-depth fine-tuning. Experimenting with various optimisers is also a
future research opportunity.

Secondly, the study used the experts’ diagnostic yield as the ground truth. This
limitation constrains the horizons of the experiments because we can only measure the
agreement with the experts and not the prediction’s precision compared to surgical
and histopathologic results. On the other hand, surgical results can provide a minimal
number of negative cases, which poses severe limitations for the training purposes of
every DL model.

Thirdly, the study uses only planar views for the diagnosis. Future work should
consider more views when available. Finally, more data could aid in the re-assessment of
the proposed method.

These limitations cannot degrade the importance of the findings. With the absence of
related works that use the same image source, this study is the first attempt to introduce
DL approaches for localising PGs in parathyroid scintigraphy with 99mTc-sestamibi (MIBI)
studies. It is demonstrated that DL can at least compete with human expertise in the specific
task, which is very desirable when developing medical decision support systems.
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5. Conclusions

This study addressed the challenge of detecting and localising abnormal PGs in
parathyroid scintigraphy with 99mTc-sestamibi images using a multi-input DL method
that successfully reads and extracts features from the early MIBI phase, the late MIBI phase,
and the 99mTcO4 thyroid scan. Those images are processed simultaneously to achieve
some level of comparison and reasoning. The suggested model has been evaluated with
the Grad-CAM method, and the medical experts have assessed the indicated regions of
abnormal findings. The agreement rating between the model and the human experts
reached approximately 95% on a patient level and 76% on a PG level. With the absence of
related works that use the same image source, this study is the first attempt to introduce
DL approaches for localising PGs in parathyroid scintigraphy scans.
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