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Abstract: Unconstrained continuous large-scale global optimization (LSGO) is still a challenging
task for a wide range of modern metaheuristic approaches. A cooperative coevolution approach is a
good tool for increasing the performance of an evolutionary algorithm in solving high-dimensional
optimization problems. However, the performance of cooperative coevolution approaches for LSGO
depends significantly on the problem decomposition, namely, on the number of subcomponents
and on how variables are grouped in these subcomponents. Also, the choice of the population
size is still an open question for population-based algorithms. This paper discusses a method for
selecting the number of subcomponents and the population size during the optimization process
(“on fly”) from a predefined pool of parameters. The selection of the parameters is based on their
performance in the previous optimization steps. The main goal of the study is the improvement
of coevolutionary decomposition-based algorithms for solving LSGO problems. In this paper, we
propose a novel self-adapt evolutionary algorithm for solving continuous LSGO problems. We have
tested this algorithm on 15 optimization problems from the IEEE LSGO CEC’2013 benchmark suite.
The proposed approach, on average, outperforms cooperative coevolution algorithms with a static
number of subcomponents and a static number of individuals.

Keywords: large-scale global optimization; cooperative coevolution; evolutionary algorithms;
computational intelligence

1. Introduction

Traditional evolutionary algorithms are successfully used for solving black-box op-
timization problems [1]. Cooperative coevolution (CC) was proposed by Potter and De
Jong, in [2], to increase the performance of the standard genetic algorithm (GA) [1] when
solving continuous optimization problems. The authors proposed two versions of CC-
based algorithms, CCGA-1 and CCGA-2. The main idea behind CC is to decompose a
problem into parts (subcomponents) and optimize them independently. The authors noted
that any evolutionary algorithm (EA) can be used to evolve subcomponents. The first
algorithm merges the current solution with subcomponents from the best solutions. The
second algorithm merges the current solution with randomly selected individuals from
other subcomponents. As has been shown in numerical experiments, CCGA-1 and CCGA-2
outperform the standard GA. This study marked the beginning of a new branch of methods
for solving large-scale global optimization problems [3]. The pseudo-code of a CC-based
EA is presented in Algorithm 1. The termination criterion is the predefined number of
function evaluations (FEs). It should be clarified that CC has two main control parameters:
the population size and the number of subcomponents.
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Algorithm 1 The classic CC-based EA

Set the number of individuals (pop_size), the number of subcomponents (m)
1: Generate an initial population randomly;
2: Decompose an optimization vector into m independent subcomponents;
3: while (FEs > 0) do
4: for i = 1 to m
5: Evaluate the i-th subcomponent using pop_size individuals;
6: Construct a solution by merging the best-found solutions from all subcomponents;
7: end for
8: end while
9: return the best-found solution;

In general, an LSGO problem can be stated as a continuous optimization problem (1):

f (x)→ min
x∈D⊂Rn

, f ∗ = f (x∗) ≤ f (x), x ∈ D ⊂ Rn, (1)

where f (x) is a fitness function to be minimized, f : Rn → R1 , x is an n-dimensional vector
of continuous variables, D is the search space defined by box constraints xl

i ≤ xi ≤ xu
i ,

i = 1, n, xl
i and xu

i are the lower and upper borders of the i-th variable, respectively, and x∗

is a global optimum. It is assumed that the fitness function is continuous. The satisfaction of
the Lipschitz condition is not assumed; therefore, no operations are performed to estimate
the Lipschitz constant. In this case, the convergence of an algorithm to the global optimum
cannot be guaranteed. In the case of a huge number of decision variables, it is not possible
to adequately explore the high-dimensional search space using a limited fitness budget.
Additionally, we can clarify the goal of the stated problem as proposed in [4]: “the goal of
global optimization methods is often to obtain a better estimate of f ∗ and x∗ given a fixed
limited budget of evaluations of f (x)”.

In the last two decades, many researchers and applied specialists have successfully ap-
plied CC-based approaches to the increase of performance of metaheuristics when solving
real-world LSGO problems [5–10]. According to the generally accepted classification [11,12],
CC-based approaches can be divided into three groups: static, random, and learning-based
variable groupings.

In case of static grouping (decomposition), one needs to set a fixed number of sub-
components and how the variables will be assigned to these subcomponents during the
optimization process. It is appropriate to apply the static decomposition provided that
the relationship between an optimized variables is known. However, many hard LSGO
problems are represented by a black-box or gray-box model. The relationship between
optimized variables is unknown, and it is risky to choose the number of subcomponents
randomly. For example, two interacting variables can be placed in different groups and as
a result the performance of this approach will be worse on average than the performance
in a case in which the variables are placed in the same group. Nevertheless, the static
decomposition performs well on fully separable optimization problems.

Random grouping is a kind of static grouping, but variables can be placed in different
subcomponents in different steps of the optimization process. The size of the subcom-
ponents can be fixed or dynamically changed. The main purpose of applying random
grouping is to increase the probability of placing interacted variables in the same subcom-
ponents. Furthermore, after a random mixing of variables and the creation of new groups,
an optimizer solves a slightly or totally different problem in terms of task features. As a
result, the regrouping of variables acts as a reorganization for an optimizer.

Learning grouping is based on experiments that aim to find the original interaction
between decision variables. In most cases, these approaches are based on permutations,
statistical models, and distribution models. Permutation techniques perturb variables and
measure the change in the fitness function. Based on the changes, variables are grouped
into subcomponents. In general, permutation-based techniques require a huge number of
fitness evaluations. For example, the DGCC [13] algorithm requires 2

[ n
2m (n + m− 1) + n

m
]
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fitness evaluations (FEs) to detect variable interactions. A modification of DGCC, titled
DG2 [14], requires n(n + 1)/2 FEs. In the first iteration, a statistical analysis is performed.
In the second iteration, a grouping of decision variables is performed using a statistical
metric, for example, a correlation between variables based on fitness function values or a
distribution of variable values. In distribution models, the first iteration is based on the
estimation of variable distributions and an interaction between variables in the set of the
best solutions. After that, new candidate solutions are generated on the basis of the learned
variable distributions and variable interactions.

In practice, the determination of the appropriate group size is a hard task, because
of unknown optimization problem properties. In static and random grouping, setting an
arbitrary group size can lead to low performance. On the other hand, learning grouping
needs a large amount of FEs to determine true connections between variables, and there is
no guarantee that an EA will perform better using the discovered true connection between
variables. Usually, the small group size performs better in the beginning of the optimization
process, and the large group size performs better in the last stages [15]. Thereby, there is
the need to develop a self-adaptive mechanism for the automatic selection of the number
of subcomponents and the population size.

The paper is organized as follows. Section 2 outlines the proposed approach. In
Section 3, we discuss our experimental results. We considered how the population size
and the number of subcomponents affect the performance of static CC-based approaches.
We evaluated the performance of the proposed self-adaptive CC-based algorithm and
have compared it with the performance of CC-based approaches with a static number
of subcomponents and a static population size. Additionally, we investigated a selective
pressure parameter when choosing the number of subcomponents and the population
size. All numerical experiments were confirmed by the Wilcoxon rank-sum test. Section 4
concludes the paper and outlines possible future work.

2. Proposed Approach

In this section, the proposed approach is described in detail. The approach combines
cooperative coevolution, the multilevel self-adaptive approach for selecting the number
of subcomponents and the number of individuals, and SHADE. This approach is titled
CC-SHADE-ML. This study was inspired by the MLCC algorithm [16] proposed by Z. Yang,
K. Tang, and X. Yao. MLCC is based on the multilevel cooperative coevolution framework
for solving continuous LSGO problems. Before the optimization process, there is a need
to determine a set of integer values CC_set = (CC1, CC2, . . . , CCt,) corresponding to the
number of subcomponents. The optimization process is divided into a predefined number
of cycles. In each cycle, the number of subcomponents is selected according to the perfor-
mance of decomposition in the previous cycles. Variables are divided in subcomponents
randomly in each cycle. The Equation (2) is used to evaluate the performance of the selected
number of subcomponents after each cycle. fbe f ore is the best-found fitness value before the
optimization cycle, and fa f ter is the best-found fitness value after the optimization cycle. If
the calculated value is less than 1E-4, then it is set to 1E-4. If this condition is not applied,
the selection probability for the applied decomposition size is set to 0 after a cycle without
improving. This means that the algorithm will never select this parameter in the future.
Before starting the optimization process, all values of the per f ormancei vector are set to 1.0.

per f ormancei =
(

fbe f ore − fa f ter

)
/ fbe f ore (2)

When the performance of the selected parameter is calculated, it is necessary to
recalculate the selection probability for all parameters. In MLCC, the authors propose to
use Equation (3), where k is a control parameter and it is set to 7. In the original study, the
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authors note that 7 is an empirical value. In Section 3, we investigate the influence of this
parameter on the algorithm’s performance.

pi =
ek∗per f ormancei

∑t
j=1 ek∗per f ormancei

, i = {1, 2, . . . , t} (3)

In the next optimization cycle, the decomposition size will be selected based on the
new probability distribution. MLCC uses SaNSDE as a subcomponent optimizer. In the
original article, the population size is fixed and is set to 50. At the same time, the population
size is one of the most important parameters in population- and swarm-based algorithms.
The choice of a good number of individuals can significantly increase the performance of
an algorithm. In the proposed approach, for selecting the population size we apply the
same idea as in selecting the number of subcomponents.

In this study, we use a recent variant of differential evolution (DE) [17] as a subcompo-
nent optimizer. DE is a kind of EA that solves an optimization problem in the continuous
search space but does not require a gradient calculation of the optimized problem. DE
applies an iterative procedure for the crossing of individuals to generate new best so-
lutions. F and CR are the main parameters in DE, a scale factor, and a crossover rate,
respectively. Many researchers have tried to find good values for these parameters [18],
however, these parameters are good only for specific functions. Numerous varieties of the
classic DE with self-tuning parameters have been proposed, for example, self-adaptive DE
(SaDE) [19], ensemble of parameters and mutation strategies (EPSDE) [20], adaptive DE
with optional external archive (JADE) [21], and success-history based parameter adaptation
for DE (SHADE) [22]. We use SHADE as an optimizer of subcomponents in the proposed
CC-based metaheuristic because it is the self-adaptive and high-performing modification
of the classic DE algorithm. SHADE uses a historical memory that stores well-performed
values of F and CR. New values of CR and F are generated randomly but close to values of
stored pairs of values. An external archive stores previously replaced individuals and is
used for maintaining the population diversity. Usually, the external archive size is 2–3 times
larger than the population size. The proposed CC-SHADE-ML algorithm differs from
MLCC in the following. We use SHADE instead of SaNSDE and extend MLCC by applying
a self-adaptation multilevel (ML) approach for the population size. The proposed algorithm
can be described by the pseudocode in Algorithm 2.

Algorithm 2 CC-SHADE-ML

Set the set of individuals, the set of subcomponents, optimizer, cycles_number
1: Generate an initial population randomly;
2: Initialize performance vectors, CC_performance and pop_performance;
3: FEs_cycle_init = FEs_total/cycles_number;
4: while (FEs_total > 0) do
5: FEs_cycle = FEs_cycle_init;
6: Randomly shuffle indices;
7: Randomly select CC_size and pop_size from CC_performance and pop_performance;
8: while (FEs_cycle > 0) do
9: Find the best fitness value before the optimization cycle f_best_before;

10: for i = 1 to CC_size
11: Evaluate the i-th subcomponent using the SHADE algorithm;
12: end for
13: Find the best fitness value after the optimization cycle f_best_after;
14: Evaluate performance of CC_size and pop_size using Equation (2);
15: Update CC_performance and pop_performance;
16: end while
17: end while
18: return the best-found solution
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3. Numerical Experiments and Analysis

There are some variants of LSGO benchmarks. The first version was proposed in the
CEC’08 special session on LSGO [23]. This benchmark set has seven high-dimensional
optimization problems, D = {100, 500, 1000}. Test problems are divided into two classes:
unimodal and multimodal. Later, the LSGO CEC’10 benchmark set was proposed [24] as
an improved version of LSGO CEC’08. The number of problems was increased to 20 by
adding partially separable functions to increase the complexity of the benchmark. In this
study, we use a recent version of the benchmark, namely the LSGO CEC’13 benchmark
set [25]. This set consists of 15 high-dimensional continuous optimization problems, which
are divided into five classes: fully separable (C1), partially additively separable (functions
with a separable subcomponent (C2) and functions with no separable subcomponents
(C3), overlapping (C4), and non-separable functions (C5). The number of variables of each
problem is equal to 1000. The maximum number of fitness evaluations is 3.0×106 in each
independent run. The comparison of algorithms is based on the mean of the best-found
values, which are obtained in 25 independent runs.

The software implementation of CC-SHADE and CC-SHADE-ML was undertaken
using the C++ programming language. We used the MPICH2 framework to parallel
numerical experiments because the problems are computational complex. We built a
computational cluster of 8 PCs based on AMD Ryzen CPUs. Each CPU has eight cores
and sixteen threads (8C/16T). Thus, the total number of computational threads is 128. The
operating system was Ubuntu 20.04.3 LTS.

3.1. CC-Based EA

In this subsection we investigate the effect of CC-SHADE’s main parameters on its
performance. The population size was set to 25, 50, 100, 150, and 200. The number of
subcomponents was set to 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000. Figure 1 presents
heatmaps for each benchmark problem and each combination of the parameters. The x-axis
denotes the number of subcomponents, the y-axis denotes the population size. The total
number of combinations is equal to 50 for each benchmark problem. The performance of
each parameters’ combination is presented as a rank. The biggest number denotes the best
average fitness value obtained in 25 independent runs. If two or more combinations of
parameters have the same averaged fitness value, then their ranks are averaged. The ranks
are colored in heatmaps from white (light) for the worst combination to dark blue (dark)
for the best combination. The rank distributions are different in heatmaps for different
optimization problems. Figure 2 shows the ranks sum for the algorithm’s parameters for all
benchmark problems. The x-axis denotes the number of subcomponents, the y-axis denotes
the number of individuals using the results from Figure 1. The highest sum of ranks is
the best achieved result. Dark color denotes the best average combination of parameters.
The best average combination of parameters for CC-SHADE are 50 subcomponents and
25 individuals.

Table 1 shows the best combination(s) of parameters for each benchmark problem. The
first column denotes the problem number, the second column denotes the best combination
using the following notation, “CC × pop_size”, where CC is the best subcomponent size,
and pop_size is the best population size. The last column denotes the class of a benchmark
problem. As we can see from the results in Table 1, we cannot define the best combination
of parameter combination for all problems. Additionally, we cannot find any pattern of the
best parameters for each class of LSGO problems.
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Table 1. The best combination(s) of parameters for CC-SHADE on LSGO CEC’2013.

Benchmark Problem The Best Combination(s) Class

1 20 × 50 C1
2 1000 × 200 C1
3 1000 × 50, 1000 × 100, 1000 × 150, 1000 × 200 C1
4 1 × 200 C2
5 1 × 200 C2
6 1000 × 200 C2
7 5 × 200 C2
8 1 × 200 C3
9 5 × 150 C3
10 1000 × 200 C3
11 5 × 200 C3
12 50 × 25 C4
13 5 × 150 C4
14 2 × 200 C4
15 200 × 25 C5

3.2. CC-SHADE-ML

We evaluated the performance of CC-SHADE-ML and compared it with CC-SHADE
with a fixed number of subcomponents and a fixed number of individuals. The proposed
CC-SHADE-ML algorithm has the following parameters. The set of subcomponents is
equal to {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. The set of the population size is equal
to {25, 50, 100, 150, 200}. The number of cycles is set to 50. According to our numerical
experiments, this value for the number of cycles performs better than other tested values.
Thus, in each cycle, CC-SHADE-ML evaluates 6.0 × 104 FEs.

We use “CC” and “CC-k(v)” notations to save space in Table 2, where CC is all variants
of CC-SHADE parameters, and CC-k(v) is the proposed approach, where the parameter
k is set to v (3), and v is the power of the exponent in Equation (3). We investigated v
equal to {1, 2, 3, 5, 7, 10}. Table 2 proves the statistical difference in the results of the
rank comparison using the Wilcoxon rank-sum test with the p-value equal to 0.05. The first
column denotes better (+), worse (-), and equal performance (≈). Other columns contain
the settings of the proposed algorithm. The cells contain the total number of benchmark
problems where CC demonstrates better, worse, or equal performance in comparison with
CC-k(v). As we can see, each version of the proposed algorithm has scores larger than
CC. As we can see from Table 2, the proposed algorithm with all values of the power (3)
always demonstrates better performance in comparison with the CC with a fixed number
of subcomponents and individuals. Based on the results of the numerical experiments and
the results of the statistical test, it is preferable on average to choose the proposed approach
than the CC algorithm with an arbitrary set of parameters.
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Table 2. The Wilcox rank-sum test CC vs. CC-k(v).

CC vs. CC-k(1) CC-k(2) CC-k(3) CC-k(5) CC-k(7) CC-k(10)

+ 215 215 193 218 185 190
- 417 421 439 423 448 452
≈ 118 114 118 109 117 108

Figure 3 shows the ranking of CC-SHADE-ML algorithms with different values of
power (3). The ranking is based on the obtained mean values in 25 independent runs.
The ranking is averaged on 15 benchmark problems. The highest rank corresponds to the
best algorithm.
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We have compared the performance estimations of all CC-k algorithms. The statistical
experimental results are placed in Table 3. The first column denotes indexes of the algorithm.
The second column denotes the title of the algorithm. The next columns denote the
compared algorithms corresponding to the index value. Values in each cell are based on
the following notation. We compare algorithms from a row and column, if the algorithm
from the row demonstrates statistically better, worse of equal performance we add points
to the corresponding criterion. Table 3 contains the sum of (better/worse/equal) points of
all algorithms.

Table 3. The results of the Wilcoxon test for CC-k with different parameter values.

Index Algorithm (2) (3) (4) (5) (6)

(1) CC-k(1) 0/2/13 0/4/11 0/4/11 0/4/11 1/4/10
(2) CC-k(2) - 0/1/14 0/1/14 1/4/10 1/3/11
(3) CC-k(3) - - 0/1/14 0/1/14 1/2/12
(4) CC-k(5) - - - 0/0/15 1/1/13
(5) CC-k(7) - - - - 1/0/14
(6) CC-k(10) - - - - -

The results in Table 4 are based on the results from Table 3. Algorithms are sorted
according to their statistical performance and their averaged rank. As we can see, CC-k(7)
has taken first place. It outperforms the other algorithms 10 times, loses only once and
demonstrates the same performance 64 times. It can be noted that the second last column
contains large values. This means that the majority of considered algorithms demonstrate
an equal performance on benchmark problems that can be explained by the introduced
self-adaptiveness.

Based on the ranking and the statistical tests, we can conclude that CC-k(7) performs
the other variants of CC-k(v). In the original paper [16], the authors also found that MLCC
demonstrates better results with the power value (3) equal to 7.

In Figure 4, we show an example of curves which demonstrate the dynamic adaptation
of the number of subcomponents and the population size in one independent run of CC-
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k(7). The x-axis denotes the FEs, the y-axis denotes the selected level of parameters. The
pictures show graphs for F1, F2, F12, and F15 benchmark problems.

Table 4. The sum of the Wilcoxon test results.

Number Algorithm Total Win Total Loss Total Equal Averaged Rank

(5) CC-k(7) 10 1 64 4.47
(6) CC-k(10) 10 5 60 3.87
(3) CC-k(3) 6 4 65 3.87
(4) CC-k(5) 7 1 67 3.13
(2) CC-k(2) 4 9 62 2.67
(1) CC-k(1) 1 18 56 3.00
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Figure 5 shows convergence graphs for CC-k(v) algorithms. The x-axis denotes the
FEs number, the y-axis denotes the averaged fitness value obtained in 25 independent
runs. As we can see, the convergence plots are almost similar for all CC-k algorithms.
In most cases, the value of the power in (3) does not critically affect the behavior of the
CC-SHADE-ML algorithm. As we have noted, according to the results from Table 4, the
algorithms’ performance is the same on the majority of problems.
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3.3. The Tuned CC-SHADE-ML

In this subsection, we evaluate the performance of the tuned CC-SHADE-ML. As we
can see in Figure 2, the region with the best-ranked solutions covers the set of subcom-
ponents equal to {5, 10, 20, 50} and the set of the population size equal to {25, 50, 100}.
The tuned CC-SHADE-ML will use these parameters. Figure 6 has the same structure as
Figure 3. Based on the ranking, CC_tuned-k(1) demonstrates the best performance.
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Table 5 has the same structure as Table 2. Table 2 compares the performance of CC and
CC_tuned-k algorithms. According to the results of the Wilcoxon test, we can conclude
that any power value of tuned CC-k demonstrates better performance than CC with the
fixed number of subcomponents and individuals.

Table 5. The Wilcox rank-sum test CC vs. CC_tuned-k.

CC vs. CC_tuned-k(1) CC_tuned-k(2) CC_tuned-k(3) CC_tuned-k(5) CC_tuned-k(7) CC_tuned-k(10)

+ 59 57 52 52 57 51
- 84 86 91 90 86 90
≈ 37 37 37 38 37 39

Tables 6 and 7 have the same structure as Tables 3 and 4, respectively. We placed
CC_tuned-k(7) on the first place because it has no loss point. Although, if we take into
account only the averaged rank, we then need to place CC_tuned-k(7) in last place. Addi-
tionally, CC_tuned-k(1) has the highest rank, however, it does not significantly outperform
any of compared algorithms.

Table 6. The results of the Wilcoxon test for CC-k with different parameter values.

Number Algorithm (2) (3) (4) (5) (6)

(1) CC_tuned-k(1) 0/0/15 0/1/14 0/1/14 0/1/14 0/1/14
(2) CC_tuned-k(2) - 0/2/13 0/0/15 0/2/13 0/1/14
(3) CC_tuned-k(3) - - 2/1/12 0/1/14 1/0/14
(4) CC_tuned-k(5) - - - 0/0/15 0/0/15
(5) CC_tuned-k(7) - - - - 1/0/14

(6) CC_tuned-
k(10) - - - - -
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Table 7. The sum of the Wilcoxon test results.

Number Algorithm Total Win Total Loss Total Equal Averaged Rank

(5) CC_tuned-k(7) 5 0 70 2.50
(3) CC_tuned-k(3) 6 2 67 3.2
(6) CC_tuned-k(10) 2 2 71 3.53
(4) CC_tuned-k(5) 2 2 71 3.77
(1) CC_tuned-k(1) 0 4 71 4.47
(2) CC_tuned-k(2) 0 5 70 3.53

We compared the performance of CC-k(7) and CC_tuned-k between each other using
the Wilcoxon test. The statistical difference analysis is presented in Table 8. Columns denote
the number of benchmark problems. The (+/-/≈) symbols mean better, worse, and equal
performance of CC-k in comparison with CC_tuned-k. Algorithms demonstrate the same
performance for six problems. CC-k outperforms CC_tuned-k on four problems and loses
on five problems.

Table 8. The Wilcox rank-sum test CC-k(7) vs. CC_tuned-k(7).

CC-k(7) vs.
CC_tuned-k(7) F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

- + + + ≈ ≈ - + ≈ - ≈ - ≈ ≈ -

Figure 7 has the same structure as Figure 4. As we can see, on the F1 benchmark
problem, the algorithm has chosen a good combination of parameters and does not change
the certain number of cycles because this combination demonstrates the high performance.
On other benchmark problems, we can see more rapid switching between values of pa-
rameters. Figure 8 has the same structure as Figure 5. It shows convergence graphs for
CC_tuned algorithms.

We have compared the performance of CC_tuned-k(7) with other state-of-the-art LSGO
metaheuristics. These metaheuristics were specially created and tuned to solve the LSGO
CEC’2013 benchmark set. We selected high-performed metaheuristics from the TACOlab
database [26]: SHADEILS [27], MOS [28], MLSHADE-SPA [29], CC-RDG3 [30], BICCA [31],
IHDELS [32], SGCC [33], SACC [34], CC-CMA-ES [35], VMODE [36], DGSC [37], MPS [38],
DECC-G [39], and DEEPSO [40]. Figure 9 shows the ranking of the compared metaheuris-
tics. Table 9 consists of the ranking values of state-of-the-art algorithms depending on the
class of benchmark problems. Ranks are averaged in each class. The proposed algorithm
takes ninth place out of 15. We should note that the majority of metaheuristics in the
comparison use special local search techniques adapted for the CEC’13 LSGO benchmark
and their control parameters are also fine-tuned to the given problem set. Thus, there
is no guarantee that these algorithms will demonstrate the same high performance with
other LSGO problems. At the same time, the proposed approach automatically adapts
to the given problem, so we conclude that it can also perform well when solving new
LSGO problems. In Section 3.3, we propose a hybrid algorithm which is a combination of
CC-SHADE-ML and MTS-LS1 [41].

Table 10 contains the detailed results for the fine-tuned CC-SHADE-ML algorithm.
The first column contains three checkpoints, 1.2 × 105, 6.0 × 105, and 3.0 × 106. The
remaining columns show the number of a benchmark problem. Each cell contains five
numbers: the best-found value, the median value, the worst value, the mean value, and the
standard deviation value. The authors of the LSGO CEC’2013 benchmark set recommend
the inclusion of this information for the convenient further comparison of the proposed
algorithm with others. Usually, the comparison is based on values after 3.0 × 106 FEs.
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Figure 7. The self-adaptation curves for CC_size and pop_size of CC-tuned-k(7) in an independent
run on: (a,c,e,g)—CC-size for F1, F4, F7, F15 and (b,d,f,h)—pop-size for F1, F4, F7, F15.

Table 9. The ranking of state-of-the-art metaheuristics.

Metaheuristic C1 C2 C3 C4 C5 Total

SHADEILS 9.67 11.75 11.00 14.67 15.00 62.08
MOS 12.83 10.75 9.50 12.33 10.00 55.42

MLSHADE-SPA 13.33 12.00 11.75 12.00 3.00 52.08
CC-RDG3 6.50 12.25 12.63 9.67 11.00 52.04

BICCA 11.00 10.50 11.00 9.00 8.00 49.50
IHDELS 9.00 8.00 8.38 12.33 9.00 46.71
SGCC 2.00 6.63 8.38 8.33 14.00 39.33
SACC 12.17 4.75 4.50 4.67 13.00 39.08

CC-SHADE-ML 4.67 6.25 5.75 7.00 12.00 35.67
CC-CMA-ES 9.33 5.38 8.00 7.67 2.00 32.38

VMODE 6.00 5.38 6.38 7.33 6.00 31.08
DGSC 6.67 7.38 5.38 5.00 4.00 28.42
MPS 4.33 8.25 7.50 3.00 5.00 28.08

DECC-G 10.00 6.00 4.38 3.67 1.00 25.04
DEEPSO 2.50 4.75 5.50 3.33 7.00 23.08
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3.4. Hybrid Algorithm Based on CC-SHADE-ML and MTS-LS1

In the CC-SHADE-ML algorithm, MTS-LS1 [41] performs after the optimization cycle
and uses 25,000 FEs (this value has been defined by numerical experiments). MTS-LS1 tries
to improve each i-th coordinate using the search range SR[i]. In this study, the initialization
value of each SR[i] is equal to (bi − ai)·0.4. ai and bi are low and high bounds for the i-th
variable. If MTS-LS1 does not improve a solution using the current value of SR[i], it should
be reduced by two times (SR[i] = SR[i]/2). If SR[i] is less than 10–18 (in [41], the original
threshold is 10–15), the value is reinitialized. As we can see from the numerical experiments,
usually, MTS-LS1 finds a new best solution that is so far from other individuals in the
population. Thus, CC-SHADE-ML is not able to improve the best-found solution after
applying MTS-LS1, but it does improve the median fitness value in the population. In this
case, Formula (2) will be inappropriate for the evaluation of the performance of selected
parameters. We use Formula (4) to overcome this difficulty, the formula is based on the
median fitness value before and after the CC-SHADE-ML cycle.

per f ormancei =
medianFitnessbe f ore −medianFitnessa f ter

medianFitnessbe f ore
(4)

Different mutation schemes have been evaluated and we determined that the best
performance of CC-SHADE-ML-LS1 has been reached using the following Formula (5).

ui = xi + Fi

(
xpbest − xi

)
+ Fi(xt − xr), i = 1, . . . , pop_size (5)

here, ui is a mutant vector, xi is a solution from the population, Fi is a scale factor, xpbest is
a solution from the population chosen from the p best solutions, xt is a solution from the
population chosen using the tournament selection (in this study, the tournament size is
equal to 2), xr is a randomly chosen solution from the population or from the archive. To
perform Formula (5), the following condition must be met: i 6= pbest 6= t 6= r.

Control parameters of CC-SHADE-ML-LS1 are the following: the set of subcom-
ponents equal to {5, 10, 20, 50}; the set of the population size equal to {25, 50, 100};
FEs_LS1 equal to 25,000; the mutation scheme, in SHADE, is (5); and the tournament size is
2. FEs_cycle_init is equal to 1.5× 105. The complete pseudocode of the hybrid is presented
in Algorithm 3. Additionally, the CC-SHADE-ML-LS1 performance has been evaluated
and compared with state-of-the-art metaheuristics. Comparison rules and algorithms for
comparison are the same as in Section 3.2. Tables 11 and 12 have the same structure as
Tables 9 and 10, respectively. Table 11 shows the ranking of CC-SHADE-ML-LS1. Table 12
contains the detailed results of the tuned CC-SHADE-LS1 algorithm. Figure 10 has the
same structure as Figure 9.
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Table 10. Detailed results for the fine-tuned CC-SHADE-ML algorithm.

F1 F2 F3 F4 F5 F6 F7 F8

1.2 × 105

BEST 8.00 × 107 5.42 × 103 2.08 × 101 2.98 × 1010 2.83 × 106 1.05 × 106 4.36 × 108 4.37 × 1014

MEADIAN 8.98 × 108 1.03 × 104 2.12 × 101 8.49 × 1010 5.50 × 106 1.06 × 106 1.84 × 109 3.58 × 1015

WORST 4.51 × 109 1.29 × 104 2.13 × 101 4.80 × 1011 8.97 × 106 1.06 × 106 8.26 × 109 4.48 × 1016

MEAN 1.58 × 109 9.94 × 103 2.11 × 101 1.13 × 1011 5.66 × 106 1.06 × 106 2.20 × 109 8.33 × 1015

STD 1.49 × 109 1.93 × 103 1.35 × 10-1 9.03 × 1010 1.93 × 106 2.37 × 103 1.70 × 109 1.15 × 1016

6.0 × 105

BEST 1.79 × 103 1.28 × 103 2.08 × 101 9.30 × 109 1.47 × 106 1.05 × 106 9.95 × 106 9.78 × 1013

MEADIAN 2.43 × 105 3.71 × 103 2.09 × 101 2.06 × 1010 2.53 × 106 1.06 × 106 4.74 × 107 3.02 × 1014

WORST 1.28 × 107 5.97 × 103 2.11 × 101 4.91 × 1010 4.35 × 106 1.06 × 106 1.49 × 108 9.79 × 1014

MEAN 1.80 × 106 3.64 × 103 2.09 × 101 2.25 × 1010 2.72 × 106 1.06 × 106 5.91 × 107 4.13 × 1014

STD 3.64 × 106 1.45 × 103 9.31 × 10-2 1.01 × 1010 7.59 × 105 2.42 × 103 4.14 × 107 2.55 × 1014

3.0 × 106

BEST 2.32 × 10-23 8.16 × 102 2.07 × 101 1.06 × 109 1.47 × 106 1.05 × 106 7.09 × 104 4.10 × 1013

MEADIAN 5.00 × 10-16 1.18 × 103 2.08 × 101 5.63 × 109 2.53 × 106 1.05 × 106 6.29 × 105 1.11 × 1014

WORST 6.12 × 10-4 3.64 × 103 2.09 × 101 2.45 × 1010 4.18 × 106 1.06 × 106 2.99 × 106 2.63 × 1014

MEAN 2.58 × 10-5 1.35 × 103 2.08 × 101 6.13 × 109 2.70 × 106 1.05 × 106 9.23 × 105 1.21 × 1014

STD 1.22 × 10-4 5.73 × 102 3.91 × 10-2 4.68 × 109 7.29 × 105 2.25 × 103 8.83 × 105 5.46 × 1013

F9 F10 F11 F12 F13 F14 F15

1.2 × 105

BEST 1.57 × 108 9.32 × 107 1.00 × 1010 1.96 × 108 1.04 × 1010 8.40 × 1010 1.46 × 107

MEADIAN 4.11 × 108 9.42 × 107 1.05 × 1011 3.48 × 109 2.96 × 1010 5.19 × 1011 4.39 × 107

WORST 1.15 × 109 9.48 × 107 3.98 × 1011 4.44 × 1010 9.13 × 1010 1.12 × 1012 2.46 × 108

MEAN 4.28 × 108 9.42 × 107 1.44 × 1011 1.09 × 1010 4.13 × 1010 5.06 × 1011 5.90 × 107

STD 2.09 × 108 3.67 × 105 1.25 × 1011 1.36 × 1010 2.59 × 1010 2.80 × 1011 5.16 × 107

6.0 × 105

BEST 9.45 × 107 9.21 × 107 6.49 × 108 1.46 × 103 1.15 × 109 4.10 × 108 4.76 × 106

MEADIAN 2.07 × 108 9.33 × 107 2.15 × 109 5.92 × 103 2.81 × 109 2.44 × 109 1.01 × 107

WORST 5.73 × 108 9.40 × 107 2.59 × 1010 2.42 × 106 6.60 × 109 1.28 × 1011 2.61 × 107

MEAN 2.34 × 108 9.32 × 107 4.30 × 109 2.10 × 105 3.15 × 109 1.44 × 1010 1.22 × 107

STD 1.13 × 108 3.85 × 105 6.43 × 109 6.60 × 105 1.43 × 109 2.74 × 1010 5.76 × 106

3.0 × 106

BEST 9.36 × 107 9.16 × 107 4.71 × 107 1.02 × 103 1.20 × 107 1.63 × 107 1.28 × 106

MEADIAN 2.00 × 108 9.27 × 107 1.56 × 108 1.22 × 103 5.46 × 107 6.40 × 107 1.86 × 106

WORST 5.74 × 108 9.31 × 107 3.53 × 108 1.99 × 103 4.66 × 108 5.42 × 108 3.14 × 106

MEAN 2.27 × 108 9.26 × 107 1.71 × 108 1.32 × 103 9.75 × 107 9.41 × 107 2.00 × 106

STD 1.12 × 108 3.44 × 105 9.20 × 107 2.89 × 102 1.19 × 108 1.11 × 108 5.73 × 105

Algorithm 3 CC-SHADE-ML-LS1

Set the set of individuals, the set of subcomponents, optimizer, cycles_number
1: Generate an initial population randomly;
2: Initialize performance vectors, CC_performance and pop_performance;
3: FEs_cycle_init = FEs_total/cycles_number;
4: while (FEs_total > 0) do
5: FEs_cycle = FEs_cycle_init;
6: Randomly shuffle indices;
7: Randomly select CC_size and pop_size from CC_performance and pop_performance;
8: while (FEs_cycle > 0) do
9: Find the median fitness value before the optimization cycle medianFitnessbe f ore;

10: for i = 1 to CC_size
11: Evaluate the i-th subcomponent using the SHADE algorithm;
12: end for
13: Find the median fitness value after the optimization cycle medianFitnessa f ter ;
14: Evaluate performance of CC_size and pop_size using Equation (4);
15: pdate CC_performance and pop_performance;
16: end while
17: while (FEs_LS1 > 0) do
18: Apply MTS-LS1(best_fould_solution);
19: end while
20: end while
21: return the best-found solution
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Table 11. The ranking of state-of-the-art metaheuristics.

Metaheuristic C1 C2 C3 C4 C5 Total

SHADEILS 8.67 11.75 11.00 14.67 15.00 61.08
MOS 12.67 10.75 9.50 12.33 10.00 55.25

MLSHADE-SPA 13.00 12.00 11.75 11.67 3.00 51.42
CC-RDG3 5.83 12.25 12.63 9.33 11.00 51.04

BICCA 10.67 10.50 11.00 9.00 8.00 49.17
IHDELS 10.33 6.50 6.25 9.67 13.00 45.75
SGCC 8.00 8.00 8.38 12.00 9.00 45.38
SACC 2.00 6.63 8.38 8.33 14.00 39.33

CC-SHADE-ML-LS1 12.00 4.75 4.50 4.33 12.00 37.58
CC-CMA-ES 8.67 5.38 7.75 7.33 2.00 31.13

VMODE 6.00 5.38 6.13 6.67 6.00 30.17
DGSC 6.33 7.38 5.38 5.00 4.00 28.08
MPS 4.33 8.25 7.50 3.00 5.00 28.08

DECC-G 9.33 6.00 4.38 3.33 1.00 24.04
DEEPSO 2.17 4.50 5.50 3.33 7.00 22.50

Table 12. Detailed results for the fine-tuned CC-SHADE-ML-LS1 algorithm.

F1 F2 F3 F4 F5 F6 F7 F8

1.2 × 105

BEST 3.91 × 103 5.94 × 103 2.11 × 101 6.35 × 1010 4.58 × 106 1.05 × 106 7.05 × 108 9.88 × 1014

MEADIAN 5.49 × 103 8.47 × 103 2.12 × 101 1.92 × 1011 6.12 × 106 1.06 × 106 2.74 × 109 2.49 × 1015

WORST 7.60 × 103 9.44 × 103 2.13 × 101 4.74 × 1011 7.28 × 106 1.06 × 106 4.78 × 109 3.05 × 1016

MEAN 5.63 × 103 7.99 × 103 2.12 × 101 2.00 × 1011 6.12 × 106 1.06 × 106 2.52 × 109 6.75 × 1015

STD 1.34 × 103 1.41 × 103 7.55 × 10-2 1.32 × 1011 1.04 × 106 3.06 × 103 1.31 × 109 1.06 × 1016

6.0 × 105

BEST 0.00 × 100 1.04 × 103 2.00 × 101 8.86 × 109 1.66 × 106 1.04 × 106 1.81 × 107 7.66 × 1013

MEADIAN 0.00 × 100 1.18 × 103 2.00 × 101 3.92 × 1010 3.87 × 106 1.05 × 106 1.97 × 108 3.56 × 1014

WORST 1.54 × 10-32 1.49 × 103 2.00 × 101 9.74 × 1010 5.59 × 106 1.05 × 106 6.84 × 108 2.14 × 1015

MEAN 3.07 × 10-33 1.18 × 103 2.00 × 101 4.85 × 1010 3.61 × 106 1.05 × 106 2.33 × 108 5.32 × 1014

STD 6.87 × 10-33 1.61 × 102 1.41 × 10-5 3.21 × 1010 1.58 × 106 3.16 × 103 2.54 × 108 7.21 × 1014

3.0 × 106

BEST 0.00 × 100 7.42 × 102 2.00 × 101 2.80 × 109 1.61 × 106 1.03 × 106 1.81 × 105 3.77 × 1013

MEADIAN 0.00 × 100 7.77 × 102 2.00 × 101 3.11 × 109 3.87 × 106 1.04 × 106 5.17 × 105 6.87 × 1013

WORST 0.00 × 100 1.33 × 103 2.00 × 101 9.54 × 109 5.05 × 106 1.05 × 106 7.00 × 105 1.11 × 1014

MEAN 0.00 × 100 8.66 × 102 2.00 × 101 4.26 × 109 3.28 × 106 1.04 × 106 4.50 × 105 6.90 × 1013

STD 0.00 × 100 2.07 × 102 1.41 × 10-5 2.47 × 109 1.28 × 106 7.18 × 103 2.23 × 105 2.87 × 1013

F9 F10 F11 F12 F13 F14 F15

1.2 × 105

BEST 3.78 × 108 9.29 × 107 3.65 × 1010 3.63 × 108 1.47 × 1010 1.76 × 1011 2.96 × 107

MEADIAN 4.56 × 108 9.39 × 107 1.86 × 1011 2.84 × 109 2.43 × 1010 2.51 × 1011 4.94 × 107

WORST 8.71 × 108 9.46 × 107 4.39 × 1011 1.20 × 1010 7.16 × 1010 5.56 × 1011 7.50 × 107

MEAN 5.07 × 108 9.38 × 107 2.27 × 1011 4.82 × 109 3.08 × 1010 2.77 × 1011 5.23 × 107

STD 1.71 × 108 5.94 × 105 1.29 × 1011 5.26 × 109 1.89 × 1010 1.37 × 1011 1.59 × 107

6.0 × 105

BEST 1.58 × 108 9.26 × 107 1.39 × 109 5.84 × 102 1.21 × 109 3.21 × 109 5.66 × 106

MEADIAN 3.78 × 108 9.30 × 107 4.54 × 109 8.54 × 102 3.49 × 109 3.18 × 1010 7.32 × 106

WORST 4.22 × 108 9.40 × 107 5.82 × 1010 1.18 × 103 1.27 × 1010 7.89 × 1010 1.37 × 107

MEAN 3.50 × 108 9.31 × 107 1.27 × 1010 9.08 × 102 4.57 × 109 3.50 × 1010 8.98 × 106

STD 9.32 × 107 5.19 × 105 2.04 × 1010 2.19 × 102 3.98 × 109 2.99 × 1010 3.34 × 106

3.0 × 106

BEST 1.06 × 108 9.17 × 107 3.50 × 107 4.27 × 100 7.98 × 106 2.53 × 107 8.33 × 105

MEADIAN 3.08 × 108 9.24 × 107 1.02 × 108 1.06 × 101 1.11 × 107 6.31 × 107 1.42 × 106

WORST 3.58 × 108 9.26 × 107 3.95 × 108 1.06 × 103 6.14 × 107 1.56 × 108 2.56 × 106

MEAN 2.60 × 108 9.23 × 107 1.50 × 108 2.84 × 102 2.35 × 107 7.11 × 107 1.55 × 106

STD 1.04 × 108 3.23 × 105 1.29 × 108 4.22 × 102 2.19 × 107 4.58 × 107 6.65 × 105
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